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Abstract: Dissipative stabilizing state feedback controllers are investigated for singularly
perturbed fuzzy systems. We derive sufficient conditions for the existence of (Q,S,R)-dissipative
controllers for a class of nonlinear systems represented by T-S fuzzy model. Based on Lyapunov
theory, the main results are cast in LMI formulation solvable by existing LMI solvers. We
demonstrate that many existing technical papers are a specialized case of the general quadratic
dissipative control problem involving singularly perturbed fuzzy systems. Finally the utility of
the proposed method is illuminated by an example.
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1. INTRODUCTION

Over the decades, a large number of important results
on stabilizations have been derived for TS fuzzy models,
which rely on the existence of a common P to a quadratic
Lyapunov function. Following the progress, the robust
fuzzy control problems for uncertain fuzzy systems char-
acterized by 2-norm structure have been the main topic of
research [Tanaka and Wang [2001]]. In addition to stability
and robust issues, performance of a control system also
attracts attentions. Generally speaking, robust stability
can be categorized into two areas: Stability robustness
concerns stability problems of a control system subject
to parameter uncertainties [Kang et al. [1998]-Kiriakidis
[2001]]. Performance robustness focuses on performance
problems such as H∞ and/or H2 while the system is under
plant parametric variations [Tanaka et al. [1996]-Lo and
Lin [2004]].

Many physical systems contains complex multiple time-
scales dynamics due to presence of small parameters [Frid-
man [2001], Pan and Basar [1996]]. For a two-time-scale
systems, both slow and fast dynamic behaviors arise and
may lead to controller being ill-conditioning. To tackle
such problems, multiple-time-scale processes are addressed
in the framework of singularly perturbed systems which
alleviates the ill-conditioning resulted from interaction of
slow and fast dynamic modes.

The theory of dissipative systems has played an important
role in systems and control problems, incorporating basic
tools – bounded real lemma, passitivity lemma and cir-
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cle criterion – into one general quadratic form known as
supply rate. A seminal paper for dissipative control is in-
troduced by Willems [Willems [1972a,b]] and subsequently
generalized by Hill and Moylan [Hill and Moylan [1980]].
Literature on dissipative systems theory can be found on
[Yuliar and James [1996]-Xie et al. [1998]] and references
therein. Although there has been a considerable research
results on dissipative nonlinear systems, the results all
require solving a nonlinear partial differential equation,
imposing difficulties in controller synthesis.

Although [Liu et al. [2005a]] studied an H∞ control
problem for nonlinear singularly perturbed systems where
state feedback and static output feedback are investigated,
an iterative LMI approach was utilized to search for the
static output feedback gain.

Motivated by the work [Assawinchaichote and Nguang
[2004a,b], Liu et al. [2005b,a]], we generalize the notion to
dissipative control theory, investigating a unified approach
to synthesize stabilizing controllers for nonlinear systems
represented by TS fuzzy models. The proposed stabilizing
controllers guarantee that the closed-loop systems are
asymptotically stable with respect to a specified supply
rate.

The organization of this paper is as follows. Section II re-
derives fuzzy version of dissipative theorem expressed in
an LMI formulation. In section III, stabilization problems
via state feedback control is addressed. One illustrative ex-
ample is considered in Section IV and concluding remarks
are made in Section V.

Notations: The symbol ⋆ is used for terms that are
induced by symmetry. The notations Yµ and Yµµ stand
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for
∑r

i=1
µiYi and

∑r

i=1

∑r

j=1
µiµjYij , where µi ≥ 0 and

∑r

i=1
µi = 1. Also σx = ẋ(t) is for continuous-time sys-

tems. The indexes i, j = 1, 2, · · · , r(number of fuzzy rules)
are used throughout this paper.

2. PRELIMINARIES

2.1 General nonlinear systems

Consider the following nonlinear systems described by

σx(·) = A(x) + B(x)w(·), x(0) = x0 (1)

z(·) = C(x) + D(x)w(·) (2)

where σx(·) = ẋ(t) denotes a continuous-time system and
x(k) represents a discrete-time system. The vector x ∈ Rn

denotes the state vector, available for control purpose. The
vector z ∈ Rq stands for the controlled variables. The
disturbance is signal w ∈ Rd of L2[0,∞) and the vector
u ∈ Rm represents the control input. We begin our analysis
by making the following definitions [Xie et al. [1998]].

Definition:

A continuous system is called dissipative if
T

∫

0

r(z(t), w(t))dt + β(x0) ≥ 0, ∀w, ∀T ≥ 0

for some finite function β. Furthermore, a continuous
system is called strictly dissipative if for some sufficiently
small scalar α > 0
T

∫

0

r(z(t), w(t))dt + β(x0) ≥ α

T
∫

0

w(t)w(t)dt, ∀w, ∀T ≥ 0

The r(z, w) function is known as the supply rate (or power
function) where z and w are the system output and input
respectively.

We consider a general supply rate of the following form
(a.k.a. (Q,S, R) − dissipativity)

rq(z, w) =
1

2
(w′Qw + 2w′Sz + z′Rz) (3)

where Q, R ≤ 0 are symmetric matrices. The theory of
dissipative systems generalize the system theory, including
the bounded real (small gain) theorem, passivity theorem,
circle criterion, and sector bounded nonlinearity. To see
this, a few special cases fall out immediately by setting
the Q,S, R parameters. For example,

(1) H∞ performance: Q = γ2I, γ > 0, S = 0, and
R = −I.

(2) Positive real performance: Q = 0, S = I, and R = 0.
(3) Mixed performance: Q = θγ2I, S = (1−θ)I, θ ∈ [0, 1],

and R = −θI.
(4) Sector bounded performance: Q = − 1

2
(K ′

1
K2 +

K ′

2
K1), S = 1

2
(K1 + K2)

′, and R = −I, for some
constant matrices K1,K2.

2.2 Nonlinear singularly perturbed fuzzy (control) systems

To facilitate the presentation, we assume that the readers
are familiar with the basic fuzzy setup consisting of r fuzzy

rules whose consequent parts are characterized by local
Takagi-Sugeno type linear models. For example, given the
following fuzzy plant rules i = 1, 2, · · · , r. [Tanaka and
Wang [2001]]

If z1 is Mi1 and z2 is Mi2 and · · · and zp is Mip

then

σ x1 = A11ix1 + A12ix2 + B11iw + B21iu

ǫσ x2 = A21ix1 + A22ix2 + B12iw + B22iu

z = C11ix1 + C12ix2 + D11iw + D12iu

by using a standard fuzzy inference method – singleton
fuzzifier, product fuzzy inference and weighted average
defuzzifier, the inferred fuzzy model of interest, after
normalization, is described by the following open loop,
singularly perturbed fuzzy system

[

Eǫσx
z

]

=

[

Aµ B1µ B2µ

C1µ D11µ D12µ

]





x
w
u



 (4)

where

Eǫ =

[

In×n 0
0 ǫIm×m

]

, x =

[

x1

x2

]

Aµ =

[

A11µ A12µ

A21µ A22µ

]

, B1µ =

[

B11µ

B12µ

]

, B2µ =

[

B21µ

B22µ

]

C1µ = [ C11µ C12µ ] , D11µ = D11µ, D12µ = D12µ

and x ∈ Rn, z ∈ Rm, y ∈ Rs and µi ≥ 0 are the
state variable, controlled output, measured output and
grade of membership, respectively. Ai, B1i, B2i, C1i, C2i

D11i, and D12i are real constant matrices of appropriate
dimensions. We assume (Ai,B1i) is completely controllable
and (Ai, C2i) is completely observable.

Remarks:

(1) Although the singularly perturbed fuzzy system (4)
is displayed in a general form, we consider a simple
case by removing the column and row associated with
u for now (i.e, u = 0), the underlying fuzzy system
(4) can be viewed as the general nonlinear systems
characterized by (1)-(2). To see this, let

A(x) = Aµx =
r

∑

i

µiAix, B(x) = Bµ =
r

∑

i

µiBi

and

C(x) = Cµx =
r

∑

i

µiCix, D(x) = Dµ =
r

∑

i

µiDi.

Theorem 1. (Systems). There exists an ǫ∗ > 0 such that
the fuzzy system is dissipative and asymptotically stable
with respect to a specified rq(w, z) for ǫ ∈ (0, ǫ∗], if,
given the supply rate (3), there exists a common matrix
P displayed below

P =

[

P11 0
P21 P22

]

> 0

such that




A
′

iP + P
′

Ai ∗ ∗
B1iP − SC1i −Q − (SD11i + ∗) ∗

C1i D11i U



 < 0 (5)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14445



where 0 < P11 ∈ Rn×n and 0 < P22 ∈ Rm×m.

Proof: Since P11 > 0 and P22 > 0, it is obvious that there
exists a scalar ǫ1 > 0 such that P11 − ǫ · P

′

21
P−1

22
P21 > 0

for ǫ ∈ (0, ǫ1]. Let

Pǫ =

[

P11 ǫP
′

21

P21 P22

]

and then

EǫPǫ =

[

P11 ǫP
′

21

ǫP21 ǫP22

]

> 0

for ǫ ∈ (0, ǫ1]. Choose a quadratic Lyapunov function

as V (x(t)) = 1

2
x

′

(t)EǫPǫx(t) with quadratic supply rate

rq(z, w) = 1

2
(w′Qw + 2w′Sz + z′Rz) to show that (4)

is asymptotically stable. To this end, derive a stability
condition for following inequality

V̇ (t) − rq(z, w) < 0

where V̇ (t) is the time derivative of V function along
the state trajectory. To continue the stability proof, it is
straightforward to verify the following identity

V̇ (t) −
1

2
(w(t)′Qw(t) + 2w(t)′Sz(t) + z(t)′Rz(t))

= x
′

(A
′

µPǫ + P
′

ǫAµ)x + w
′

B
′

1µPǫx + x
′

P
′

ǫB1µw

−x
′

C
′

1µRC1µx − w
′

(S + D
′

11µR)C1µx

−x
′

C
′

1µ(S + D
′

11µR)
′

w − w
′

(Q + SD11µ

+D
′

11µS
′

+ D
′

11µRD11µ)w

= x
′

(A
′

µP + P
′

Aµ + O(ǫ))x

+w
′

(B
′

1µP + T (ǫ))x + x
′

(B
′

1µP + T (ǫ))
′

w

−x
′

C
′

1µRC1µx − w
′

(S + D
′

11µR)C1µx

−x
′

C
′

1µ(S + D
′

11µR)
′

w − w
′

(Q + SD11µ

+D
′

11µS
′

+ D
′

11µRD11µ)w

=

[

x
w

]

′
(

M + Ō(ǫ)
)

[

x
w

]

(6)

where

M =





A
′

µP + P
′

Aµ − C
′

1µRC1µ ∗

B
′

1µP − (S + D
′

11µR)C1µ

(

−Q − (SD11µ + ∗)

−D
′

11µRD11µ

)





and Ō(ǫ) is defined below
[

O(ε) ∗
T (ε) 0

]

Obviously, the inequality (5) implies there exists a scalar
ǫ2 > 0 such that (M + Ō(ǫ)) < 0 for ǫ ∈ (0, ǫ2]. Let
ǫ∗ = min(ǫ1, ǫ2), and then we have both EǫPǫ > 0 and
inequality (6) < 0 hold true. Now we get

M =

[

A
′

µP + P
′

Aµ ∗

B
′

1µP − SC1µ −Q − (SD11µ + ∗)

]

−

[

C
′

1µ

D
′

1µ

]

R [ C1µ D1µ ] < 0 (7)

where R−1 = U . To cast (7) into a feasibility problem
solvable by convex algorithms, performing Schur comple-
ment on (7) and factoring out

∑r

i=1
µi yields the sufficient

condition LMIs (5). To prove the (Q,S, R)-dissipativity,

integrating V̇ − rq(z, w) < 0 from 0 to T , we have

V (T ) − V (0) −

T
∫

0

rq(z(t), w(t))dt < 0

leading to

T
∫

0

rq(z(t), w(t))dt + V (0) > V (T )

where β(x0) = V (0) is a finite value, and V (T ) ≥ 0. Thus
the system is dissipative and the proof is completed. 2

Continuing along the line of analysis, consider a state
feedback controller

u =
r

∑

i=1

µiKix

and the control system (4). The closed-loop system
[

Eǫσx
z

]

=

[

Gµ B1µ

H1µ D11µ

] [

x
w

]

(8)

where Gµµ =
∑r

i=1

∑r

j=1
µiµj(Ai + B2iKj) and Hµµ =

∑r

i=1

∑r

j=1
µiµj(C1i + D12iKj).

Theorem 2. (Stabilization). There exists an ǫ∗ > 0 such
that fuzzy system is dissipative and asymptotically stable
with respect to a specified rq(w, z) for ǫ ∈ (0, ǫ∗], if, given
the supply rate (3), there exists a common matrix P

P =

[

P11 0
P21 P22

]

> 0 (9)

such that

Mij < 0 (10)

where

Mij =





(X
′

A
′

i + N
′

jB
′

2i) + ∗ ∗ ∗

B1i − SC1iX − SD12iNj −Q − (SD11i + ⋆) ∗
C1iX + D12iNj D11i U





and X = P−1,Nj = KjX , and 0 < P11 ∈ Rn×n,
0 < P22 ∈ Rm×m.

Proof: Given (8), Theorem 1 is utilized to prove the
results, thus the proof being omitted to save space. 2

It is noted that when solving the stabilization problem, we
use the relaxed method

Mij + Mji < 0, 1 ≤ i ≤ j ≤ r.

3. AN ILLUSTRATIVE EXAMPLE

Consider a tunnel diode circuit borrowed from [Assawin-
chaichote et al. [2004]] where the tunnel diode is char-
acterized by iD = −0.2vD − 0.05v3

D. Assume that ǫ is a
parasitic inductance. Let x1 = vC be the capacitor voltage
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and x2 = iL be the inductor current. Then, the circuit can
be modelled by the following state equations:

ẋ1 = 2x1 + 0.5x3

1
+ 10x2,

ǫẋ2 =−0.1x1 − 10x2 + 0.1w + 0.1u, (11)

z =
[

x
′

1
x

′

2

]′

where u is the input, w is the process noise which may
represent un-modelled dynamics, z is the controlled out-
put, x = [x

′

1
x

′

2
]′. Note that the variables x1 and x2 are

the deviation variables. The nonlinear network system (11)
can be exactly represented by a two-rule T-S fuzzy model:

Eǫẋ =
2

∑

i=1

µi[Aix + B1w + B2iu]

z = C1x

where

A1 =

[

2 10
−0.1 −10

]

, B21 =

[

0
0.1

]

A2 =

[

6.9 10
−0.1 −10

]

, B22 =

[

0
0.1

]

C1 =

[

1 0
0 1

]

, B1 =

[

0
0.1

]

and µ1 = 1 −
x2

1

9
, µ2 = 1 − µ1. The state feedback fuzzy

controller is designed as

u =
2

∑

i=1

µiKix.

The notion of supply rate in this paper is viewed as a
performance index and the state feedback controller is to
stabilize the underlying system in an H∞ sense. As such,
we choose ǫ = 0.05H, and

Q = diag[0.64 0.64], S = 0, R = −I.

to achieve a designated H∞ performance where γ=0.8.
Solving the LMIs (9) and (10) via the LMI solver in the
MATLAB, we find

X =

[

0.4885 0
−0.4639 0.8572

]

, P =

[

2.0471 0
1.1078 1.1666

]

N1 = [−126.6416 60.4045], K1 = [−89.886 51.78]

N2 = [−126.8804 60.3660], K2 = [−89.985 51.75]

The disturbance input signals w is a rectangular signal
as shown in Figure 1. The state trajectories with initial
condition x(0) = [1.5−1]′ is depicted in Figure 2 where the
rectangular disturbance is activated while Figure 3 shows
the trajectories where the disturbance is deactivated.

4. CONCLUSION

A complete solution to a state feedback stabilization prob-
lem involving singularly perturbed systems is presented.
The focus of this paper is to incorporate the (Q,S, R) pa-
rameter into the system, known as supply rate, which can
be various existing performance indexes when specialized.
The dissipative control scheme is applied to derive an LMI
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Fig. 1. Disturbances w
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Fig. 2. Trajectories of states x1 and x2 with disturbances

test condition. Although only continuous-time systems are
investigated in detail, a unified treatment applicable to
discrete-time counterparts is readily obtainable. An exam-
ple is demonstrated to validate the theorem derived.
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