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Abstract: This paper presents a new active control strategy based on linear matrix inequality (LMI) and 
genetic algorithm (GA) for the structural systems with nonlinear uncertainties and exogenous 
disturbances. Based on structural dynamics theory, the nonlinear uncertain structure system state-space 
model is established. Then, based on all-order H∞ control and GA, the controller of minimum order is 
obtained by searching the object function globally. The concerning genetic algorithm adopts float coding, 
stochastic tournament, elitist model, linear crossover and uniform mutation. Finally, a three-degree-of-
freedom building model subjected to EI Centro earthquake is considered using this method and the 
simulation results show that the provided controller has almost the same control effect as all-order H∞ 
controller. 

 

1. INTRODUCTION 

As an effective solution to attenuate disturbances such as 
earthquake and wind forces, active control of structural 
systems has drawn considerable attention in engineering 
practice. Up to now, a variety of control strategies have 
already been proposed to attenuate the affection of structural 
vibration based on optimal and robust control, neural 
networks and fuzzy control, and nonlinear and adaptive 
control. 

Up to now, several obstacles exist in the development of the 
vibration control theory and applications. One difficulty is 
the existence of the model uncertainties resulting from 
modelling errors, variations of materials, component non-
linearities, and changing load environments. It has been 
shown that the model perturbations and exogenous 
disturbances can affect or even damage the stability and 
performances of the nonlinear systems. To this end, some 
feasible robust strategies have been obtained for various 
models containing uncertainties of different nature and levels. 
A robust 2H / H∞  active control approach for structural 
systems with parametric and unstructured uncertainties has 
been firstly developed, see (Wang et al., 2001). Then, a non-
fragile H∞  control strategy has been provided where the 
uncertainty in the mass matrix was considered directly, 
see(Du et al.,2004). However, it has been shown that 
complicated transformations were required there to derive the 
main results, which may have more conservativeness. A 
direct robust vibration control law has been then provided, 
see (Guo et al., 2006), based on a uniform model and linear 
matrix inequality (LMI), where the robustness against the 
modelling and parametric perturbations, controller variations 
and disturbance excitations can be guaranteed simultaneously. 
As we know, most of the structural systems are high-order, 

which leads to high-order controllers. But it is quite difficult 
for high-order control to be implemented via hardware or 
software and the reliability of the system may be destroyed, 
whereas the simple low-order controller is easier to be 
adopted and understood. Therefore, it is more meaningful to 
research and design low-order controller for uncertain 
structural system, and it has already become a hotspot and 
difficult problem in active vibration control.  

Reduced-order H∞  controller design is a nonlinear non-
convex problem, which can be described by a convex LMI 
and a non-convex rank restriction condition. In this paper, 
genetic algorithm (GA) optimization is introduced to 
vibration control of nonlinear and uncertain structural 
systems to solve the problem of reduced-order controller 
design. Based on GA, the problem of the rank restriction 
condition is changed into the problem of searching the 
minimum of the sum of eigenvalues of the semi-positive 
definite matrix. Considering the rank restriction condition as 
an object function of GA, the minimum order of the 
controller and the relevant parameters are obtained by 
searching the object function globally.  

2. PROBLEM STATEMENT 

Consider the following structural system with nonlinear 
uncertainties described by 

      ( ) ( ( )) ( ) ( ( ))
( ) ( ( )) ( ) ( ( )) ( )

M C

K u u w

Md t f d t Cd t f d t
Kd t f d t B u t f u t B w t

+ + +
          + + = + +

    (1)                 

where  is the displacement,  is the control input, and 
 is the external disturbance or excitation. 

( )d t ( )u t
( )w t , ,M C and K  

are the mass, damping and stiffness matrices respectively.  uB
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is the input matrix and  is the disturbance matrix.  wB

( ( )), ( ( )), ( ( )),M C Kf d t f d t f d t and ( ( ))uf u t can represent the 

corresponding perturbations, which are supposed to satisfy 

|| ( ( )) || || ( ) ||,|| ( ( )) || || ( ) ||,
|| ( ( )) || || ( ) ||,|| ( ( )) || || ( ) || .

M M M C

M K u u

f d t V Md t f d t V Cd t
f d t V Kd t f u t V u t

 ≤  ≤ 
 ≤  ≤ 

    (2)                       

where, MV , ,CV KV  ,and  are known matrices to represent 
the bounds.  is supposed to have the bounded norm, 
which can also represent the un-modelled dynamics. It is 
shown that the above nonlinear uncertainties can be 
generalized to most models studied in the literature with both 
the parametric uncertainties and the un-modelling dynamics. 
Especially, introduction of 

uV
)(tw 2L

( ( ))uf u t  can be also used to 
describe the variations of the controller. 

By using (1) can be formulated as  ( ) ( ) ( ) ,
TT Tx t d t d t⎡= ⎣ ⎤⎦

1 1 1 2 1 2( , ) ( , ) ( ( ))x Ee x t Ax F f x t B w B u G f u t+ = + + + +     (3)                                     

where 

1 211 1

0 00
, ,

w u

I
A B B

M B M BM K M C − −− −

⎡ ⎤ ⎡⎡ ⎤
= = =⎢ ⎥ ⎢⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣

1 11 1 1 1

0 0 0 0
, ,

0
I

E F G
M M M M− − − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 ,
⎤
⎥
⎦

,  

and 

Correspondingly to the practical situation in structural 
systems, based on (2) the following condition can be verified. 

1 2

( ( ))0
( , ) , ( , ) , ( ( )) ( ( ))

( ( ))( ( ))
K

u
CM

f d t
e x t f x t f u t f u t

f d tf d t
⎡ ⎤⎡ ⎤

= = =⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

0 1 1 2 2( , ) , ( , ) , ( , ) .e x t W x f x t W x f u t W u≤ ≤ ≤   (4)                  

where 

           0 1

00 0
, ,

00
K

u
CM

V K
W W W

V CV M
⎡ ⎤⎡ ⎤

= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

2 .V=

In the following, it is shown that 1 1MM V− <  is required as a 
necessary condition for impulse-free solutions. It is shown 
that the existence of non-impulsive solutions for the above 
systems with nonlinearity and disturbances can be guaranteed 
under the assumption. 

In the following, the reference output is set to be 

                             (5)                1 11 12( ) ( ) ( ) ( )z t C x t D w t D u t= + +

where  and are two weighting matrices to adjust the 
system performance. Also, tuning of can confine the 
controller gain within the scope of the physical permission. In 
the following, the arguments in all of the nonlinear functions 
may be omitted for brevity in case of no confusion. The 

problem considered in this work is stated as follows: to 
design state feedback controllers for (3) such that the closed-
loop system is stable and satisfies

1C 11D

12D

2 2
( ) ( )z t w tγ≤ . 

3. OUTPUT FEEDBACK CONTROLLER 

From Section 2, we can get the following description of 
uncertain structural system 

        
1 2 1 1 1 2

1 11 12

2 21 22

( , ) ( ( )) ( , )x Ax B w B u F f x t G f u t Ee x t
z C x D w D u
y C x D w D u

= + + + + −
= + +
= + +

 (6)              

Suppose there exist a strict proper output feedback controller 
of order  as follows: kn

                                 
ˆ ˆ

ˆ
k k

k

x A x B y
u C x

= +
=

                                  (7)                 

The closed-looped system resulting from combing (6) and (7) 
is  

                              1 1 1

1

( , )x Ax B w F f Ee x t

z C x Dw

= + + −

= +
           (8)                 

where  

         
ˆ
x

x
x

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 2

2

k

k k

A B C
A

B C A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1
1

21k

B
B

B D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

        1 1
1 0 0

F G
F ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1
1

2

( , )
ˆ( , )k

f x t
f

f C x t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,
0
E

E ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
, 

        [ ]1 1 12 kC C D C= , 11.D D=  

By denoting [1
1 0

2

0
,

0 k

W
W W W

W C
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

]0 0 , (4) can be 

rewritten as  

2 2 2 2 2
1 2 1 2 1ˆ ˆ( )k k ,f f f C x W x W C x W x= + ≤ + =      

 0 0( , ) .e x t W x W x≤ =                                   

The following results provide a solvability condition for the 
closed loop systems described by (8). 

Theorem 1 For some parameters 1λ  and 2λ , suppose that 
there exist the Lyapunov matrix and controller 
parameter matrices

0P >

kA , ,  satisfying kB kC

                                                (9)            11 12

12 22

0T

Φ Φ⎡ ⎤
<⎢ ⎥Φ Φ⎣ ⎦

where 
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2 2
111 1 2 0 0 1 2 0 0

2 2 2
11 1 2 1 0 0 1 2 1 0 0

2
2 0 0

* ,
* * (

T T T T

T T T T

T T )

PF A W WF PE A W WE
I F W WF F W WE

E W WE I

λ λ
λ λ λ

λ

⎡Φ + − −
⎢ ⎥Φ = − + −⎢ ⎥
⎢ ⎥−⎣ ⎦

⎤

   

2
1 2 0 0 11

2
12 2 1 0 0 1

2
2 0 0 1

,

T T

T T

T T

PB A W W B CD
F W W B
E W W B

λ
λ
λ

⎡ ⎤+ +
⎢ ⎥Φ = ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

2 2
22 11 11 2 1 0 0 1 ,T TD D BW W B Iλ γΦ = + −

2 2
111 1 1 1 2 0 0 1 1.

T T T T TPA A P W W A W W A C Cλ λΦ = + + + +   

then the closed loop system (8) is stable and satisfies 

2 2
( ) ( ) .z t w tγ<  

It is noted that  holds if and only if 

 and , which is well known as 
the Schur complement formula. Multiple applications of the 
Schur complement on (9), we can get the corollary 1. 

11 12

12 22

0T

X X
X X

⎡ ⎤
<⎢ ⎥

⎣ ⎦
1

11 12 22 12 0TX X X X−− < 22 0X <

Corollary 1 For some parameters 1λ  and 2λ , suppose that 
there exist the Lyapunov matrix and controller 
parameters matrices

0P >

kA , ,  satisfying kB kC

1 1 1 1 2 0 1
2

1 2 1
2
2 2 0

2
2 1 0 11

* 0 0 0
* * 0 0 0

0* * * 0
* * * * 0 0
* * * * * 0
* * * * * *

T T T

T T

T T

T T T

PA A P PF PE PB W A W C
I F W

I E W
I B W D

I
I

I

λ λ
λ λ

λ λ
γ λ

⎡ ⎤+ −
⎢ ⎥

−⎢ ⎥
⎢ ⎥− −
⎢ ⎥

0 0

T T

<−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

                           

(10) 

then the closed loop system (8) is stable and satisfies 

2 2
( ) ( ) .z t w tγ<  

It is noted that in (10), P  and kA , ,  (being included 
implicitly in the coefficient matrices of the closed loop 
systems) are coupled in a bilinear matrix. To separate the 
Lyapunov matrix and the controller coefficient matrices, and 
to provide an LMI-based design procedure, the following 
result can be obtained. 

kB kC

Theorem 2 For some parameters 1λ  and 2λ , system (8) exist 
a output feedback controller if and only if there exist positive 
definite matrices X  and  satisfying the following matrix 
inequalities 

Y

                                                                    (11) 1 1 1 0T
P PN T N <

                                                                    (12) 1 1 1 0T
Q QN H N <

                                                                       (13) 0
X I
I Y

⎡ ⎤
≥⎢ ⎥

⎣ ⎦

and rank restriction condition  

                                                    (14) k

X I
Rank n n

I Y
⎡ ⎤

≤ +⎢ ⎥
⎣ ⎦

where 

          

1
2

1
2

1
2
2

1

1 1 1 2 0 1

2 1 0

2 1 0

2 0
2

2 1 0 11

* 0 0
* * 0
* * *
* * * *
* * * *
* * * *
* * * *

0 0 0
0 0 0
0 0 0

,
0

* 0
* * 0
* * *

T

T T T T

T T

T T

T T

T T T

AY YA F G E
I

I
I

T

B YW YA W C
F W
G W
E W

I B W
I

I
0

D

I

λ
λ

λ

λ λ
λ
λ
λ

γ λ

⎡ + −
⎢ −⎢
⎢ −
⎢

−⎢= ⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥

− ⎥              ⎥− ⎥
− ⎥

⎥− ⎥
⎥− ⎦

 

and 

         

1 1
2

1
2

1
2
2

1

1 1 1 2 0 1

2 1 0

2 1 0

2 0
2

2 1 0 11

* 0
* * 0
* * *
* * * *
* * * *
* * * *
* * * *

0 0 0
0 0 0
0 0 0

,
0

* 0
* * 0
* * *

T

T T T T

T T

T T

T T

T T T

0

0

A X XA XF XG XE
I

I
I

H

XB W A W C
F W
G W
E W

I B W
I

I

D

I

λ
λ

λ

λ λ
λ
λ
λ

γ λ

⎡ + −
⎢ −⎢
⎢ −
⎢

−⎢= ⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥

− ⎥             ⎥− ⎥
− ⎥

⎥− ⎥
⎥− ⎦

 

1PN  is a random combination of column base vectors of  

2 2 2 2 2 0

0 0 0 0 0 0 0 0
ker ,

0 0 0 0 0T T T

I
B W B Wλ λ

⎛ ⎞

12
T TD

⎡ ⎤
⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
 

1QN  is a random combination of column base vectors of   
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               2

21

0 0 0 0 0 0 0
ker .

0 0 0 0 0 0

TC
I D

⎛ ⎡
⎜ ⎢ ⎥⎜ ⎣ ⎦⎝

⎞⎤
⎟⎟
⎠

The restriction conditions (11), (12), and (13) in Theorem 2 
are LMIs, when design of all-order controller the condition 
(14) is satisfied automatically. But when concerned with 
reduced-order controller design, the condition (14) will be a 
nonconvex problem. Based on LMI, the problem of reduced-
order H∞  controller design can be described as       

                  (15)        

                            

, 0

(11), (12), (13).

R S

X I
Minimize Rank

I Y
Subject to LMIs

>

⎡ ⎤
 ⎢ ⎥

⎣ ⎦
     

This problem is generally called Rank Minimization Problem. 
It is equivalent to the problem of reducing the minimum 

 eigenvalues of matrix kn n−
X I
I Y

⎡ ⎤
⎢ ⎥
⎣ ⎦

 to zero. So the 

problem can be turned into  

                 , 0 1

( , )

(11), (12), (13).

kn n

iR S i

X I
Minimize X Y

I Y
Subject to LMIs

ψ λ
−

>
=

⎡ ⎤
 = ⎢

⎣
     

∑ ⎥
⎦                   (16)  

where, 1 kn nλ λ −≤ ≤ represent the minimum kn n−  

eigenvalues of matrix 
X I
I Y

⎡ ⎤
⎢
⎣ ⎦

⎥ . Then the problem of 

reduced-order H∞  controller design has been changed into 
searching the minimum of ( , )X Yψ  when  the relevant 
paired parameter ( , )X Y  satisfy  the LMIs (11), (12), and 
(13). Therefore, the existence of reduced-order H∞  
controller equals to the existence of the global minimum zero 
of ( , )X Yψ . 

4. REDUCED-ORDER CONTROLLER 

Synthesizing the above results and standard GA, this paper 
presents an improved GA to search the optimal solution 
described by (16). The feasible design steps are as follows: 

Step1 Parameter Coding 

We use float coding due to its high quality on precision and 
searching space. The symmetric elements in matrices X  and 

 will be coded once to save memory space. Therefore, we 
only need to code the elements above the diagonal and then 
get the individual 

Y

     11 12 11 12[ , , , , , , ],jP x x y y γ= ( 1, 2, ,jP j N= ) . 

Step2 Population Initialization 

Through solving LMIs (11), (12), and (13), we can get initial 
population containing N individuals. represents the 
population size.  

N

Step3 Fitness Determination 

we define the fitness function as min1/[ ( , ) ]f X Yψ ζ= + , 
where minζ  is a tiny positive scalar. A fitness value is 
generated for each solution in the population to drive the 
“selection” process. Each solution in the population has a 
chance of surviving to the next generation proportionate to its 
“fitness” level. Selection of fitness function is very important 
in the design process of GA. It can directly affect the 
performance of GA.  

Step4  Selection 

Selection also called copy is a probabilistic procedure, based 
on the fitness values of each individual in the population, 
used to select the individuals that will move on to the next 
generation (Chatfield et al.,2005). We utilize stochastic 
tournament selection with generational replacement. Simple 
elitism is also employed, which automatically passes one 
unaltered copy of the best feasible individual in a population 
to the next generation. Set 2 as tournament size. 

Step5 Crossover Strategy 

Crossover operation decides how many individuals 
participate in the recombination process, and it is in 
proportion to the forming of new schema and the survival of 
parental ones. Crossover operation plays an important part in 
GA and is the main process to generate new individuals. In 
order to ensure that individuals after crossover still satisfy 
restriction LMIs (11), (12), and (13), linear crossover 
mechanism is applied to the chromosomes used in this study. 

        2 1 1*( )children parent ratio parent parent2= + −  (17)                 
where  is a random number chosen from [0, 1]. 1ratio

Step6  Mutation 

Uniform mutation strategy is used in this study   
 2 *children parent ratio= + Δ                    (18)                
where Δ represents the increase value of individual and 

 is a random number chosen from [-1, 1]. In order to 
ensure that individuals after mutation still satisfy restriction 
LMIs (11), (12), and (13), the closed-loop controller need to 
be constructed to confirm the stability of the system. If not 
stable, the existence probability of the new individual must 
be decreased through a punishment function. 

2ratio

Based on above steps, search for the parameter ( , )X Y , 
satisfying min( , )X Yψ ζ≤  starts from . If we can 
find the appropriate solution, then try , otherwise 
we can’t find any solution after evolutions of G  generation, 
and then the search stops. 

1kn n= −
2kn n= −

5.  SIMULATION 

In the following, we consider the active control problem for 
the steady state motion of an uncertain three-degree-of-
freedom building model. The building model is shown in 
Fig.1, see(Ou Jing-ping, 2003). The dynamic equation of the 
system is given as in (1) with system matrices given by 
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3m

3 3,k c

2m

2 2,k c

1m

1 1,k c

 

                       Fig.1 3-d.o.f building model 

         5

4 0 0
0 4 0 10 ( )
0 0 4

M kg
⎡ ⎤
⎢ ⎥= ×  ⎢ ⎥
⎢ ⎥⎣ ⎦

,  8

4 2 0
2 4 2 10 ( / ),
0 2 2

K N
−⎡ ⎤

⎢ ⎥= − − ×  ⎢ ⎥
⎢ ⎥−⎣ ⎦

m

0 0.5286 0.8220
s m

−⎡ ⎤
⎢ ⎥= − − × ⋅⎢ ⎥
⎢ ⎥−⎣ ⎦

= ]

          .C N  6

1.3506 0.5286 0
0.5286 1.3506 0.5286 10 ( / )

It is assumed that each storey of the building model has a 
controller and B I , we suppose the 
nonlinear uncertainties are described through V

u [ 1 2 3 .TB m m mω =−

0.01M = ，

和V . 0.1K CV V= = 0.1u =

A time history of acceleration from the 1940 EI Centro 
(California) earthquake is applied to the base of the structure. 
Its peak value is max( ) 0.34gx t g= ,and sample time is 
0.02s ,and duration is 30s . According to Theorem 2, we can 
get an all-order optimal H∞  controller and performance 
index 0.7065optγ = .Outputs of simulation with 6-order 
controller for the uncontrolled and controlled displacement of 
each storey are shown in Fig.2. 

In the following, we utilize above provided method based on 
GA to design a reduced-order controller for the structural 
system model. It is supposed that initial population 
size , maximum evolution generation15N = 200G = , 
crossover factor r  in (17), mutation factor 

 in (18), and stop limit . First we set 
, after 30 generations of evolution, optimal object 

value can be reduced to 2.

1 0.5atio =

6 10

2 0.004ratio = 8
min 10ζ −=

5kn =
10−× . But when 4kn = , after 

140 generations of evolution, optimal object value can only 
be reduced to 0.0698. So, the minimum order controller for 
the system is 4. According to the current value of ( , )X Y , we 

finally get the 4-order controller and performance index 
0.9365optγ = . Under the time history of acceleration from 

the 1940 EI Centro (California) earthquake, outputs of 
simulation with 4-order controller for the uncontrolled and 
controlled displacement of each storey are shown in Fig.3. 

5
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Fig.2 Responses of the uncertain system under the earthquake 
excitation with the full-order H∞  controller. 
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Fig.3 Responses of the uncertain system under the earthquake 
excitation with the reduced-order H∞  controller. 
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6. CONCLUSIONS 

This paper presents a new approach to design reduced-order 
H∞  controller based on GA optimization for structural 
systems with nonlinear perturbations in the mass matrix, 
damper matrix and input matrix. The simulation results show 
that the proposed controller has almost the same control 
effect as all-order H∞ controllers, although the vibration 
amplitude is a little higher. The designed reduced-order H∞  
controller can be easily put to engineering practice at a low 
cost. In this paper, the control delays of reduced-order 
controller are not considered, but they are very important in 
practice, we also leave this issue for future work. 
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