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Abstract: A new methodology for the design and implementation of linear parameter varying
(LVP) controllers for multi-rate sampled-data systems is presented and its stability properties
are analyzed. A controller structure is first proposed for the regulation of multi-rate systems
with more measured outputs than inputs. This structure is specially suited for a gain-scheduling
implementation that verifies an important property known as the linearization property. The
proposed solution guarantees local stability of the feedback interconnection of the nonlinear
multi-rate system and the LPV controller about individual equilibria, and ultimate boundedness
of a conveniently defined closed-loop error in response to slowly varying exogenous inputs. An
example is presented that illustrates the applicability of the proposed solution.

1. INTRODUCTION

This paper addresses the controller design problem for
nonlinear sampled-data multi-rate systems, providing a
linear-parameter varying (LPV) solution. We consider a
continuous-time plant with multiple input and output
channels, connected to a digital controller via multiple
sample and hold devices running at different, a priori fixed
rates. In contrast to other approaches which are based on
controller emulation or direct discrete-time design for the
numerical discretization of the plant, the proposed solution
directly takes into account the sample and hold mechanism
in the design phase.

Over the last decades the design of control laws for multi-
rate systems has received considerable attention since dif-
ferent rates in sensor measurements and between sensors
and actuators are often present in control problems. Typi-
cal cases arise from hardware restrictions, for example, due
to the fact that the discrete-analog (D/A) converters are
generally faster than the analog-discrete (A/D) converters
or from the use of camera-based sensors, which might
require larger sampling periods than other sensors and
actuators (Fujimoto and Hori (2001)). Another important
application arises in the design of integrated guidance
and control systems for vehicular applications (Antunes
et al. (2007), Antunes et al. (2008)), where the linear
positioning sensors (e.g. Global Navigation Satellite Sys-
tem (GNSS)) are usually available at a lower rate than
the remaining sensors. See also Tomizuka (2004) for other
applications. The peculiarities of the multi-rate problems
render non-trivial the generalization of standard results
in single-rate digital control to the multi-rate case. The
subject of linear multi-rate control, which is intimately
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related to periodic systems theory, has been the object of
extensive research. See, for example Bittanti and Bolzern
(1985), Lall and Dullerud (2001), and Colaneri (1991),
Scattolini and Schiavoni (1993), where a solution to the
output regulation problem for multi-rate square systems
was presented. More recent work has focused on the control
of nonlinear multi-rate systems, see for example Polushin
and Marquez (2004).

Closely related to gain-scheduling, Linear Parameter Vary-
ing controller design constitutes nowadays a powerful tool
for tackling difficult nonlinear problems. As explained in
detail in Rugh and Shamma (2000), the standard proce-
dure for designing an LPV controller involves the selection
of scheduling variables or parameters; linearization of the
non-linear plant about the equilibrium manifold; synthesis
of controllers for the family of plant linearizations, which
typically involves linear controller design for a given set of
equilibrium points; and implementation of the controller.
The implementation must be such that the controller ver-
ifies the linearization property: At each equilibrium point,
the nonlinear LPV controller must linearize to the linear
controller designed for that equilibrium.

In this paper we tackle the problem of designing and imple-
menting LPV controllers for nonlinear multi-rate systems.
In particular, we consider non-square plants whose addi-
tional outputs are in general required to achieve enhanced
performance or to obtain system detectability. Inspired by
the D-methodology presented in Kaminer et al. (1995) the
proposed solution consists of a gain-scheduled controller
that provides integral action and verifies the linearization
property taking into account the multi-rate characteristics
of the original plant. Building upon the work presented in
Rugh and Shamma (2000) for the continuous time case,
and in Lawrence (1997, 2001) for the single-rate sampled-
data case, we guarantee i) local stability of the feedback
interconnection of the sampled-data multi-rate system and
LPV controller about individual equilibria, and ii) ulti-
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mate boundedness of a conveniently defined closed-loop
error in response to slowly varying exogenous inputs.

The remainder of the paper is organized as follows. We
introduce the problem in Section 2, propose a solution in
Section 3, and analyze the resulting stability properties
in Section 4. An example is gradually presented along the
paper to illustrate the different steps in building a solution.
Finally, Section 5 presents the concluding remarks. The
notation adopted is fairly standard. The space of n-
dimensional continuous-time signals x(t), x : R

+ 7→ R
n,

and discrete-time signals xk, x : Z
+ 7→ R

n, are denoted by
L(R+) and l(Z+), respectively. Given a matrix A, σ(A)
denotes its spectral radius and λi(A) an eigenvalue. For
r > 0 and p ∈ R

n, Br(p) denotes the open ball {x : ‖x −
p‖ < r}. A function ρ is said to belong to class K if it is
continuous, strictly increasing, and zero at zero. For the
sake of brevity, most of the proofs and technical results are
either omitted or only outlined in the paper, and the reader
is referred to Antunes et al. (2007) for a comprehensive
presentation of this material.

2. PROBLEM FORMULATION

Consider the nonlinear system

G :=

{

ẋ(t) = f(x(t), u(t), w(t))

y(t) = h(x(t), w(t))
(1)

where f and h are twice continuously differentiable func-
tions, x(t) ∈ R

n is the state, u(t) ∈ R
m is the control

input, and the vector w(t) ∈ R
nw contains references

and possibly other exogenous inputs. The vector y(t) ∈
R

p can be decomposed as y(t) = [ym(t)T yr(t)
T ]T =

[hm(x(t), w(t))T hr(x(t), w(t))T ]
T

where ym(t) ∈ R
nym is

a vector of measured outputs available for feedback and
yr(t) ∈ R

nyr is a vector of tracking outputs, which we
assume to have the same dimensions as the control input,
nyr

= m. This vector is required to track the reference r(t)
with zero steady state error, i.e., the error vector defined
as e(t) := yr(t)−r(t) must satisfy e(t) = 0 at steady-state.
Some of the components of yr(t) may be included in ym(t)
as well.

2.1 Linearization family

We assume that there exists a unique family of equilibrium
points for G of the form

Σ :={(x0, u0, w0) : f(x0, u0, w0)=0, yr0=hr(x0, w0)=r0}

which can be parameterized by a vector α0 ∈ Ξ ∈ R
s, s.t.

Σ = {(x0, u0, w0) = a(α0), α0 ∈ Ξ} (2)

where a is a continuously differentiable function. We fur-
ther assume that there exists a continuously differentiable
function v such that α0 = v(y0, w0). By applying the
function v to the measured values of y and w, we obtain
the variable

α = v(y, w), (3)

which is usually referred to as the scheduling variable.

Linearizing the nonlinear system G about the equilibrium
manifold Σ parameterized by α0 yields the family of linear
systems

Gl(α0) :=

[

ẋδ(t)
yδ(t)

]

=

[

A(α0) B1(α0) B2(α0)
C2(α0) D21(α0) 0

]

[

xδ(t)
wδ(t)
uδ(t)

]

(4)

where, e.g. A(α0) = ∂f
∂x

(a(α0)) and xδ(t) = x(t) − x0.

2.2 Multi-rate sensors and actuators

We consider that the sample and hold devices that in-
terface the discrete-time controller and the continuous-
time plant operate at different rates. Associated with each
sampler Si, corresponding to the ith component of y(t),
there is a sequence of sampling times {σi

1, σ
i
2, ..} that verify

0 < σi
j < σi

j+1. Similarly, associated with each holder
Hi, corresponding to the ith component of u(t), there is a
sequence of hold times {τ i

1, τ
i
2, ..} that verify 0 < τ i

j <

τ i
j+1. We assume that the sample and hold operations

are periodic and that their periods are related by rational
numbers. Thus we can define a sequence of equally spaced
time instants {t0, t1, ...}, tk+1 − tk = ts, k ∈ Z

+, such that
for every sampling time σi

j and hold time τ i
j there exists a

k1 and a k2 for which σi
j = tk1

and τ i
j = tk2

. In addition,

we introduce the matrix Γk = diag(g1(k), ..., gp(k)), where
gi(k) = 1 if σi

j = tk for some j and gi(k) = 0 otherwise,

and the matrix Ωk := diag(r1(k), ..., rm(k)), where ri(k) =
1 if τ i

j = tk for some j and ri(k) = 0 otherwise. Due
to the periodic nature of the sample and hold devices we
have Γk = Γk+h and Ωk = Ωk+h, for some positive integer
h which denotes the period. We further assume that every
output is sampled and every input is updated at least once
in a period.

The multi-rate sample and hold operators can then be
written as

S : L(R+) 7→ l(Z+) H : l(Z+) 7→ L(R+)

S = ΓdSts
H = Hts

Ωd
(5)

where the operators Ωd : l(Z+) 7→ l(Z+), Hts
: l(Z+) 7→

L(R+), Sts
: L(R+) 7→ l(Z+) and Γd : l(Z+) 7→ l(Z+) are

given by

Ωd :ξk+1 = (I − Ωk)ξk + Ωkuk, ξ0 = 0

ũk = (I − Ωk)ξk + Ωkuk

Hts
:u(t)= ũk

t ∈[tk, tk+1[

Sts
:ỹk =

[

ỹmk

ỹrk

]

= y(tk) Γd :yk =

[

Γmk 0
0 Γrk

] [

ỹmk

ỹrk

]

and Γk =

[

Γmk 0
0 Γrk

]

is partitioned according to the

output decomposition yT = [yT

m yT

r ]. Similarly to y(t), the
values of r(t) sampled at the instants tk are denoted by
r̃k and to take into account the multi-rate nature of the
outputs we define rk = Γrkr̃k. We can then introduce the
error variables ẽk = ỹrk − r̃k and ek = yrk − rk.

2.3 Problem Statement

Given this setup the problem addressed in this paper can
be stated as follows:

Problem 1. 1) For a fixed operating point α0, find a pos-
sibly time-varying discrete-time linear controller C(α0) :
[yδmk, ek] 7→ uδk

C(α0)=

{

[

xc
δk+1

uδk

]

=

[

Ac
k(α0) Bc

1k(α0) Bc
2k(α0)

Cc
k(α0) Dc

1k(α0) Dc
2k(α0)

]

[

xc
δk

yδmk

ek

]

(6)
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for the linearization of the nonlinear plant (4) with multi-
rate interface (5) that stabilizes the closed loop system and
achieves zero steady-state error for ek, where uδk = uk−u0,
yδmk = ymk − Γmkym0, and ym0 =hm(x0, w0).
2) Based on the family of linear controllers C(α0), im-
plement a discrete-time controller K, possibly nonlinear
and time-varying, that verifies the linearization property,
which will be defined shortly, and takes the form

K =

{

xc
k+1 = fc(x

c
k, ymk, ek, αk, k)

uk = hc(x
c
k, ymk, ek, αk, k)

, (7)

where xc
k ∈ R

nK and given its dependence on the schedul-
ing variable αk sampled at time tk, K is referred to as
a gain-scheduled controller. By linearization property we
formally mean that if we consider a family of equilibrium
points Σc for the controller compatible with the family of
equilibrium points Σ defined in (2), such that

Σc :={xc
0 : xc

0 =fc(x
c
0, ym0, 0, α0, k), u0 =hc(x

c
0, ym0, 0, α0, k),

(x0, u0, w0) = a(α0), α0 ∈ Ξ}

the controller K linearizes to C(α0), at each equilibrium

point α0, that is, for example, ∂fc

∂xc (α0, k) = Ac
k(α0) and

∂hc

∂ym
(α0, k) = Dc

1k(α0).

The proposed solution for part 2) has an LPV structure
and we will show that under mild assumptions the lin-
earization property just described is sufficient to guarantee
local stability about each equilibrium point of the feedback
interconnection of the non-linear plant and LPV controller
with multi-rate interface.

3. PROPOSED SOLUTION

3.1 Regulator structure

In this section we focus on solving part 1) of the problem
statement. To this end, we consider a simple linear system
of the form

GL =







ẋ(t) = Ax(t) + B2u(t)

y(t) =

[

ym(t)
yr(t)

]

= C2x(t) =

[

Cm

Cr

]

x(t)
, (8)

where u(t) and yr(t) ∈ R
m. It is well-known that zero-error

output regulation for constant references can be achieved
by incorporating in the controller structure a number
of integrators equal to the number of regulated outputs
(Francis and Wonham (1976)). Regulation for constant
references is not tied in with linearity and is achieved even
in the presence of model uncertainties that do not affect
closed loop stability (Khalil (2000)). For the single-rate
case, integral action is typically applied to the regulated
errors directly (Khalil (2000), Kaminer et al. (1995)). For
the multi-rate case, the controller is in general required
to be time-varying, and as presented in Colaneri et al.
(1991); Scattolini and Schiavoni (1993) for square systems,
the integrators should be placed at the plant’s input.
Note that due to the time-varying characteristics of the
controller, directly integrating the errors would produce
a non-constant signal at the plant’s input. However, in
many applications the number of available outputs need
be greater than the dimension of the actuation vector
to achieve enhanced performance or to obtain system
detectability, as will be illustrated shortly by an example.

Motivated by this discussion we propose the controller
structure depicted in Fig. 1 for the regulation of non-
square systems. In the figure CI and CD correspond to
discrete time linear periodic integrators and differentia-
tors, respectively, that can be written as

CI =

{

xI

k+1 = xI

k + ΩkuI

k

yI

k = xI

k + ΩkuI

k

(9)

CD =

{

xD

k+1 = (I − Γmk)xD

k + ΓmkuD

k

yD

k = −ΓmkxD

k + ΓmkuD

k

(10)

At equilibrium, the constant values of the non regulated
outputs are differentiated thereby obviating the need to
feedforward these values, whose accurate determination
is in general precluded by the presence of model uncer-
tainties. It is straightforward to derive expressions for
ΓD = CDΓd, ΩI = ΩdCI and Gd which results from
discretizing GL and is given by

Gd =







xk+1 = Adxk + Bdũk

ỹk =

[

ỹmk

ỹrk

]

= Cdxk =

[

Cdm

Cdr

]

xk
, (11)

where Ad = eAts , Bd =
∫ ts

0
eAτdτB2 and Cd = C2.

Consider the system Ga seen by the controller and cor-
responding to the series connection of ΩI , Gd and ΓD,
Ga = ΓDGdΩI . The next result guarantees that, under
mild assumptions, this augmented system Ga preserves the
detectability and stabilizability properties of the original
plant Gd. Note that Ga is a linear time-varying periodic
system. For the definitions of stabilizability and detectabil-
ity for these systems see Bittanti and Bolzern (1985).

Lemma 2. Assume that the following conditions hold:
i) (Ad, Bd) is stabilizable and (Ad, Cd) is detectable.
ii) If there exists λk(Ad) = λk such that ‖λk‖ = 1 then
λh

k 6= 1, and if there exists a pair λi(Ad) = λi, λj(Ad) = λj

such that λi 6= λj , ‖λi‖ ≥ 1 and ‖λj‖ ≥ 1 then λh
j 6= λh

i .
iii) There are no transmission zeros at z = 1 from the
input of Gd to the regulated output, i.e.

[

Ad − I Bd

Cdr 0

]

(12)

is full rank.
Then, the periodic system Ga = ΓDGdΩI is detectable
and stabilizable.

Under the stated assumptions, the stabilizability and
detectability of Ga ensures that there exists an asymptotic
stabilizing controller CK for Ga (Colaneri (1991)). It is
also straightforward to show that this structure achieves
zero-output regulation for e(t) as stated in the next result.

GL

ymk

yrk

y(t) ỹk

rk

ek

uk

u(t)ũk

+

Sts
Hts

CI

CD
CK

Ωd

ΩI ΓD

Γd

Gd

Fig. 1. Regulator structure for non-square systems
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The proof follows from the use of integral action and the
asymptotic stability of the feedback interconnection.

Lemma 3. Consider the feedback interconnection of Ga

and CK and suppose the controller CK asymptotically
stabilizes the resulting closed loop system. Then, zero-
error output regulation for yr(t) is achieved even in the
presence of plant uncertainty, provided that closed-loop
stability is preserved.

Going back to the original problem stated in Section 2.3,
we can conclude from Lemma 3 that a stabilizing controller
of the form

C(α0)=



































[

xK

δk+1
yK

δk

]

=

[

AK

k (α0) BK

1k(α0) BK

2k(α0)
CK

k (α0) DK

1k(α0) DK

2k(α0)

]

[

xK

δk

yD

δk

eδk

]

[

xD

δk+1
yD

δk

]

=

[

I − Γmk Γmk

−Γmk Γmk

] [

xD

δk

yδmk

]

[

xI

δk+1
uδk

]

=

[

I Ωk

I Ωk

] [

xI

δk

yK

δk

]

(13)
where the first subsystem is a realization for CK(α0),
provides a solution for part 1) of the problem statement,
for fixed α0. We assume that the design phase produces
a family of controllers C(α0) such that its parameters
are continuously differentiable functions of α0. The next
example illustrates some of the concepts introduced so far.

Example 1. Suppose the nonlinear system (1) is given by

G =







ẋ1(t) = −x1(t) − x2(t)

ẋ2(t) = −x2(t) + u(t)

ẋ3(t) = −x2(t) + x3
2(t) + 0.5x3(t) + u(t)

. (14)

The output yr(t) = x1(t) is required to track the reference
r(t) with zero steady-state error. Considering α0 = r0, the
equilibrium manifold (2) is given by

Σ = {x10 = −x20 = −u0 = α0, x30 = 2α3
0, α0 ∈ R}.

The linearization family Gl(α0), described by (4), can also
be easily obtained, where for example

A(α0) =





−1 −1 0
0 −1 0
0 −1 + 3α2

0 0.5



 .

Consider the problem of designing a linear controller for
Gl(α0) with α0 = 0. Notice that if we consider the output
to be yr = x1 this linear system is non-minimum phase.
Furthermore, it is straightforward to check that Gl(0) is
not detectable from the regulated output yr = x1. Hence
we assume that x3 is also available for feedback and set
ym = [x1 x3]

T , which implies that the system becomes
non-square. The sampling and updating periods for ym1,
ym2, and u are set to tsy1

= 0.25, tsy2
= 0.1 and tsu = 0.05,

respectively. According to the framework of Section 2.2
we have ts = 0.05, h = 10, and the h-periodic matrices
Γmk, Γrk, Ωk are determined by

Γmk =

[

σ1
k 0
0 σ2

k

]

, Γrk = σ3
k, Ωk = τ1

k = 1, ∀k

σ2
k =

{

1 k odd,
0 otherwise

, σ1
k = σ3

k =

{

1 k = 1, 6
0 otherwise

.

The discretization of Gl(0) verifies all the conditions of
Lemma 2 and therefore a linear controller with the struc-
ture (13) can be synthesized for this system. The stabiliz-
ing controller CK in (13) is obtained using the standard H2

output-feedback synthesis solution for periodic systems.
The performance of this controller will be evaluated in
simulation and compared with that of a gain-scheduled
controller in Section 4, where it will be shown that zero-
steady state error is obtained for yr = x1.

3.2 Gain-scheduled implementation

Having designed the parameterized family of linear con-
trollers C(α0) as described in (13), suppose we implement
the gain-scheduled nonlinear controller K as follows

K =



























































[

xK

k+1
yK

k

]

=

[

AK

k (αk) BK

1k(αk) BK

2k(αk)
CK

k (αk) DK

1k(αk) DK

2k(αk)

]

[

xK

k

yD

k

ek

]

[

xD

k+1
yD

k

]

=

[

I − Γmk Γmk

−Γmk Γmk

] [

xD

k

ymk

]

[

xI

k+1
uk

]

=

[

I Ωk

I Ωk

] [

xI

k

yK

k

]

αk = g(ỹk, wk)
[

xY

k+1
ỹk

]

=

[

I − Γk Γk

I − Γk Γk

] [

xY

k

yk

]

(15.A)

(15)
which is an LPV controller. Notice that αk, which was
considered to be a constant design parameter during
the design process, now becomes a scheduling variable
computed on-line from the plant outputs and exogenous
variables. Due to the multi-rate nature of the output, the
system described by (15.A) is used to perform a hold
operation on the output yk so that the scheduling variable
αk is computed, at each iteration, according to the last
sampled value of the output. The exogenous vector is
assumed to be available at each sampling instant, so that
wk = w(tk). Notice that the non-linear controller proposed
in (15) conforms to the general description of K given in

(7) with xc
k =

[

(xK

k+1)
T (xD

k+1)
T (xI

k+1)
T
]T

. Moreover as
we will show in Section 4.1, it verifies the linearization
property and therefore constitutes a solution to part 2) of
the problem statement.

As a final remark, when the multi-rate set-up particu-
larizes to the single-rate case, there is a close relation
between the method presented herein and the velocity
implementation (Kaminer et al. (1995)), which is a method
to implement gain-scheduled controllers for the single-rate
case. See Antunes et al. (2007) for the details.

4. STABILITY PROPERTIES

In this section we show that the linearization property
holds for the gain-scheduled implementation (15) and es-
tablish the results of local stability and ultimate bound-
edness in response to exogenous inputs for the feedback
interconnection of the nonlinear multi-rate system and
the proposed controller. These two last results can be
obtained using the theoretical framework of jump systems
and building upon the work presented in Lawrence (1997,
2001) for the single-rate sampled-data case.

In what follows, the feedback interconnection of the non-
linear system G, described by (1), and gain-scheduled
controller K, described by (15), with multi-rate sampled-
data interface (5) is denoted by Fnl := F(SGH, K).
Similarly, for each α0, the feedback interconnection of
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the linearized system Gl(α0), described by (4), and the
designed controller C(α0), described by (13), with multi-
rate sampled-data interface (5) is denoted by Fl(α0) :=
F(SGl(α0)H, C(α0)).

4.1 Linearization property

The required linearization property for the gain-scheduled
controller implementation (15) is stated in the next result.

Theorem 4. Suppose for each parameter vector α0 ∈ Ξ,
Fl(α0) is asymptotically stable. Then Fnl admits an unique
equilibrium point associated with α0 and the linearization
of the gain-scheduled controller K about this equilibrium
coincides with the designed controller C(α0).

4.2 Local stability at each operating point

In order to establish local stability for Fnl about each
equilibrium point, we start by considering the generic
feedback interconnection of a continuous-time plant and
a discrete-time periodically time-varying controller

ẋ(t)=f(x(t), u(t))
y(t)=h(x(t)), t ≥ 0

zk+1 =a(zk, yk, k)
uk =c(zk, yk, k), k ≥ 0

(16)

with standard sample and hold interface

u(t)=uk, t ∈ [tk, tk+1[, tk+1−tk = ts yk =y(tk) (17)

where functions f and h are continously differentiable, and
a and c are continously differentiable in z and y and h-
periodic in k, e.g., a(., ., k) = a(., ., k + h). Assuming that
the closed-loop system has a single equilibrium point at the
origin f(0, 0) = 0, h(0) = 0, a(0, 0, k) = 0, c(0, 0, k) = 0
and introducing the vector

xs(t) = [x(t)T zT

k+1 uT

k ]T , t ∈ [tk, tk+1[,

local exponential stability for this interconnection about
the origin equilibrium can be defined as

∃r0,C,γ : ∀t0≥0,xs(t0)∈Br0
(0)‖xs(t)‖ ≤ Ce−γ(t−t0)‖xs(t0)‖,

t ≥ t0.

Consider also the feedback interconnection of the lin-
earized system and linearized controller

ẋδ(t) = Axδ(t) + Buδ(t) zδk+1 = Nkzδk + Mkyδk

yδ(t) = Cxδ(t), t ≥ 0 uδk = Lkzδk + Kkyδk, k≥0
(18)

with sample and hold interface similar to that defined
in (17), and where, for example, B = ∂f

∂u
(0, 0), Nk =

∂a
∂z

(0, 0, k) and Kk = ∂c
∂y

(0, 0, k). Notice that Nk, Mk, Lk,

Kk are h-periodic matrices. The next theorem establishes
the stability relation between systems (16) and (18).

Theorem 5. The following statements are equivalent:
i) The system described by (16) is exponentially stable
about the origin.
ii) The linearized system (18) is exponentially stable.

iii) For Ad = eAts and Bd =
∫ ts

0
eAτdτB,

σ(

h
∏

k=1

[

Ad + BdKkC BdLk

MkC Nk

]

) < 1 (19)

The local stability property for Fnl is given by the follow-
ing corollary.

Corollary 6. Suppose for each parameter vector α0 ∈ Ξ,
Fl(α0) is asymptotically (exponentially) stable. Then Fnl

is locally exponentially stable about each equilibrium point
associated with α0.

Proof. About each equilibrium point, characterized by
constant α0 and w(t) = w0, the nonlinear system G can
be rewritten as ẋδ(t) = f̄(xδ(t), uδ(t)), yδ(t) = h̄(xδ(t)),
where f̄(xδ(t), uδ(t)) := f(x0 + xδ(t), u0 + xδ(t), w0), and
h̄(xδ(t)) := h(x0 + xδ(t)) and a similar redefinition can
be applied to K. Moreover, simple block manipulations
show that Fnl = F(SGH, K) = F(ΓdSts

GHts
Ωd, K) =

F(Sts
GHts

, ΩdKΓd). Hence, Fnl conforms to (16)-(17),
where G is the continuous-time system and ΩdKΓd is the
discrete-time controller connected by standard sample and
hold interface. According to (4) and the key linearization
property of K, the linearizations of G and ΩdKΓd are
given by Gl(α0) and ΩdC(α0)Γd, respectively. By The-
orem 5 we can conclude that the asymptotic stability
of Fl(α0) = F(Sts

Gl(α0)Hts
, ΩdC(α0)Γd) implies local

exponential stability of Fnl about each equilibrium point.

4.3 Ultimate boundedness for slowly varying inputs

In this section we restrict the scheduling variable to depend
solely on the exogenous inputs α(t) = w(t) so that we
can impose a bound on its time-derivative. Then, building
upon the work presented in Lawrence (1997, 2001) for
single-rate sampled-data systems, it is possible to address
the multi-rate case and show that for any initial condition
starting near the equilibrium manifold described by Σ
and Σc, the error between the state of Fnl and the
corresponding equilibrium value parameterized by w(t) is
ultimately bounded, with an ultimate bound that depends
on the time-derivative of w(t). Defining

xs(t) :=[xT (t) (xc
k+1)

T uT

k ]T , t ∈ [tk, tk+1[,

as the state of Fnl and

xs0(α0) :=[xT

0 (α0) (xc
0(α0))

T uT

0 (α0)]
T ,

as the corresponding parameterized equilibrium points, we
can establish the following result.

Theorem 7. Suppose for each parameter vector α0 ∈ Ξ,
Fl(α0) is asymptotically stable. Then there exist positive
constants δ1, δ2, k and γ, and a class K function b(.) such
that the following property holds. If, for any t0 ≥ 0, a
continuously differentiable exogenous input w(t) = α(t)
satisfies w(t) ∈ Ξ, t ≥ t0

‖xs(t0) − xs0(w(t0))‖ < δ1 and ν := sup
t≥t0

‖ẇ(t)‖ < δ2

then there exists a t1 ≥ t0 such that

‖xs(t) − xs0(w(t))‖ ≤ ke−γ(t−t0)‖xs(t0) − xs0(w(t0))‖,

t0 ≤ t < t1

‖xs(t) − xs0(w(t))‖ ≤ b(ν), t ≥ t1.

We return to Example 1 to illustrate these stability prop-
erties.

Example 1. (cont.) We design a gain-scheduling controller
for the multi-rate system considered in Example 1, using
the following methodology: i) the parameter space is
discretized according to α0l = −0.9 + 0.1l, l ∈ {0, ..., 18};
ii) for each value α0l, a controller with the structure
(13) is computed using the standard H2 output-feedback
synthesis solution for periodic systems, yielding a finite
set of controllers; and iii) the controller coefficients are
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interpolated by quadratic parameter dependent functions.
The scheduling variable is set to α = r. Figure 2 shows the
response of the closed-loop system output yr(t) to an input
r(t) consisting of a sequence of steps, obtained with both
the gain-scheduled and linear controllers. This simulation
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Fig. 2. Gain-scheduled and linear controller
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Fig. 3. Actuation and multi-rate inputs ym1 and ym2

justifies the use of parameter varying controllers since the
linear controller leads to instability. The actuation and
the multi-rate inputs ym1 and ym2 of the gain-scheduled
controller are shown in Fig. 3 for a short period of time.
Notice that zero steady-state error is obtained for yr. In
Fig. 4, the responses to a slow and a fast ramp input in
r(t) obtained with the gain-scheduled controller are shown.
One can see that the deviation between the output and the
corresponding equilibrium value (which coincides with the
value of the reference) depends on the rate of variation of
the reference which is in agreement with Theorem 7.
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Fig. 4. Slow and fast ramp response

5. CONCLUSIONS

A methodology for the design and implementation of linear
parameter varying controllers for multi-rate sampled-data
systems was presented and its stability properties were
analyzed. The proposed solution is based on a controller
structure with integral action that for single-rate systems
particularizes to the velocity implementation. The key
linearization property of this structure allows for guaran-
teeing local stability of the sampled-data feedback inter-
connection of the non-linear system and proposed gain-
scheduled controller about constant operating points, and

ultimate boundedness of a conveniently defined error when
slowly varying exogenous inputs are applied to the closed-
loop system.
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