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Abstract: This paper addresses the problem of designing decentralized robust power system
stabilisers for interconnected power systems by considering effects of parameter variations
and interconnections from other generators. To make the controller robust against parameter
variations around an operating point, variations in system parameters due to the load change
are translated to the uncertainty framework and are represented using Integral Quadratic
Constraints (IQCs). The operating range of the generator is divided into several zones with
respect to its power output and separate controllers are designed for each zone to achieve robust
stabilization in the vicinity of the operating point. As the operating point shifts from one zone
to another a suitable controller is selected and switched. The stability of the switched system
is achieved by allowing a “dwell time” between consecutive switchings. Jumps in system states
during switching are taken into account in the derivation of the dwell time. Interconnection
effects due to other machines in the grid are included as the uncertainty in the controller design.
The controller design methodology is validated by simulating a two-area power benchmark power
system.

Keywords: Power system control design; Decentralized control; Switching control; Dwell time;
Power system stabilizers.

1. INTRODUCTION

The primary task of the power system control is to
provide reliable and secure electric power supply within
a narrow band of voltage and frequency variations. As the
demand for electric power is continuously increasing power
systems are growing in size and complexity. Also to meet
the ever increasing demand, power systems are forced to
operate close to their capacity limits without sacrificing
the reliability. This reduces the damping of the system
making it marginally stable. These issues make the power
system control task very difficult and challenging.

In a multi-machine power system, when the steady state
condition is disturbed due to load changes or a fault in
the system, rotors of the machines comprising the system
start oscillating with respect to each other, exchanging
energy between them. When oscillations are allowed to
grow, the machines are pulled out of synchronization. Most
generators have a Power System stabiliser (PSS) to im-
prove the stability margin and to damp out oscillations. A
conventional design is generally based on a Single Machine
connected to Infinite Bus (SMIB) model and is aimed at
achieving the stability of a single operating point. The ro-
bustness problems encountered by the conventional design
procedures and the modeling limitations were addressed

⋆ This work was supported by The Australian Research Council.

and improved upon by considerable research work in this
area as reported in Wang et al. [1998], Jain et al. [1996],
Boukarim et al. [2000], Wang et al. [1995], Qiu et al. [2004].
In these works, controllers are designed for multi-machine
power systems using modern control techniques like the
H∞ optimisation, µ-synthesis and the Linear Matrix In-
equality (LMI) approach.

Generally, a single PSS is designed for the entire operating
range of the generator. However the power system param-
eters vary over a wide range due to variations in load and
generation conditions. This makes the conventional PSS
design conservative as the PSS must cover a broad range of
conditions. To reduce conservatism, several controllers can
be designed around different selected operating points and
these controllers can be suitably switched as the generator
operating conditions change.

Switching controllers are widely used in different areas
and considerable research has been carried out in these
methodologies, Wang et al. [2006]. Stability of switched
controlled systems is also widely investigated and reported
in Liberzon [2003], Zhao and Dimirovski [2004], Sun and
Ge [2004], Hespanha and Morse [December 1999]. In
Liberzon [2003], Hespanha and Morse [December 1999] the
concept of allowing a dwell time between two consecutive
switchings for switching stability is established. While
deriving dwell time, generally, it is assumed that system
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states do not jump at switching instances i.e., trajectories
of the system states are continuous everywhere. But to
apply the dwell time approach to power systems where
controllers are designed for operating points corresponding
to different steady state conditions, discontinuous jumps
in trajectories have to be considered due to switching of
equilibria. In this paper we account for these switching
jumps in the states in the derivation of the dwell time.

In our work we divide the entire operating regime of the
generator into several zones with respect to power output
of the generator and each zone consisting of one Stable
Equilibrium Point (SEP). We propose a decentralised
output feedback controller designed for a power system
linearised around each such SEPs. The controller design
methodology is based on the recent work by Li et al. [2007]
and Athanasius et al. [2007]. The controller is made robust
against parameter variations within the particular zone
around the nominal plant corresponding to the selected
SEP. These parameter variations due to load change are
translated into uncertainty frame work and represented
using Integral Quadratic Constraints (IQCs). Along with
this, the interconnection effects from other machines in
the system and other local uncertainties are also included
in the controller design. By this approach the potentially
possible perturbations on the system are addressed in the
design. This makes the proposed design more robust and
less conservative. In the controller design uncertainties are
bounded by using IQCs and the H∞ optimisation problem
is solved using rank constrained LMIs Li et al. [2007]. The
designed controller guarantees robust performance for load
variations within the specified bounds around the SEP.

When the operating point of the generator shifts from one
zone to another while the power output of the generator
changes, the controller corresponding to the new zone can
be selected and switched. Switching stability is achieved by
allowing dwell time between consecutive switchings. The
proposed controller is validated by designing stabilisers
for a test case power system. The performance of the
controller is validated through nonlinear simulations. The
paper is organised into four parts. First part gives the
power system model, the next part covers the controller
design, dwell time derivation is given in the third part
and in the last part test case and simulation results are
presented.

2. POWER SYSTEM MODEL

Mathematical model of a multi machine power system con-
sisting of N generators is considered here. The behavior of
a ith generator in a multi-machine power system consisting
of N generators, Anderson and Fouad [1994], is described
by:

δ̇i = ωsωi − ωs

ω̇i =
1

2Hi

(

Pmi − E′

qiIqi

)

Ė′
qi =

1

τ ′

do

[

Kai(Voi − Vrefi + Vsi) − E′

qi + (xdi − x′

di)Idi

]

V̇oi =
1

Tri

(Voi − |Vti|) (1)

where

Iqi =

N
∑

j=1

|E′

qj | [Gij cos(δj − δi) − Bij sin(δj − δi)]

Idi =
N

∑

j=1

|E′

qj | [Gij sin(δj − δi) + Bij cos(δj − δi)] (2)

where δi is the rotor angle, ωi is the rotor speed with
respect to a synchronous reference frame, E′

qi is the
quadrature axis transient voltage, Voi is the terminal
voltage transducer output and Vsi is the stabilising signal
for the AVR. Detailed description of the parameters in the
above equations are given in Anderson and Fouad [1994].

3. CONTROLLER DESIGN

The control design problem considered here is of providing
a control algorithm which works for large changes in
generator load. The algorithm presented in this paper first
divides the entire operating range, i.e., load variations, into
several regions, a linear model is obtained about a SEP
in that region, and then one controller each is designed
for each region of operation. Finally constraints on the
frequency of switching between controllers are obtained to
preserve system stability.

The controller design in this paper is based on the method-
ology of rank constrained LMI’s and IQC modeling pro-
posed in Li et al. [2007], also see Athanasius et al. [2007]
where the results of Li et al. [2007] were utilized in the
design of power system stabilisers. Let us consider a gen-
erator in a power system with variable power output ρ(.).
In Athanasius et al. [2007] each generator connected to the
grid is treated as a subsystem and formulated as a system
affected by parameter variations and by the interconnec-
tion effects. Effects due to parameter variation around the
operating point and interconnection effects are treated as
uncertainties on the subsystem. IQCs are used to describe
the uncertainties and LMI optimization technique is used
to solve the optimisation problem.

Following Ugrinovskii and Pota [2005], Ramos et al. [2006]
and Athanasius et al. [2007], we consider a large scale
system S comprising of N subsystems Si of the following
form:

Si : ẋi(t) = Ai(γ)xi(t) + Biui(t) + Eiξi(t)

+ βiφi(t) + Liri(t),

zi(t) = Cixi(t) + Diui(t),

ζi(t) = Hixi(t) + Giui(t),

ζ̂i(t) = αiIxi(t),

yi = Cy,ixi(t) + Dy,iξi(t), (3)

where Ai(γ) is the system matrix corresponding to
the power output ρ(·) = γ, xi is the state vector
and in the case of generator from equation (1) xi =
[∆δi, ∆ωi, ∆Eqi, ∆Voi]

′, ui the control inputs which is the
PSS output ∆Vsi, ξi ∈ Rpi is the perturbation, ζi ∈ Rhi is
the uncertainty output (made up of both the system states,

and the control inputs), ζ̂i is the uncertainty output due
to parameter variation around operating point, zi ∈ Rqi

is the controlled output of the subsystem which consists
of both the subsystem states and control inputs, and yi is
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output of the system which is ∆ωi feedback to the con-
troller. The input ri describes the effect of the subsystems
Sj , j 6= i, on the subsystem Si. The input ξi describes the
effect of local uncertain modeling errors in this subsystem.

The variations in A(·) due to load and generation changes
around the operating point can be treated as an additional
disturbance and the system can be regarded as a perturba-
tion of a linear fixed parameter system. The variations in
the matrix A(·) can be regarded as modeling uncertainty
and driven by φi(t), Yoon et al. [2007]. Signal φi(t) is
defined as:

φi(t) :=
1

βi

[Ai(γ + ∆γ) − Ai(γ)] xi(t)

where αi and βi > 0 are constants.

Now the designed controller will stabilize the original
Linear Parameter Varying (LPV) system provided the
parameter ρ(·) varies in a sufficiently small neighborhood
Ωγ of γ. The size of neighborhood is determined by the
choice of αi and βi.

To design the controllers, let αi, βi and γ ∈ Γ be so chosen
that

sup
ρ∈Ωγ

‖Ai(ρ) − Ai(γ)‖ < αiβi (4)

where ‖ · ‖ denotes the largest singular value.

Now we consider the problem of decentralized absolute
stabilization via output feedback control. The controllers
considered are decentralized linear output feedback con-
trollers of the form

ẋc,i(t) = Ac,i(γ)xc,i(t) + Bc,i(γ)yi(t);

ui(t) = Kc,i(γ)xc,i(t), (5)

where xc,i ∈ Rnc,i is the ith controller state vector.

Having the uncertainties, controller structure and load
variation parameter defined, we can find the decentralised
controllers (5) using the design methodology given in Li
et al. [2007] and Athanasius et al. [2007]. In the next
section, we describe the method to preserve stability of
system when these controllers are switched.

4. SWITCHING SYSTEM AND STABILITY

When the operating point of the generator changes suit-
able controller need to be selected and switched. The
stability of the switched system can be established under
slow switching (Liberzon [2003]). In this paper the work in
Liberzon [2003] is extended to system states which jump
at switching instances.

Now we discuss the stability of a switched system made
up of two systems P1 and P2:

P1 : ẋ = A1x, (6)

P2 : ẋ = A2x − A2Ψ, (7)

where x ∈ Rn is the state-vector and Ψ ∈ Rn is a constant
vector; the equilibrium point for P1 is 0 and that of P2

is Ψ; matrices A1 and A2 are stable matrices and further
there exist Lyapunov functions V1(x) and V2(x−Ψ) for P1

and P2 respectively.

We look at the configuration where the system is contin-
uously switching between P1 and P2 and determine the
stability of this system. The first question is: if both P1

and P2 are stable then how is it that switching between
the two will make the overall system unstable? For finite
number of switchings, stability is guaranteed but the same
cannot be said of infinite number of switchings.

Formally we define stability as follows: Given systems P1

and P2 and an infinite switching sequence P1 → P2 → P1,
the system is stable if there exists an r-ball

Br = {z : V1(z) ≤ r}

such that for every P1-state x(t0) 6∈ Br, where t0 is the
instance when system switches from P1 to P2, there exists
a τd such that when the system switches back to P1 from
P2, at t0 + τd, P1-state x(t0 + τd) is in Br.

Let the system states at the switching instances be denoted
as (see Figure 1):

x1 = x(t0) and x2 = x1 − Ψ (8)

y1 = x(t1) and y2 = y1 − Ψ (9)

where the system switches from P1 to P2 at t0 and back
to P2 at t1.

Note that the definition of stability is satisfied once the
system reaches inside a ball and not necessarily as it
approaches the origin. There is a good reason for this.
Systems P1 and P2 have different equilibrium points and
when the system switches to P2, the state approaches Ψ,
the equilibrium point of P2. This means that the ball B1

has to be large enough to include both equilibrium points
(0 and Ψ) (see Figure 1).

To see the motivation for the above stability definition, we
define balls B0 B1, and B2, shown in Figure 1:

B0 = {z : V1(z) ≤ V1(x(t0))} (10)

B1 = {z : V1(z) ≤ V1(x(t1))} (11)

B2 = {z : V2(z − Ψ) ≤ V2(x(t0) − Ψ)} (12)

0
Ψ

B0

B1

B2

x1

y1

P2 Trajectory

Fig. 1. Balls B0 and B1 and system trajectory (dashed)
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The interpretation of what these balls are is simple. (Please
note that since V1(x), V2(x−Ψ) are positive-definite, balls
B0, B1, and B2 define closed volumes.) Let t0 be the time
at which the system switches from P1 to P2 and then
at time t1, switches back from P2 to P1; the two balls
B0 and B1 correspond to the bound on system states at
time instants t0 and t1. Ball B2 gives the bound on the
trajectory when the system is switched to P2.

Our notion of stability is that if B1 ⊂ B0, for all switchings
P1 → P2 → P1, then the infinite switchings result in a
stable system. If such is not the case then every switching
may push the state into a larger and larger ball leading to
instability.

The condition that B1 be a subset of B0 can be ensured
by imposing a condition on the minimum time spent in P2

during every P1 → P2 → P1 cycle. This time is called the
dwell time, denoted as τd, and our final result is that if
the time spent in P2 is greater than the dwell time, i.e.,
t1 − t0 ≥ τd, then the switched system is stable.

Next we obtain an expression for the dwell time to ensure
the stability of the switched system. Let Lyapunov func-
tions V1 and V2 satisfy the following inequalities for some
positive constants a1, a2, b1, b2 and c1, c2:

a1 |x|
2 ≤ V1(x) ≤ b1 |x|

2 (13)

a2 |x − Ψ|
2
≤ V2(x − Ψ) ≤ b2 |x − Ψ|

2
(14)

∂V1

∂x
A1x ≤ −c1 |x|

2
(15)

∂V2

∂x
(A2x − A2Ψ) ≤ −c2 |x − Ψ|

2
(16)

From equation (13),

V1(x)

b1
< |x|

2
,

substituting this in (14),

∂V1

∂x
A1x ≤ −2λ1V1(x) (17)

where λ1 = c1

2b1
. This implies that for any positive τ ,

V1 (x (t0 + τ)) ≤ e−2λ1τV1 (x (t0)) (18)

since dV1(x)
dt

≤ −2λ1V1(x) and V1 decays exponentially.
Similarly we have

V2 (x (t0 + τ) − Ψ) ≤ e−2λ2τV2 (x (t0) − Ψ) .

From (13) and definitions (8) and (9) we have:

a1 |x1|
2
≤ V1(x1) ≤ b1 |x1|

2
(19)

a2 |x2|
2
≤ V2(x2) ≤ b2 |x2|

2
(20)

We find the dwell time, τd, by showing that when t1 −
t0 ≥ τd then there exists a ν such that (for x1 and y1

defined in (8), (9))

V1(y1) − V1(x1) ≤ −ν |x1|
2

(21)

Since V1 is a positive definite function, we can substitute
an upper bound for V1(y1) and lower bound for V1(x1) and
obtain,

b1 |y1|
2
− a1 |x1|

2
≤ −ν |x1|

2
(22)

Next we get a bound on |y1|; we know that,

V2(y2) ≤ e−2λ2τdV2(x2) (23)

=⇒ a2 |y2|
2
≤ b2e

−2λ2τd |x2|
2

(24)

=⇒ a2 |y1 − Ψ|
2
≤ b2e

−2λ2τd |x1 − Ψ|
2

(25)

Using the fact that 2(a−b)2 ≥ a2−2b2 with (25), we have,

−a2 |Ψ|
2
+

a2

2
|y1|

2
≤ e−2λ2τdb2 |x1 − Ψ|

2

≤ e−2λ2τdb2

(

|x1|
2 + |Ψ|2

)

(26)

Substituting the upper bound on |y1|
2 from (26) into (22)

we have,

4
b1b2

a2
e−2λ2τd |x1|

2
+ 2

b1

a2
|Ψ|

2 (

2e−2λ2τdb2 + a2

)

−a1 |x1|
2
≤ −ν |x1|

2
(27)

The middle term in the left-hand-side of the above equa-
tion (27) is independent of |x1| and unless x1, the state at
which the system switches from P1 to P2, is outside of some
region, inequality (27) cannot be satisfied. We ensure that
x1 is outside of some region by constraining it as follows:

|x1|
2
≥ 2

b1

a1
KΨ|Ψ|2 where KΨ > 1. (28)

Substituting (28) in (27) we have,

4
b1b2

a2
e−2λ2τd |x1|

2
+

a1

a2KΨ
|x1|

2 (

2e−2λ2τdb2 + a2

)

−a1 |x1|
2 ≤ −ν |x1|

2 (29)

From (29) we have the condition that τd should be such
that,

4
b1b2

a2
e−2λ2τd +

a1

a2KΨ

(

2e−2λ2τdb2 + a2

)

− a1 < 0 (30)

Thus for stable switching τd should satisfy,

2e−2λ2τd

(

2b1b2KΨ + a1b2

a2KΨ

)

< a1

(

KΨ − 1

KΨ

)

2e−2λ2τd <
a1a2 (KΨ − 1)

2 (2b1b2KΨ + a1b2)

τd >
1

2λ2
log

[

a1a2 (KΨ − 1)

2 (2b1b2KΨ + a1b2)

]

(31)

In the above we have proved that the r-ball into which
system trajectories converge is given by:

Br = {z : V1(z) ≤ 2b1KΨ|Ψ|2} (32)

From this it can be seen that there is a trade-off between
KΨ and τd.

So far we have only considered the P1 → P2 → P1

cycle but the development for the P2 → P1 → P2 cycle
is symmetrical to this and the dwell time in P1 can be
obtained by commuting the a1 → a2, b1 → b2, and c1 → c2

constants in the above expression (31). In the next section
both the dwell times are given for the test case power
system.
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Fig. 2. Two area four machine system.

5. TEST CASE POWER SYSTEM

To apply the controller design methodology, a two area
power system consisting of 4 generators and 11 buses
is considered. The layout of the power system is given
in Figure 2. The generator G1 bus is considered as the
reference slack bus.

Area 1 is connected to Area 2 through a two circuit tie
line of length 220 km. The transmission system nominal
voltage is 400 kV. Generation voltage is stepped up by the
transformers connected to the generators. Load centers are
at buses 7 and 9, buses 7 and 9 also have shunt capacitors.
Generator, transformer and line parameters for the system
are given in Athanasius et al. [2007].

Generators G1, G3 and G4 are base generators and supply
a power output of 400 MW each. Hence a single PSS is
designed for G1, G3 and G4 for an operating point of
400 MW. Generator G2 takes up the variation in system
load and its power output varies from 0 to 400 MW in
increments of 25 MW. The operating region of G2 is
divided into 16 equal zones of 25 MW each and each zone
consists of a SEP. Separate controller is designed for each
zone with a robust stabilisation over a parameter variation
of ± 25 MW as described in Section 3. The stabilisation
overlap between the adjacent controllers are so chosen that
the adjacent operating points are included in the overlap
region.

The dwell time for switching between two controllers is
worked out as per the procedure outlined in Section 4.
In the dwell time given by the equation (31), the value
of KΨ is chosen by the user. Larger values of KΨ allow
a larger size for the ball Br described in equation (32),
which increases the region of convergence for the state
trajectories. It can be seen from equation (31) that the
value of dwell time τd depends not only on KΨ but also
on the system parameters. We have varied the value of
KΨ from 1.1 to 100 and observed its effect on dwell time
and found that dwell time slightly increases with KΨ. For
switching from 200MW to 225MW , the dwell time for KΨ

= 1.1 is 15.88 sec and for KΨ = 100, dwell time is 21.2698.
For the test case system we have selected the value of KΨ

as 1.5. The dwell time corresponding to switching from
200MW to 225MW and back given in Case 1 below is
17.1376s and from 225 to 200MW is 17.4313s.

To evaluate the performance of controller and controller
switching, the following nonlinear simulations are carried
out. Case 1 evaluates the performance for back and forth

controller switchings around an operating point. Cases 2
and 3 are selected to consider gradual power up and down
scenarios.
Case 1: G2 is initially at 200 MW after the elapse the
dwell time, generation of G2 is increased to 225 MW and
corresponding controller is switched in and again after the
elapse of dwell time, power and controller are reversed
back to 200 MW conditions. Rotor angle response of the
generators are given in Figure 3 and the generator speed
in Figure 4.
Case 2: The power output of G2 is initially at 0 MW.
Output of G2 is increased to 400 MW in steps of 25
MW. At each power change corresponding controllers are
switched in after the elapse of dwell time. Rotor angle
response of the generators are given in Figure 5.
Case 3: Similar to Case 2 above but the output of G2 is
reduced from 400 MW to 0 MW. Rotor angle variations of
the generators are given in Figure 6.

6. CONCLUSION

The paper demonstrates a methodology to make the
power system controller design less conservative using
switching controllers with constrained minimum switching
interval. Using IQCs the interconnection effects from other
machines in the grid and parameter variation around
the operating point are included in the controller design,
making the stabiliser robust in the presence of these effects.
The switching stability is established using dwell time
between consecutive switchings and the effect of jumps
in the system states are also included while calculating
the dwell time. To validate the controller design and
switching stability, two area power system is considered
as a numerical example and nonlinear simulations are
carried out with wide generation-load variations. Sudden
up and down generation changes are simulated in Case
1 and the results of simulation are given in Figures 3
and 4. In Cases 2 and 3 the performance is evaluated for
continuous generation up and down conditions the results
of simulation are included in Figures 5 and 6. The results
of the simulation show the performance and effectiveness
of the scheme under different generation conditions.
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