
Identification of First-Order Time-Delay

Systems using Two Different Pulse Inputs ⋆

B.A. León de la Barra ∗, Lihua Jin ∗∗, Y.C. Kim ∗∗,1, and
M. Mossberg ∗∗∗

∗ University of Tasmania, Australia (e-mail:
b.a.leondelabarra@ieee.org)

∗∗ Chungbuk National University, South Korea (e-mail:
jinlihua@chungbuk.ac.kr, yckim@cbu.ac.kr)

∗∗∗ Karlstad University, Sweden (e-mail: magnus.mossberg@kau.se)

Abstract: This paper provides exact analytical expressions for the DC gain, time constant, and
time delay of first-order plus time-delay (FOTD) systems from knowledge of two relative extrema
in the transient response to two different finite-duration pulse inputs. The availability of these
formulae leads to simple identification methods for process control settings that do not require
any prior knowledge about the process DC gain and/or time delay. Variance analysis is used to
study the quality of the estimates when the pulse response measurements are corrupted by noise.
The proposed identification techniques compare favorably with existing FOTD identification
methods both in terms of overall simplicity and user friendliness.

1. INTRODUCTION

It is commonly accepted that identification for control in
industrial settings most often means that a simple process
model with at most three parameters is fitted to real
time data (Ljung [2002]). In fact, FOTD models are very
common in process control where systems with essentially
monotone step responses are frequently found (Åström and
Hägglund [2006]). The identification of FOTD models has
been the subject of continued attention for a few decades.
Relay-based identification of FOTD systems has received
significant attention over the last two decades. Some recent
efforts in this area include (Srinivasan and Chidambaram
[2003]) that provided analytical expressions for the param-
eters describing an FOTD system from quantities derived
from a single asymmetrical relay test. A relay based esti-
mation method where knowledge of the slope of the output
signal at a zero crossing was needed has also been reported
(Majhi and Litz [2003]). This latter method also required
solving a nonlinear equation for each unknown parameter.
More recently, Padhy and Majhi [2006] introduced a relay-
based identification method for FOTD processes where
the steady-state gain was assumed to be known a priori.
Last year, Majhi [2007] introduced relay-based identifi-
cation of a class of non-minimum phase SISO processes
that included the systems to be considered in this paper.
However, this approach required the use of a nonlinear
algebraic equation solver for parameter estimation raising
convergence issues if the initial estimates were not that
close to the true parameter values. The same is true for
the method previously presented in Majhi [2005]. Under
certain conditions, this latter method also requires previ-
ous knowledge of the DC gain of the process. Note also
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that relay-based identification methods need to exclude
the initial transient oscillating behavior so that limit cycle
data are estimated after a few (typically two or three)
stabilized cycles have taken place (Majhi [2007], Srinivasan
and Chidambaram [2004]). More recently, a general inte-
gral identification method applicable to nth order time-
delay systems where the test input is expressible as a
sequence of step signals was presented (Liu et al. [2007]).
This method assumed that lower and upper bounds on the
time delay were known. Recent work by León de la Barra
and Mossberg [2007] used finite-duration rectangular pulse
inputs to identify the parameters of a prototype second-
order transfer function. Exact analytical expressions for
the damping ratio and the undamped natural frequency
were obtained from knowledge of the peak time and peak
value in the rectangular pulse response. The sensitivity of
these expressions to uncertainties in the measurements was
also studied. The work reported in this paper complements
the results in León de la Barra and Mossberg [2007] by
tackling the identification of FOTD models. Our approach
uses only two relative extrema in the transient response
to finite-duration pulses of different shape, cf. Fig. 1, and
does not require any prior knowledge about the process
DC gain and/or time delay. The proposed identification
techniques also compare favorably with existing FOTD
identification methods both in terms of overall simplicity
and user friendliness. In particular, we contend that our
approach is likely to be more time efficient than relay-
based FOTD identification as it will use precisely the
initial transient response data neglected by relay-based
FOTD identification techniques.

2. PROBLEM STATEMENT

Consider an FOTD system characterized by

G(s) =
Y (s)

U(s)
=

K

1 + Ts
e−Ls (1)
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where K 6= 0, L ≥ 0, and T > 0 respectively. This
paper deals with the problem of estimating the three
parameters that characterize system (1). For this purpose,
one may certainly use some of the ubiquitous step re-
sponse based FOTD identification methods (Åström and
Hägglund [2006]). A merit of pulse testing is, compared
with step (and ramp) testing, that the process input and
output will return to their pre-testing steady-state val-
ues soon after the end of the identification experiment.
Minimizing the experiment’s impact on the overall process
operation is also an important issue that any identification
procedure should take into account (Hwang and Huang
[2006]). Thus, this paper considers the problem of ob-
taining explicit analytical expressions for K, L, and T
from knowledge of two points in the transient response
of system (1) to simple finite-duration pulse inputs. Two
different pulse inputs, as shown in Fig. 1, will be considered
here. Note that Hwang and Huang [2006] has also argued
that different pulse shapes could be used to better excite
specific frequency ranges for different systems.

W

t
D

A

2D !D !

A"

1( )u t

W

A

t

A !

2D"#D"#

2( )u t

D

(a) A double rectangular pulse (b) A delayed doublet pulse

Fig. 1. Finite-duration pulse inputs with the same energy.

In Fig. 1, A and µ represent the pulse amplitude and
a multiplier, D is the pulse width, and ∆ denotes the
separation time between two rectangular pulses.

In this paper we also consider pulses having the same total
signal energy that is given by

∞
∫

0

u2
i (t)dt = (µ2 + 1)A2D, i = 1, 2. (2)

3. MAIN RESULTS

In this section, we present simple methods to exactly iden-
tify the parameters of an FOTD system from knowledge
of two points in its transient response to two pulse inputs
as illustrated in Fig. 1.

3.1 Double Rectangular Pulse Response

A double rectangular pulse input can be expressed as

u1(t) = A [H(t) − H(t − D)]

+µA [H(t − D − ∆) − H(t − 2D − ∆)] (3)

where A 6= 0, D,∆, µ > 0, and

H(t) =

{

0, t < 0
1, t ≥ 0

is the Heaviside unit function. Since the Laplace transform
of u1(t) is given by

U1(s) =
A

s

[

(

1 − e−Ds
)

+ µ
(

e−(D+∆)s − e−(2D+∆)s
)]

(4)

it is easy to show that the double rectangular pulse
response can be derived as

Y1(s) =
AK

s (1 + Ts)
e−Ls

[(

1 − e−Ds
)

+µ
(

e−(D+∆)s − e−(2D+∆)s
)]

. (5)

If we define

ta = L + D, tb = L + D + ∆, tc = L + 2D + ∆, (6)

then the response in the time domain is described by

y1(t) =































































0, t < L

AK
(

1 − e−
t−L

T

)

, L ≤ t < ta

AK
(

e−
t−ta

T − e−
t−L

T

)

, ta ≤ t < tb

AK
(

e−
t−ta

T − e−
t−L

T tb ≤ t < tc

−µe−
t−tb

T + µ
)

,

AK
(

e−
t−ta

T − e−
t−L

T t ≥ tc

−µe−
t−tb

T + µe−
t−tc

T

)

.

(7)

A typical double rectangular pulse response for AK > 0 is
illustrated in Fig. 2.
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Fig. 2. Double rectangular pulse response for an FOTD
system.

It can be easily seen that each expression in (7) is either
monotonically increasing or decreasing for the correspond-
ing interval. Therefore, it is straightforward to verify that
the extreme values of the double rectangular pulse re-
sponse are given by

y1a = y (ta) = AK
(

1 − e−
D

T

)

, (8)

y1b = y (tb) = AKe−
∆
T

(

1 − e−
D

T

)

, (9)

y1c = y (tc) = AK
(

1 − e−
D

T

)(

µ + e−
D+∆

T

)

. (10)

The following result characterizes how K, L, and T can be
identified by using the above extreme values.

Result 1 : From the double rectangular pulse response of
an FOTD system given by (1) it follows that

(i) T =
∆

ln (y1a) − ln (y1b)
, if ∆ 6= 0 or (11)
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T =
D + ∆

ln (y1a) − ln (y1c − µy1a)
, (12)

(ii) K =
y1a

A

[

1 −
(

y1b

y1a

)
D

∆

] , if ∆ 6= 0 or (13)

K =
y1a

A

[

1 −
(

y1c−µy1a

y1a

)
D

D+∆

] , (14)

(iii) L = ta − D = tb − D − ∆ = tc − 2D − ∆. (15)

Derivation: See Appendix A.

Remark 1 : Note that in a practical setting having two
alternative expressions to evaluate the steady-state gain
K and time constant T , and three different expressions to
estimate the time delay L, respectively, could be used to
make a preliminary assessment about whether the under-
lying process generating the data should be characterized
by an FOTD model. Note also that these additional ex-
pressions originate from the obvious fact that a double
rectangular pulse has two additional vertical edges when
compared to a single rectangular pulse.

3.2 Delayed Doublet Pulse Response

A delayed doublet pulse input can be described by

u2(t) = A [H(t) − H(t − D)]

−µA [H(t − D − ∆) − H(t − 2D − ∆)] . (16)

The Laplace transform of u2(t) is expressed by

U2(s) =
A

s

[(

1 − e−Ds
)

−µ
(

e−(D+∆)s − e−(2D+∆)s
)]

(17)

and the delayed doublet pulse response is described by

Y2(s) =
AK

s (1 + Ts)
e−Ls

[(

1 − e−Ds
)

−µ
(

e−(D+∆)s − e−(2D+∆)s
)]

. (18)

The delayed doublet pulse response in the time domain
can be derived as

y2(t) =































































0, t < L

AK
(

1 − e−
t−L

T

)

, L ≤ t < ta

AK
(

e−
t−ta

T − e−
t−L

T

)

, ta ≤ t < tb

AK
(

e−
t−ta

T − e−
t−L

T tb ≤ t < tc

+µe−
t−tb

T − µ
)

,

AK
(

e−
t−ta

T − e−
t−L

T t ≥ tc

+µe−
t−tb

T − µe−
t−tc

T

)

.

(19)

Fig. 3 depicts a typical delayed doublet pulse response for
AK > 0.

It is obvious that each expression in (19) is either mono-
tonically increasing or decreasing for the corresponding

interval. Therefore, it is straightforward to verify that the
extreme values of the delayed doublet pulse response are
given by

y2a = y (ta) = AK
(

1 − e−
D

T

)

, (20)

y2b = y (tb) = AKe−
∆
T

(

1 − e−
D

T

)

, (21)

y2c = y (tc) = −AK
(

1 − e−
D

T

) (

µ − e−
D+∆

T

)

. (22)
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Fig. 3. Delayed doublet pulse response for an FOTD
system.

The following result specifies how K, L, and T can be
estimated by using the above extreme values.

Result 2 : From the delayed doublet pulse response of an
FOTD system given by (1) it follows that

(i) T =
∆

ln (y2a) − ln (y2b)
, if ∆ 6= 0 or (23)

T =
D + ∆

ln (y2a) − ln (y2c + µy2a)
, (24)

(ii) K =
y2a

A

[

1 −
(

y2b

y2a

)
D

∆

] , if ∆ 6= 0 or (25)

K =
y2a

A

[

1 −
(

y2c+µy2a

y2a

)
D

D+∆

] , (26)

(iii) L = ta − D = tb − D − ∆ = tc − 2D − ∆. (27)

Derivation: See Appendix B.

Remark 2 : A non-delayed rectangular doublet pulse has
been used in Åström and Hägglund [2006] to estimate the
parameters of an FOTD system. As expected, the results
in Åström and Hägglund [2006] constitute a special case of
Result 2 and can be obtained by making µ = 1 and ∆ = 0
in equations (24), (26). Note also that the expression for
the time constant T given by Åström and Hägglund [2006]
is incorrect as it would generate negative time constants
from stable responses.

4. ROBUSTNESS TO MODEL MISMATCH

From the viewpoint of practical implementation, the pro-
posed simple identification methods may have significant
estimation errors when the response data is corrupted with
measurement noise and the actual process is of higher or-
der. In this section, the robustness of the estimated model
against mismatched model order will be investigated. The
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assessment of accuracy is performed in both the time
domain and the frequency domain. For the time domain
accuracy, the integral of the squared error (ISE) bwtween
the impulse responses of the estimated model and the real
process is used.

J =

ts
∫

0

e2(t)dt. (28)

Wherein ts is the settling time of the impulse response.

It is well known that a good fitness of an identified model
in the time domain does not necessarily imply a good
matching of the frequency response. Let the estimated
model of (1) be Ĝ(s). The frequency domain estimation
error can be measured by the following worst case error
(Wang and Zhang [2001]).

E = max
ω∈[0,ωc]

{
∣

∣

∣

∣

∣

Ĝ(jω) − G(jω)

G(jω)

∣

∣

∣

∣

∣

× 100%

}

(29)

where ωc is the phase crossover frequency, i.e., 6 G(jωc) =
−π.

Now let us examine the robustness of the identification
methods based on Results 1 and 2, and an existing step
response method (Smith and Corripio [1985]) through an
example. In Smith and Corripio [1985], we have

K = yss, T =
3

2
(t2 − t1) , L = t2 − T (30)

where yss is the steady-state value of the unit step re-
sponse, t1 and t2 are the times at which y(t1) = 0.283yss

and y(t2) = 0.632yss, respectively.

Example 1 : Consider a real system of third-order plus
time-delay given by,

G(s) =
100

(s + 2)(s + 5)(s + 10)
e−0.2s. (31)

The parameters specifying the pulse inputs are assumed to
be A = 1, µ = 2.25, D = 0.44, and ∆ = 0.27. In addition,
a zero mean white noise with variance λ2 = 5 × 10−3 is
added at the process output.

Each identified parameter and each robustness measure
are given in Table 1.

Table 1. The identified model parameters and
estimation errors for Example 1.

Double Rectangular Delayed Doublet Step

K̂ 1.0363 1.0182 1.0008

T̂ 0.8385 0.7904 0.6077

L̂ 0.4407 0.4371 0.4577

J 2.0006 1.5696 2.6714

E 0.0008 0.0363 0.0182

The double rectangular pulse, delayed doublet pulse, and
step responses of the real process with noise and the
identified model to different inputs are shown in Fig. 4
(a)–(c). Due to the difference in the order of the actual
plant and estimated models, the estimation errors always
exist except for the extrema as in Fig. 4(a) and (b).

The impulse responses and Bode diagrams of the actual
plant and identified models are comparatively shown in
Figs. 5 and 6.
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Fig. 4. Pulse and step responses of the actual process and
identified models.
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Fig. 5. Impulse responses of the actual plant and identified
models.
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Fig. 6. Bode diagrams of the actual plant and identified
models.

In this example, the three identification methods give
similar accuracy in the time domain, the double rectan-
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gular pulse results in the best accuracy in the frequency
domain, whereas the step response method provides the
best estimation of the steady-state gain. However, most
identification methods based on extremal values may have
generally significant estimation errors for the case of model
mismatch.

5. VARIANCE ANALYSIS

Let ei and τi denote a pulse response extreme value and its
time location, respectively. Let us also assume that inexact
measurements of these quantities

êi = ei + ε, (32)

τ̂i = τi + ε (33)

are available, where ε represents zero mean white noise of
variance σ2.

The estimators of the system parameters K and T given
in Results 1 and 2, and step response based identification
are functions of the known quantities A, µ, D, and ∆
(that characterize the different pulse inputs), and of two
measured pulse response extreme values, say ê1 and ê2,
respectively. On the other hand, each estimator of L only
depends on a measured extreme value time location, say
τ1, corresponding to the pulse response extreme value e1.

The errors in the measurements, as characterized by (32)–
(33), will affect the accuracy of the estimated parameters
in the following way.

Consider the vector

m̂ = [ê1 ê2 τ̂1]
T

(34)

with mean value

m = [e1 e2 τ1]
T

(35)

and covariance matrix σ2 · I, where I denotes the identity
matrix. We have that

ϑ̂ =





K̂

T̂

L̂



 =

[

f1 (m̂)
f2 (m̂)
f3 (m̂)

]

= f (m̂) , (36)

where f(m̂) and m̂ are different for Results 1 and 2,
and existing step response method, but where the same
framework can be used for describing all possible esti-
mators. Note also that if for a given pulse shape there
are alternative expressions for the estimators, m̂ can have
more than one value for that specific pulse response. The
results to be presented in this section only consider the
first (or leftmost) expression for each estimator.

When m̂ is sufficiently close to m, the approximation

f(m̂) ≈ f(m) + f ′(m) · (m̂ − m) (37)

should be accurate enough, where f ′ is the 3 by 3 derivative
of f . This means that

cov
(

ϑ̂
)

≈E
{

[f(m̂) − f(m)] · [f(m̂) − f(m)]
T
}

≈ f(m) · E
[

(m̂ − m) · (m̂ − m)
T
]

· [f(m)]
T

= σ2 · f(m̂) · [f(m̂)]
T

(38)

The following example explores how the variances (38) of

the estimates K̂ and T̂ , introduced in Results 1 and 2, and
of the step response method are affected when the pulse
response measurements are corrupted by noise.

Example 2 : The parameters defining the different pulse
inputs are given by A = 1, µ = 2, D = 1, and ∆ = 0.2,
respectively.

The system parameters are chosen as K = 1 and L = T =
0.5, and the variances of K̂ and T̂ are shown in Figs. 7
and 8 as a function of the noise variance.
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Double Rectangular
Delayed Doublet
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Fig. 7. Variance of K̂ versus noise variance.

From Fig. 7 it is clear that the K̂ estimates given by the
double rectangular pulse have the lowest variance and that
the K̂ estimates given by the delayed doublet pulse have
the highest variance, respectively. It is worth pointing out
that a delayed doublet pulse with the same parameters
than a double rectangular pulse will always have less
energy at zero frequency and this could partly explain why
the delayed doublet pulse exhibits the highest variance in
estimating the static process gain.
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Fig. 8. Variance of T̂ versus noise variance.

From Fig. 8 it is seen that the T̂ estimates given by step
input have the lowest variance and that the T̂ estimates
given by the delayed doublet pulse have the highest vari-
ance, respectively.
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6. CONCLUSION

This paper has provided exact analytical expressions for
the DC gain, time constant, and time delay of FOTD
systems from knowledge of two points in the transient
response to different finite-duration pulses. Our approach
did not require any prior knowledge about the process
DC gain and/or time delay. Variance analysis was used to
study the quality of the estimates when the pulse response
measurements were corrupted by noise. The robustness
of the estimated model against a mismatch in the model
order has also been investigated. The estimation accuracy
was evaluated in both the time domain and the frequency
domain. Comparing the proposed methods with step re-
sponse based identification, the pulse response methods
generally result in slightly larger estimation errors than
the step response method unless the original plant can be
well described by an FOTD system. It is also noted that
the proposed methods depend on the input parameters A,
µ, D, and ∆ for high-order processes.
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Appendix A. DERIVATION OF RESULT 1

We first show the derivation of (12). If we substitute (8)
into (10) we have

y1c = y1a

(

µ + e−
D+∆

T

)

. (A.1)

Rewriting

y1c

y1a

− µ = e−
D+∆

T (A.2)

and taking logarithm on both sides of (A.2)

ln

(

y1c

y1a

− µ

)

= −
D + ∆

T
. (A.3)

Rearranging (A.3) leads to (12), i.e.,

T =
D + ∆

ln (y1a) − ln (y1c − µy1a)
. (A.4)

Alternatively, combining (8) and (9)

y1b = y1ae−
∆
T (A.5)

leads to

T =
∆

ln (y1a) − ln (y1b)
. (A.6)

Now, if we rewrite (8) using (A.6) we have

y1a = AK

[

1 −

(

y1b

y1a

)
D

∆

]

(A.7)

leading to (13). And (14) is obtained by using (A.4) in (8).
The derivation of (15) is trivial. ∇ ∇ ∇

Appendix B. DERIVATION OF RESULT 2

Combining (20) and (22) we have

y2c = −y2a

(

µ − e−
D+∆

T

)

, (B.1)

and rearranging (B.1)

y2c

y2a

+ µ = e−
D+∆

T . (B.2)

Therefore, (24) is obtained by taking logarithm on both
sides of (B.2). It is also clear from (24) that

e−
D

T =

(

y2c

y2a

+ µ

)
D

D+∆

(B.3)

and (26) follows by substituting (B.3) into (20). (23) and
(25) follow by using (21) in (20). The derivation of (27) is
trivial. ∇ ∇ ∇
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