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Abstract: Several pathologies related to the atrial electrical activity can be detected in the
electrocardiogram P-wave. A study on the beat-to-beat P-wave morphology changes of 89 ECG
signals is performed in this article. An algorithm based on the embedding space techniques has
been used to extract the P-wave information of the ECG. The P-waves obtained in several of
these ECGs exhibit intermittent morphology changes. The morphologies have been classified by
using the K-means clustering algorithm. The mechanism behind different P-wave morphologies
and its possible pathophysiological importance remains to be clarified.

Keywords: P-wave morphology, K-means clusters, ECG wave delineation, atrial electrical
activity.

1. INTRODUCTION

The interatrial conduction delay is considered as one of
the causes of several atrial pathologies. The normal cardiac
rhythm is initiated in the sinus node, and is propagated
along the entire atrial myocardium. There are three intern-
odal conduction pathways in the right atrium and multi-
ple potential interatrial paths. Atrial conduction disorders
frequently appear in elderly or structural heart disease
subjects and can be the origin of the atrial fibrillation,
flutter or tachyarrhythmias, see Daubert et al. [2004].

The analysis of the electrocardiogram (ECG) is a well-
known non-invasive technique to detect the electrical heart
activity. A normal heart cycle is reflected in the ECG
by a P-wave (atrial activity), a QRS complex and a T-
wave. Several clinical studies connect certain P-wave prop-
erties such as its length and morphology, with anomalies
in the electrical atrial conduction and atrial pathologies,
see Daubert et al. [2004], Platonov et al. [2000, 1998],
Hävmoller et al. [2007], Carlson et al. [2005] The relation-
ship between P-wave indices, measured with Frank leads,
and atrial fibrillation is studied in Platonov et al. [2000,
1998]. The length of the P-wave, the time position of the
X-lead peak and the sign of the Z-lead signal value are
some of the most frequently used indices to predict atrial
anomalies.

⋆ This work was supported in part by the national research agency of
Spain (CICYT) through the project DPI 2006-14367 and the regional
government of Castilla y León through the project VA076A07.

The P-wave morphology of 89 orthogonal ECG signals
belonging to both healthy individuals and patients with
intermittent atrial rhythm disorders is studied here. The
aim is to analyze the P-wave morphology, using the indices
and criteria proposed by Platonov et al. [2000], to detect
possible interatrial conduction delays. Similar indices have
been used by Censi et al. [2007] to analyze the relationship
between the P-wave morphology and the atrial fibrillation.

The magnitude and length of the P-waves are smaller than
those of the QRS complexes and T-waves, and their study
requires more sophisticated computation techniques. The
ECG baseline oscillations, due to the respiratory cycle,
and the high frequency noise have, in some cases, the same
magnitude as the P-wave and could hide or disturb it. Most
ECG detection algorithms only detect the QRS complexes,
see Köhler et al. [2002], Sörnmo and Laguna [2005]. Other
algorithms try to obtain all the characteristic points of
the ECG, i.e., the onset, peak and end of the P-waves,
QRS complexes and T-waves. Several mathematical tools,
such as wavelets, see Martinez et al. [2004], Bahoura et al.
[1997], Li et al. [1995], Sahambi et al. [1997], or hidden
Markov chains, see Koski [1996], have been employed.
These methods are based on estimation techniques, where
a reference wave is compared to the actual signal in
different time and/or frequency spaces.

The criteria applied by a professional cardiologist in order
to locate the characteristic event point positions vary. The
P-wave onset is normally defined as the start of this wave
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in one of their leads, and the P-wave end is defined in some
articles as the “nadir location”, i.e., an inverse peak in the
spatial magnitude, see Platonov et al. [2000].

The algorithm proposed by Herreros et al. [2007] is used
to detect and extract the P-waves from ECG records. This
algorithm avoids the abovementioned difficulties associ-
ated to the detection of P-wave characteristic events and is
based on the embedding phase-space of a measured signal,
see Kantz and Schreiber [1997], Abarbanel [1996, 1993].
The algorithm transforms the ECG lead time signal in
a sequence of points of a new multidimensional space. Its
performance has been tested using both simulated and true
ECG signals.

The P-wave information was extracted from 89 ECG sig-
nals to obtain the indices proposed in Platonov et al.
[2000]. It has been checked that 18 of these ECG signals
have significant changes in the beat-to-beat P-wave mor-
phology. Since the indices in Platonov et al. [2000] are
computed on the average of all the P-waves, the morphol-
ogy change information is lost. In order to avoid this, a
classification method to assort the morphologies (including
beat-to-beat information) from an ECG signal is devel-
oped. The mathematical tool employed for classification
was the K-means clustering algorithm, see Bezdek and
Pal [1992], Duda et al. [2001], that allows a choice in the
number of the required classification sets. Other classifica-
tion approaches such as neural nets could be applied, see
Bishop [1997]. However the K means algorithm is faster,
easier to implement and does not require a training phase.

The characteristic indices proposed by Platonov et al.
[2000] have been computed for each resultant P-wave
morphology for the 89 cases of this study. In some cases,
a large variation in the indices from one to the other
morphology occurs. This can be associated to a change
in the atrial electrical conduction.

The rest of this paper is organized as follows: Section 2
introduces the main tools employed for this research study,
namely, the phase-space detection algorithm, the K-means
clustering technique and the characteristic indices for the
P-wave morphology study. Section 3 explains the protocol
to extract the P-wave information from the ECG signals
and the classification of the P-wave morphologies and
presents the results, that are discussed later in Section 4.
Finally, some conclusions are summarized in Section 5.

2. DESCRIPTION OF MATERIALS AND METHODS

2.1 Data acquisition

The surface ECG was sampled during normal heart
rhythm (sinus rhythm) using modified Frank leads (X,
Y and Z) at a rate of 1 kHz and a resolution of 0 −
625 µV, using a special software and a data acquisition
board (equipment supplied by Siemens-Elema AB, Solna,
Sweden). The X lead was applied to the fourth intercostal
space in both mid-axillary lines; the Y lead at the sternal
manubrium, just below the clavicle, and to the left of the
fifth of the umbilicus; and the Z lead at the fifth intercostal
space and on the spinal backbone.

The ECG data collection was obtained at the Cardiol-
ogy Department of the Lund University. The number of

studied ECGs was 89, most of them being recorded from
healthy people. The patient were at rest during the record
of 6 minutes.

2.2 Phase-space detection algorithm.

An algorithm based on the embedding phase-space ap-
proach to detect the characteristic points of an ECG and
was developed. The multi-lead ECG was mapped into
points of an embedding phase space, in such a way that
similar ECG morphologies are converted into phase-space
points that are close in some distance measure. The algo-
rithm was characterized by three parameters, the delay δ,
the embedding dimension N and a vector of integer num-
bers that depends on the relative position of the reference
point in the wave under study, β ∈ R

N+1, see the details
in Herreros et al. [2007]. The algorithm can be applied to
different characteristic points (onset, peak and end) and
is robust against morphology changes, baseline oscillations
and high frequency noise. Its performance was succesfully
validated using both simulated and real ECG signals.

2.3 Cluster analysis

Several techniques can be used to classify data into a finite
number of classes with similar properties, see Bezdek and
Pal [1992], Duda et al. [2001]. Clustering methods classify
data by using a data distance. The data are represented
as a collection of vectors S = {x1, . . . , xL} in a finite
dimension feature space S ⊂ R

N and the data distance can
be any vector norm in that space, usually the Euclidean
norm of R

N . The K-means clustering method is one of the
simplest procedures for solving the problem of classifying
L data points {x1, . . . , xL} in K different clusters Ci,
i = 1, . . . , K. Each cluster was characterized by a centroid
that is the barycenter of all the points in the cluster,
i.e. the point that minimizes the sum of the distances of
all the points of the cluster to it. The method aimed at
minimizing an objective function, in this case the squared
error function

J =

K∑

i=1

∑

j∈Ci

||xj − µi||2 (1)

where Ci is the ith cluster and ‖xj − µi‖2 is the square of
the distance from the data point xj ∈ Ci to the centroid
µi of the cluster Ci. A summary of the K-means clustering
algorithm is given in Table 1. It has been proved that the
algorithm converges, however the computed solution need
not be the global optimum. In fact, the algorithm is quite
sensitive to the initial locations of the centroids and could
be run multiple times with different initial centroids in
order to reduce this effect.

The K-means clustering technique has been employed as
a tool for classifying the different ECG signals in groups
depending on the P-wave morphology. After a detailed
analysis of 89 real ECG signals, it was checked that
18 individuals present beat-to-beat P-wave morphology
changes in their ECGs.

2.4 P-wave morphology indices

The P-wave morphology analysis can be used to predict
several atrial pathologies, such as atrial fibrillation, see
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Table 1. K-Means clustering algorithm

(1) Place the initial group of centroids {µ1, µ2, . . . , µK} in the
space R

N .
(2) Assign each object xi, i = 1, . . . , L to the group that has the

closest centroid.
(3) Recalculate de position of the centroids by computing the

barycenter of each cluster µi = min
∑

j∈Ci

||xj − µi||2, i =

1, . . . , K.
(4) Repet step 2. and 3. until the centroids no longer move.

Platonov et al. [2000, 1998], Carlson et al. [2001]. These
authors use the Frank leads X , Y , Z and the spatial mag-
nitude SM , defined as SM =

√
X2 + Y 2 + Z2, to predict

pathologies. In addition, they define some indices in order
to show that the delay in the interatrial conduction of the
P-wave is a predictor of some atrial pathologies. The most
commonly used indices to analyze the P-wave morphology
are: its length, the time of the maximum X and Y peaks,
the Z cross-zero time, the minimum and maximum Z peak
magnitudes and the peaks of the spatial magnitude SM .
For example, a large maximum Z peak and the presence
of two peaks in the SM signal may indicate an interatrial
delay.

A new index that measures the degree of variability of the
ECG P-wave morphology is proposed here. The index of
change is defined as follows

IC(%) = 100 · 1

NB − 1

NB−1∑

i=1

|∆p(i + 1)|

where NB is the total number of heart beats in the
registered ECG, p(i) = k where k is the index of the
P-wave morphology cluster Ck that classifies the present
heart-beat, and ∆p(i) = p(i) − p(i − 1).

3. RESULTS

3.1 Detection of P-wave characteristic points

The protocol used in the study presented in this paper is
shown in Table 2. The two first steps in the protocol obtain
the onset and end of the P-waves by using the phase-
space detection algorithm, see the details in Herreros et al.
[2007]. In the first step, the Q points belonging to a sinus
QRS complex are found. The associated embedding phase-
space was obtained by using a delay δ = 30 ms and β =
[0, . . . , 5]. In the second step, the embedding phase-space
for P-wave onset and end detection is obtained with a delay
δ = 20 ms, and βPo = [0, . . . , 5] or βPe = [−5, . . . , 0],
respectively. The sinus Q points obtained in the first step
are now used as an indication to find the P-wave onsets
and ends. These points are located at the maxima of
the inverse distance function and before the previously
computed sinus Q points.

The values of the delay δ and embedding dimension N were
selected in such a way that the delay δ is sufficiently large
to attenuate the high frequency noise and the product
δ × N is large enough to include the complete wave
morphology of the corresponding characteristic point to
be detected. The algorithm is quite robust against small

changes in these parameters, as is tested in Herreros et al.
[2007]. Figure 1 shows a ECG detail of the Q, P onset and
P end detection process in case3.

3.2 Classification of P-wave morphologies

In the third step of the protocol of Table 2, the P-waves
are extracted from the ECG, filtered with a FIR filter, and
rotated to obtain normalized P-waves with zero value for
the onset and end points. Figure 2 shows a detail of the
result of this process in case3, where the X , Y , Z signals
and the spatial magnitude SM are shown. In this figure,
all the information of the ECG has been removed, except
the normalized P-waves for each beat-heart, that are beat-
to-beat orderly represented, one after the other.

The same information is depicted in Figure 3, but now the
normalized P-waves for each heart beat are superposed
in the same graphic. The indices explained in Section 2.4
are computed by different researchers for the average of
these P-waves, assuming that all the P-waves have a
similar morphology. Figure 3 shows that this is not the
case in case3, where the P-wave clearly changes from
beat to beat between two distinct shapes. The use of the
average signal could provide spurious information in the
corresponding indices. On the other hand, the change in
the P-wave morphology is a new phenomenon that has not
been completely studied yet and that could report relevant
medical information. Consequently, our proposal is to
classify the P-waves using a clustering technique, compute
the indices for each cluster and study the morphology
changes.

The study of the 89 cases, including patient and control
subjects, shows that 18 of them have intermittent changes
in P-wave morphology. The use of the K-means clustering
technique can classify the P-waves of each case into a
number of sets. The information from the X , Y , Z leads
and SM signal is joined into a vector that comprises the
whole P-wave. The K-means clustering algorithm classifies
these vectors into two groups. Figure 3 shows all the P-
waves for case3 and how they can be classified into two
distinct clusters.

The objective of this binary classification is deciding if
there is more than one P-wave morphology. Each cluster
represents an averaged P-wave morphology. If both clus-
ters are close enough, then there is a unique true P-wave
morphology.

The results of this morphology study for three different
cases are shown in Figures 4, 5 and 6. In these figures,
the P-wave avaraged clusters after the binary classification
process are shown in the normalized X , Y , Z and SM
signals, in addition the dynamics of the beat-to-beat
morphology changes are depicted in the lower graphic
where the presence of one cluster is represented by value 0
and the other by value 1 at each heart-beat. Two almost
indistinguishable P-wave clusters are found for case41, as
can be checked in Figure 4. This is the usual case for
most of the 89 analyzed cases. Note the fast and almost
random changes between both almost indistinguishable
clusters, this always happens when there is only one true
P-wave morphology and corresponds to a very high value
of the IC index that measures the frequency of change
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Table 2. Protocol to detect and classify the P-
wave morphologies.

(1) Find the sinus Q points using the embedding phase-state
algorithm.

(2) Find the P-wave onset and end points associated to sinus Q
points using the embedding phase-space algorithm.

(3) Extract, filter and rotate the P-waves.
(4) Classify the P-waves into two clusters using the K-means.
(5) Obtain the cluster means and the dynamics between clusters.

between the obtained P-wave clusters. However, case3 and
case33 are essentially different as is shown in Figures 5 and
6. Two clearly different P-wave morphologies appear in
these cases. In addition, the dynamics of the morphology
change is very slow, and each P-wave morphology prevails
during a large number of heart beats. For instance, the
first 75 heart-beats in case3 corresponds to the first P-
wave morphology marked with value 0, the next 100 beats
corresponds to the second morphology, marked with value
1, then the P-wave morphology changes again to the first
one until the end of the registered heart beats. The IC
index takes a small value in these cases. Consequently,
there are two different ways to determine if there exists
more than one true P-wave morphology. If either the
Euclidean distance between the two obtained clusters is
small or the IC index is very high then there there exists
only one true P-wave morphology, otherwise there exist at
least two different P-wave morphologies.

Table 3 shows the 18 cases containing two different P-
wave morphologies. The tabulated information for each
case comprises: the PR distances, the P-wave length and
its standard deviation, the cluster size, the X peak and
Z cross-zero time positions, the Z and SM maximum
magnitudes and the index of change IC. The values of these
indices, with format (cluster1/cluster2) in Table 3, show
large differences between the two morphologies. The index
of change IC is small for every case with two morphologies,
as it was expected.

Most of the cases with two different P-wave morphologies
correspond to healthy individuals. However, more clinical
research need to be accomplished in order to understand
the causes of the change in the morphology. The protocol
developed and reported in this paper establishes a proce-
dure to carry out this research study.

4. DISCUSSION

The phase-space detection algorithm was succesfully used
in the detection of the P-wave characteristic points. The al-
gorithm is very simple because only uses time information.
This provides very accurate detection results and robust-
ness against noise and variability in the shape of the ECG,
as it was shown in Herreros et al. [2007]. The algorithm
is semiautomatic, i.e., the user has to choose a reference
point for a certain heart-beat, then the algorithm detects
all the similar points to the reference, producing only one
per beat. All the 89 cases are ECG signals of patients
at rest and have less variation that the synthetic signals
used in the tests of Herreros et al. [2007]. Therefore, this
reinforces the confidence in the accuracy of the obtained
detection results.
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Fig. 1. Detection of P-wave onset, P-wave end and Q event
for case3. The upper figure represents the ECG in the
three leads. The lower figure represents the modified
inverse distance functions for the detection of each
event. P-wave onset is marked by a rhombus, P-wave
end by a cross and Q event by a circle.
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Fig. 2. P-waves detected, isolated, filtered and represented
one after the other for case3.
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Fig. 3. Superposition of every P-wave of the complete ECG
and classification into two clusters for case3. P-waves
belonging to the first cluster are depicted in solid line,
P-waves belonging to the second cluster are depicted
in dashed line.

The selection of the delay δ and embedding dimension N
was carried out in order to attenuate the high frequency
noise and to include the complete P-wave morphology
information in the embedding phase-space vectors, such
as it was explained in Herreros et al. [2007].
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Table 3. Characteristic index values (Cluster1/Cluster2) for the cases with two different
morphologies.

Case PR P-wave Cluster Time Time Z max. SM peak IC(%)
length size X peak Z cross.

1 124.4 ± 0.8 110.8 ± 0.4 336/37 63/66 60/111 0.4/0.0 16.6/18.0 24.3
2 154.0 ± 2.4 141.7 ± 7.4 48/317 93/66 69/60 4.6/3.6 18.2/9.8 4.2
3 117.8 ± 0.7 84.4 ± 0.5 106/294 51/54 24/12 1.6/2.2 14.2/11.9 6.6
4 192.7 ± 2.7 153.9 ± 2.6 295/62 81/69 66/72 2.0/2.2 19.7/6.8 7.3
7 217.6 ± 5.6 134.7 ± 5.6 74/254 87/66 75/78 4.3/5.3 22.5/17.7 2.7
18 171.0 ± 1.1 123.7 ± 1.1 125/276 75/72 57/51 5.3/6.0 16.1/11.8 4.8
20 151.8 ± 0.8 115.0 ± 0.7 128/185 78/54 108/102 0.1/0.3 15.6/6.8 7.0
33 161.6 ± 0.6 91.1 ± 5.0 91/251 63/45 90/36 0.0/2.2 15.7/14.7 1.6
34 185.7 ± 9.8 131.8 ± 8.6 360/96 90/57 84/75 2.3/2.2 15.3/6.9 10.9
37 214.1 ± 17.4 129.3 ± 15.4 76/340 90/60 78/84 3.9/2.9 12.4/5.8 7.2
43 113.8 ± 7.6 86.9 ± 0.8 114/213 63/42 63/57 0.7/1.2 11.3/9.1 19.7
47 170.5 ± 8.0 138.5 ± 6.8 276/142 69/90 66/69 2.9/3.1 19.1/19.0 6.3
50 224.5 ± 3.8 151.9 ± 4.2 269/56 105/72 75/84 2.9/2.1 15.7/10.0 11.6
51 166.2 ± 0.6 123.1 ± 0.4 200/158 75/51 57/63 4.8/4.2 18.3/10.7 1.3
67 141.3 ± 0.6 112.3 ± 0.7 225/198 87/72 78/87 0.0/0.3 22.3/13.3 1.8
82 138.8 ± 0.6 122.4 ± 0.8 367/62 51/57 51/51 2.3/1.6 11.5/8.3 29.8
85 156.6 ± 6.0 124.5 ± 5.0 172/251 69/51 48/51 0.9/1.6 13.8/10.0 4.9
87 144.2 ± 5.3 132.2 ± 1.3 222/183 81/75 75/87 2.4/1.3 21.4/15.2 2.2
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Fig. 4. P-wave cluster means and their dynamic evolution
for case41. Similar morphologies, fast beat-to-beat
changes.
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Fig. 5. P-wave cluster means and their dynamic evolution
for case3. Different morphologies, slow beat-to-beat
changes.

The P-waves that have been detected, isolated and ex-
tracted for the 89 ECGs by using the phase-state detection
algorithm need to be preprocessed before accomplishing
a detailed morphology analysis. The P-waves are filtered
and rotated in such a way that their onsets and ends
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Fig. 6. P-wave cluster means and their dynamic evolution
for case33. Different morphologies, slow beat-to-beat
changes.

attain zero value. Now, a superposition of all the P-waves
clearly shows if there exists a morphology change for
some of the studied ECG signals. After this study, an
interesting phenomenon have been observed for 18 out
of the 89 analyzed cases. For these 18 patients, the P-
wave presents intermittent morphology changes beat-to-
beat. This fact implies two interesting questions: First,
are the indices associated to the average P-wave valid for
these cases? Second, what is the medical interpretation of
these morphology changes?

A binary classification of the P-wave morphologies, using
the the K-means clustering algorithm, was accomplished
in order to answer the first question. Most cases exhibit
only one morphology, but 18 of them have intermittent
morphology changes. The indices that characterize each
P-wave morphology must be computed for each cluster
(averaged P-wave morphology) in order to study atrial
conduction defects. Otherwise the results would provide
erroneous conclusions. In addition, a new index that mea-
sures the beat-to-beat P-wave morphology changes are
introduced. The index shows that the cluster changes for
these 18 cases are very slow.
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The protocol of Table 2 reduces to a figure the P-wave
information of 6 minutes of ECG with a minimal loss
of information. Figures 4, 5 and 6 are three examples.
These figures show two average P-wave clusters (similar
or different) and the beat-to-beat changes between then
during the ECG. This tool could also be used to study the
variability of other ECG waves, such us complex QRS, or
T-waves, using a similar protocol.

The most rational explanation of the P-wave morphology
changes is that several control subjects change their intera-
trial conduction delay during the ECG recording, in agree-
ment with the P-wave morphologies noted by Platonov
et al. [2000]. A change in the sensor position does not
explain this phenomenon, because the P-wave morphology
changes are detected in every sensor at the same time, see
Figure 2. Clearly, the circumstance that a stable P-wave
morphology may abruptly change to another well defined
and stable morphology is a new and hitherto unexplored
finding. The biological explanation for this finding remains
to be further clarified as also the relation to health or
disease.

5. CONCLUSIONS

A study of 89 ECGs from patient and control subjects, to
detect P-wave morphologies that may predict interatrial
delay was carried out. The P-wave information was ob-
tained by an algorithm of detection based on the embed-
ding phase-space approach with very good results. This
algorithm was also developed by the same authors of this
paper.

A systematic procedure for studing the variability of the
P-wave morphology has been developed. This procedure
exploits the versatility of the phase-space detection al-
gorithm along with the K-means clustering algorithm.
The alternative so far was a tedious process of manual
extraction of P-waves. This procedure can be also useful
to study the variability of other ECG waves.

The application of this procedure to a collection of ECGs
shows intermittent changes in the P-wave morphology
for some of them. The P-wave morphology indices detect
different electrical activity for each morphology, this fact
could be used as a medical predictor of certain pathologies.
However, more research is needed in order to develop such
a prediction method.
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