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∗ Faculty of Electrical & Electronics Engineering,
Istanbul Technical University Istanbul, Turkey

(e-mail: goren@elk.itu.edu.tr).
∗∗ Faculty of Electrical & Electronics Engineering,

Istanbul Technical University Istanbul, Turkey
(e-mail: yaprak@elk.itu.edu.tr).

Abstract: A gradient based discrete-time model of continuous Hamiltonian systems with input
is proposed and a procedure is given to construct the discrete-time model. The model validation
for both separable and non-separable case is done considering the energy relation, additionally
stabilizability condition is given and the model is also tested especially for the well-known non-
separable Hamiltonian systems by simulations. After then, the discrete-time counterpart of PBC
technique is developed for n-degree of freedom mechanical systems using this proposed discrete-
time model. The discrete-time control rules which correspond to potential energy shaping and
damping assignment are designed directly using the discrete time model of the desired system
and the discrete time model of the open loop systems. To illustrate the effectiveness of the
proposed method, two non-separable examples are investigated and the simulation results are
given.

1. INTRODUCTION

The port-controlled Hamiltonian (PCH) approach has
been introduced not only for modeling of physical sys-
tems but also for control of a wide class of nonlinear
systems. There is large number of publications on this
subject(Van der Schaft (1996), Ortega et al. (2002), Or-
tega and Garcia-Canseco (2004)). PCH approach has been
considered mostly for nonlinear systems especially in sys-
tems where electrical and mechanical sub-systems have to
be considered together. Furthermore, the passivity-based
control (PBC) is a powerful design technique for stabilizing
nonlinear systems and especially set point regulation prob-
lem for both Euler-Lagrange systems and PCH systems.

In continuous-time context, the PBC design is completed
in two-step; first the energy shaping control rule ues(t) is
designed to assign the desired energy function as the total
energy of the system, second, the damping injection con-
trol rule udi(t) is designed to achieve asymptotic stability
at desired equilibrium point, which is an isolated and strict
minimum of the desired energy function. One can find the
detail of design methodology in (Van der Schaft (1996),
Ortega et al. (1998)) and references therein.

On the other hand, technological advancements in digital
processors, the widespread use of computer controlled sys-
tems in engineering practice are in need of a theory to anal-
yse and design sampled-data systems and techniques to
obtain discrete-time model of non-linear systems crucially.
A framework on the issue of the stabilization of sampled-
data non linear systems using their approximate discrete
time models can be found in (Nesic and Teel (2004), Nesic
et al. (1999)).

In control literature, to the best of our knowledge, there is
limited number of works utilizing the discrete-time models
of Hamiltonian systems for control applications as (Laila
and Astolfi (2005), Laila and Astolfi (2006a), Laila and
Astolfi (2006b)). In these works, in order to obtain the
discrete-time model, Euler method is used and as men-
tioned by the authors, “the Euler model is not Hamil-
tonian conserving, but better preserves the Hamiltonian
structure of the plant”. In mathematics literature, the
discrete Hamiltonian systems are considered for different
purposes. In some of these works, discrete Hamiltonian
systems are considered under the section of “symplectic
difference systems” or “discrete symplectic systems” and
a lot of analysis is carried out for these systems (Kratz
(2003), Hilscher and Zeidan (2003), Shi (2006), Bohner
(1996)). Other works on this subject deal with numeri-
cal computation of Hamiltonian dynamics and focuses on
the integration methods. The survey paper (McLachlan
et al. (1999)) summarizes the already existing integration
methods, thoroughly and in Gonzalez and Simo (1996),
the integration methods for Hamiltonian systems can be
found.

In this study, mainly, a gradient based discrete-time model
of continuous Hamiltonian systems with input is proposed
and a procedure is given to construct a discrete-time
model. Moreover, model validation is done considering the
energy relation, additionally stabilizability condition and
the model is also tested especially for well-known Hamil-
tonian systems by simulations. After then, the discrete-
time counterpart of PBC technique is developed for n-
degree of freedom mechanical system using this proposed
discrete-time model. The discrete-time control rules ues(k)
and udi(k) which correspond potential energy shaping and
damping injection respectively are designed directly using

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 212 10.3182/20080706-5-KR-1001.1532



the discrete time model of the desired system and the
discrete time model of the open loop systems. To illustrate
the effectiveness of the proposed method, two non-linear
examples are investigated and the simulation results are
given.

2. GRADIENT BASED DISCRETE MODEL OF
HAMILTONIAN SYSTEMS

Consider the continuous-time Hamiltonian systems with
dissipation and input

ẋ = [J(x) − R(x)]∇H(x) + G(x)u(t) (1)

where x ∈ R
n denotes the states, u ∈ R

m is the control
input of the system and J(x) = −JT (x) , R(x) = RT (x).
The notation ∇xH is used to denote the gradient vector
of the scalar function of H(x) with respect to x. Suppose
the energy or the Hamiltonian function of the system is
defined as,

H(x) =
1

2
xT Z(x)x (2)

As mentioned before, in this study, a gradient based
discrete model will be constructed. To fulfill this, the
discrete gradient definition given in Gonzalez and Simo
(1996) and restated below will be considered.

Definition 1. Let H(x) be a differentiable scalar function
in x ∈ R

n then ∇H(xk, xk+1) is a discrete gradient of H
if it is continuous and

∇
T
H(xk, xk+1) [xk − xk+1]

= H(xk+1) − H(xk)
∇H(xk, xk) = ∇H(x)

(3)

The mean value theorem and the first condition of the
discrete gradient imply that a satisfactory discrete gradi-
ent which leads us to obtain a discrete time model can be
defined as follows.

Definition 2. Suppose a differentiable function in x given
as H(x) = 1

2 xT Z(x)x and its gradient given in the form
of ∇H(x) = Q(x)x. The discrete gradient of a H(x) is
defined as,

∇H(x) = Q̂(xk+1, xk)

[

xk+1 + xk

2

]

(4)

where

Q̂(xk+1, xk) = [Q(xk+1) + Q(xk)] /2 (5)

Throughout the paper we will use this definition for
discrete gradient, and to ease the notation, the following
expression will be used,

∇H(x) = Φ(xk+1, xk)(xk+1 + xk) (6)

in which Φ(xk+1, xk) = 1
2 Q̂(xk+1, xk).

It should be noted that the discrete gradient definition
given here which is based on midpoint is slightly different
than the one introduced by Gonzalez and Simo (1996).

If Z(x) is a constant n × n matrix, then it can be easily
shown that the discrete gradient given in Definition 2 satis-
fies exactly both of two conditions given in Definition 1. On
the contrary, if Z(x) is not a constant matrix, then it does

not satisfy the first condition of Definition 1, precisely. A
detailed analysis of the effect of this mismatching will be
given later once the discrete-time model is constructed.

Consider the Hamiltonian system with dissipation and in-
put, given in (1) and (2), using the Definition 2 for discrete
gradient of H(x), a gradient based discrete-time model of
Hamiltonian system given in (1) can be constructed as
follows,

xk+1 − xk = T [J(xk) − R(xk)]∇H(x) + TG(xk)u(k) (7)

-where T is sampling period- after the discrete gradient
expression given in (6) is substituted in (7), the gradient
based discrete-time model of Hamiltonian system is ob-
tained as,

xk+1 = F (xk)xk + L(xk)u(k) (8)

where

F (xk) =̂ {I − T [J(xk) − R(xk)] Φ(xk+1, xk)}
−1

{I + T [J(xk) − R(xk)] Φ(xk+1, xk)}

L(xk) =̂ T{I − T [J(xk) − R(xk)] Φ(xk+1, xk)}
−1

G(xk)

(9)

It should be noted that the model presented by (8) and (9)
must not be regarded as an implicit or a non-causal model.
In this study we use a simple approximation for xk+1 in
calculation of Φ(xk+1, xk) ∼= Φ(x̂k+1, xk) as follows, to
avoid such misunderstandings,

xk+1
∼= x̂k+1 = F (xk−1)xk + L(xk−1)u(k − 1) (10)

This approximation might be explained as one-step ahead
prediction.

Remark 1. Suppose the system given in (1) with R(x) = 0,

u(t) = 0 and J(x) =

[

0 In

−In 0

]

. Then it can be easily

shown that the gradient based discrete model of this sys-
tem constructed by (8) and (9) defines “a symplectic dif-
ference system” (Hilscher and Zeidan (2003)) with energy
conserving property. 2

2.1 Model Validation Based on Both Energy Relation and
Stabilizability Property

Consider the Hamiltonian system given in (1) and (2),
when R(x) > 0, u(t) = 0, and H(x) has a local(global)
strict minimum at x = x∗, then this system has a
local(global) asymptotically stable equilibrium at point x∗

(Van der Schaft (1996)), and the following inequality holds

Ḣ(t) = ∇T H(x) [J(x) − R(x)]∇H(x) < 0 (11)

On the other hand, the analogy between continuous and
discrete cases would give rise to a similar energy relation
as the one in (11) for discrete case using (7) as following,

∇
T
H [xk+1 − xk] = T∇

T
H [J(xk) − R(xk)]∇H (12)

Using the relation ∇H(x) = Q(x)x = [Z(x) + S(x)] x, and
after some algebraic manipulations, the following energy
relation is obtained for the proposed discrete model,

H(xk+1) − H(xk)

T
= ∇

T
H [J(xk) − R(xk)]∇H

+ǫ(xk+1, xk)
(13)

This relation implies that the discrete model creates an
extra energy or extra dissipation according to the sign of
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ǫ(xk+1, xk) ∈ R, Obviously, for T → 0 this extra term
tends zero, i.e. ǫ(xk+1, xk) → 0. As a consequence of the
above analysis the following remark can be given on the
stabilizability property.

Remark 2. When the gradient based discrete model pro-
posed here is used to design a control rule to stabilize the
sampled-data Hamiltonian systems, the extra term created
by discrete model does not effect stabilizability condition
of continuous system, if ǫ(xk+1, xk) < 0, namely the dis-
crete model creates an extra energy. On the other hand, if
ǫ(xk+1, xk) > 0 namely, the discrete model creates an extra
dissipation, the control rule should be designed considering
this fact, especially when slow sampling is used. As it
can be obviously followed from (13), the stabilizability
condition of continuous Hamiltonian system by discrete-
time control remains same, i.e. asymptotic stability can
be achieved by adding an extra dissipation. 2

2.2 Examples and Model Validation by Simulation

In this section we present two examples for modeling
of Hamiltonian systems and investigated the models by
simulations.

Example 1. Van der Pol oscillator given by

ẋ = [J − R(x)]∇H, H(x) =
1

2
xT I2x

R(x) =

[

0 0
0 −µ(1 − x2

1)

]

Using the procedure given in the previous section, the
discrete model of Van der Pol circuit is obtained as follows,

xk+1 =

[

I −
T

2
(J − R(xk))

]

−1 [

I +
T

2
(J − R(xk))

]

xk

Figure 1 and 2 show the phase portraits and time responses
of the discrete and continuous dynamics respectively, for
µ = 1 and T = 0.01s.
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Fig. 1. Phase Portraits of Discrete and Continuous Dy-
namics of Van der Pol Oscillator

Example 2. Consider the double pendulum given by,
[

q̇
ṗ

]

= J∇H, H(q, p) =
1

2
pT M−1(q)p + V (q)
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Fig. 2. Time Response of Discrete and Continuous Dynam-
ics of Van der Pol Oscillator

where

M =

[

l21(m1 + m2) m2l1l2cos(q1 − q2)
m2l1l2cos(q1 − q2) l22m2

]

V (q) = −m2gl2cos(q2) + (m1 + m2)gl1cos(q1)

After the discrete model of the system is obtained using
the procedure given in the previous section, the simulation
results are obtained for parameter values m1 = m2 = 1kg,
l1 = 0.2m, l2 = 0.2m, g = 9.81ms−2, T = 0.005s, for

x0 = [ 0.5 0.3 0 0 ]
T

and they are presented in Figure 3
as phase portraits of Discrete and Continuous Dynamics
of the double pendulum system. It should be noted that
the series expansions of trigonometric functions have been
used in the calculation of discrete gradient of V (q) to avoid
the discontinuity.

3. DISCRETE-TIME CONTROL OF HAMILTONIAN
SYSTEMS VIA ENERGY SHAPING AND DAMPING

INJECTION

In the previous section we dealt with a more general
structure while obtaining the discrete-time model of a
Hamiltonian system here we will focus on the following
continuous-time port-controlled Hamiltonian systems

[

q̇
ṗ

]

=

[

0 In

−In 0

] [

∇qH
∇pH

]

+

[

0
B(q)

]

u(t)

y(t) = BT (q)∇pH
(14)

where q ∈ R
n and p ∈ R

n are generalized coordinates of
the system, u ∈ R

m is control input of the system and
B(q) ∈ R

n×m is the input matrix. The notation ∇(·)H is
used to denote the gradient vector of the scalar function of
H(q, p) with respect to (·).The energy or the Hamiltonian
function of the system is defined as,

H(q, p) = K(q, p) + V (q) =
1

2
pT M−1(q)p + V (q) (15)

namely, the Hamiltonian function is the sum of kinetic
and potential energy. In this relation, the matrix M(q) is
a symmetric and positive generalized inertia matrix, and
if M(q) = M ∈ R

n×n, then the system is called “separable
Hamiltonian system” whereas if m = n and rankB(q) = n,
the system is full-actuated. In the sequel, we assume that
the system is full-actuated. In order to obtain discrete time

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

214



 

 

q1

p
1

Discrete Dynamics

Continuous Dynamics

−0.3

−0.3

−0.2

−0.2

−0.1

−0.1

0

0

0.1

0.1

0.2

0.2

0.3

0.3 0.4 0.5

 

 

q2

p
2

Discrete Dynamics

Continuous Dynamics

−0.6

−0.5

−0.4

−0.4

−0.3

−0.2

−0.2

−0.1

0

0

0.1

0.2

0.2

0.3

0.4

0.4

0.5

Fig. 3. Discrete and Continuous Time Responses of Double
Pendulum System

model of the system, first we have to construct discrete
gradient of H(q, p) in terms of ∇H(q, p), namely

∇H(q, p) =

[

Vgr(q) S(q, p)
0 M−1(q)

] [

q
p

]

= Q(q, p)

[

q
p

]

S(q, p) =























pT ∂M−1(q)

∂q1

pT ∂M−1(q)

∂q2
...

pT ∂M−1(q)

∂qn























(16)

in which the matrix Vgr(q) is described as,

∇V (q) = Vgr(q)q (17)

then the discrete gradient expression is obtained as,

∇H(q, p) = Φd(k + 1, k)

[

qk+1 + qk

pk+1 + pk

]

(18)

where

Φ(k + 1, k) = Φ(q̂k+1, p̂k+1, qk, pk)

=
1

4
(Q(qk, pk) + Q(q̂k+1, p̂k+1))

=

[

Φ11(k + 1, k) Φ12(k + 1, k)
0 Φ22(k + 1, k)

]

(19)

Then, the more versatile relations are obtained as follows,

∇qH = ∇qK + ∇qV (q)

= [ Φ11(k + 1, k) Φ12(k + 1, k) ]

[

qk+1 + qk

pk+1 + pk

]

∇pH = ∇pK = Φ22(k + 1, k) (pk+1 + pk)

(20)

To obtain the gradient based discrete model of the system
given in (14), the following equation should be written,

[

qk+1

pk+1

]

−

[

qk

pk

]

= T

[

0 In

−In 0

] [

∇qH
∇pH

]

+ T

[

0
B(qk)

]

u(k)

= T

[

∇pK
−∇qK −∇qV

]

+ T

[

0
B(qk)

]

u(k)

(21)

and substituting (20) in (21) the following relation is
obtained,
[

qk+1

pk+1

]

−

[

qk

pk

]

= T

[

0
B(qk)

]

u(k)

+ T

[

0 Φ22(k + 1, k)
−Φ11(k + 1, k) −Φ12(k + 1, k)

] [

qk+1 + qk

pk+1 + pk

] (22)

Finally, the discrete time model of the system given in (14)
is obtained using (8), (9) and (19) as follows,

[

qk+1

pk+1

]

= F (qk, pk)

[

qk

pk

]

+ L(qk, pk)u(k) (23)

where

F (qk, pk) =̂ [I − TJΦ(k + 1, k)]
−1

[I + TJΦ(k + 1, k)]

L(qk, pk) =̂ T [I − TJΦ(k + 1, k)]
−1

[

0
G(qk)

]

(24)

In order to stabilize the system (14) at the point q∗, one
good candidate for the closed loop energy function is the
following,

Hd(q, p) = K(q, p) + Vd(q)

=
1

2

(

pT M−1(q)p + (q − q∗)
T
Kp(q − q∗)

) (25)

where Kp = KT
p > 0, and so the desired Hamiltonian

system can be written as,
[

q̇
ṗ

]

=

[

0 In

−In 0

] [

∇qHd

∇pHd

]

(26)

to construct the discrete gradient of Hd(q, p) in terms of
∇Hd(q, p), namely,

∇Hd(q, p) =

[

Kp Sd(q, p)
0 M−1(q)

] [

q
p

]

= Qd(q, p)

[

q
p

]

Sd(q, p) =























pT ∂M−1(q)

∂q1

pT ∂M−1(q)

∂q2
...

pT ∂M−1(q)

∂qn























= S(q, p)

(27)
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then the discrete gradient expression is obtained as

∇Hd(q, p) = Φ(k + 1, k)

[

qk+1 + qk

pk+1 + pk

]

(28)

where
Φd(k + 1, k) = Φd(q̂k+1, p̂k+1, qk, pk)

=
1

4
(Qd(qk, pk) + Qd(q̂k+1, p̂k+1))

=

[

Φd11(k + 1, k) Φd12(k + 1, k)
0 Φd22(k + 1, k)

]

(29)

When one compares the desired energy function given
in (25) and the energy function given in (15), the only
difference between two expressions is the change in the
potential energy. Therefore the following relations are
obtained for the discrete model of the desired system,

∇qHd = ∇qK + ∇qVd(q)

= [ Φd11(k + 1, k) Φ12(k + 1, k) ]

[

qk+1 + qk

pk+1 + pk

]

∇pHd = ∇pK = Φ22(k + 1, k) (pk+1 + pk)

(30)

The following equation -which will be used the gradient
based model of the desired system - can be written as,

[

qk+1

pk+1

]

−

[

qk

pk

]

= T

[

0 In

−In 0

] [

∇qHd

∇pHd

]

= T

[

∇pK
−∇qK −∇qV

] (31)

and by substituting (30) in (31) the following relation is
obtained,

[

qk+1

pk+1

]

−

[

qk

pk

]

= T

[

∇pK
−∇qK −∇qVd(qk)

]

= T

[

0 Φ22(k + 1, k)
−Φd11(k + 1, k) −Φ12(k + 1, k)

] [

qk+1 + qk

pk+1 + pk

] (32)

Finally, the discrete time model of the desired system given
by (26) is obtained using (8), (9) and (29) as follows,

[

qk+1

pk+1

]

= Fd(qk, pk)

[

qk

pk

]

(33)

where

Fd(qk, pk) =̂ [I − TJΦd(k + 1, k)]
−1

[I + TJΦd(k + 1, k)]

If the right hand side of (22) is equated to the right hand
side of (32), the discrete time controller responsible for
energy shaping of the system (14) is obtained as follows in
terms of discrete gradients,

ues(k) = −B−1(qk)
(

∇qVd −∇qV
)

(34)

The discrete gradients in (34) are obtained as follows,

∇qV = ΦV (qk+1, qk)(qk+1 + qk)

∇qVd = Kp

(

1

2
(qk+1 + qk) − q∗

)

(35)

in which

ΦV (qk+1, qk) =
1

4
(Vgr(qk+1) + Vgr(qk))

∇qV (q) = Vgr(q)q
(36)

In these relations, the term qk+1 can be calculated in
two different ways; one approach would be to use the

expression in (10), the other way is to use the output
variable. It should be noted that there were no difference
between the two approaches, in simulation results We
prefer to use the output variable for the calculation of qk+1,
since its formulation is easily tractable. In discrete time
setting, the output equation given in (14) can be written
as follows,

y(k) = BT (qk)∇pH = BT (qk)
qk+1 − qk

T
(37)

so qk+1 can be obtained in term of output as,

qk+1 = TB−T (qk)y(k) + qk (38)

Finally, the discrete time controller responsible for the
energy shaping of the system (14) is obtained with (36),

ues(k) = −BT

[

T

(

Kp

2
− ΦV (qk+1, qk)

)

B−T (qk)y(k)

+ 2

(

Kp

2
− ΦV (qk+1, qk)

)

qk − Kpq
∗

] (39)

It is obviously seen that the system obtained when apply-
ing ues(k) to the system (21) gives the discrete model (23)
of desired Hamiltonian system (14) with the Hamiltonian
function (25). Consequently, the analysis and so Remark 2
given in Section 2.1 is valid. Moreover, in order to drive the
state of the system to the equilibrium point, the damping
injection controller udi(k) must be constructed. When the
desired system is taken as follows,

[

q̇
ṗ

]

=

([

0 In

−In 0

]

−

[

0 0
0 Rd

]) [

∇qHd

∇pHd

]

(40)

with Rd = B(q)KvBT (q). It is easily realized that the
damping injection control rule udi(k) can be found using
the output variable y(k) as follows,

udi(k) = −KvBT (qk)∇pH = −Kvy(k) (41)

Therefore, the discrete-time control rules ues(k) and
udi(k), which correspond potential energy shaping and
damping injection respectively have been designed directly
using the discrete time model of the desired system and
the discrete time model of the open loop systems.

4. EXAMPLES

In order to make a comparison with the results given in
Laila and Astolfi (2006b), first we considered the control
of a cart and pendulum system (Bloch et al. (1997)) with

M =

[

ml2 mlcos(q1)
mlcos(q1) Ms + m

]

, G =

[

02×2

I2

]

V (q) = mglcos(q1)

and the cart mass Ms = 0.14kg, the pendulum bob
mass m = 0.44kg, the pendulum length l = 0.215m and
g = 9.81ms−2, q1 = θ, the pendulum angle from its
upright position and q2 = s is the cart position. The
control objective is to stabilize the continuous system at
origin and also to swing up of the pendulum as oppose
to the problem considered in Laila and Astolfi (2006b).
They have assumed that the swinging up of the pendulum
has been achieved by a separate control but they have
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considered the underactuated case. Figure 4 illustrates the
simulation results for values

[ q10 q20 p10 p20 ] = [ 3.14 −1.5 0.1 0.1 ] , Rd = 25I2

with Kp = 75I2 and T = 0.01s. The control input
is constructed by summing ues(k) and udi(k) which are
obtained using the relations given in (39) and (41).
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Fig. 4. Discrete and Continuous Time Responses of Cart
and Pendulum System
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Fig. 5. Discrete and Continuous Time Responses of Double
Pendulum System

In order to investigate the effectiveness of the proposed
method on a more complicated system, we also considered
the control of double pendulum -described in Section 2.2-
at a desired position [ q∗1 q∗2 p∗1 p∗2 ] = [ 3.14 1.57 0 0 ].
The simulation results presented in Figure 5 for T =
0.025s, Kp = 50I2, Rd = 15I2 and [ q10 q20 p10 p20 ] =
[ 0.5 0.2 0.1 0.1 ].

It must be noticed that the emulation of the continuous
controllers have destabilized the system in both two exam-
ples. These results reveal that the discrete time controller
design method proposed in this study yields a good per-
formance for sampled data Hamiltonian systems.
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