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Abstract: This work concerns with the problem of monitoring an Advanced Gas-cooled Nuclear
Reactor (AGR) core. In the world wide context of energy production, the advanced gas-cooled
reactor (AGR) nuclear power stations are approaching the end of their predicted operational
live. Currently, it has been proposed to extend the operational lifetime of the nuclear plants if the
distortions of the reactor cores are not as severe as initially predicted, and if it is possible to prove
that the reactors are still safe to operate. The purpose of this work is to present a monitoring
system based on analytical redundancy and directional residual generation using measurements
obtained during the refueling process. In short this problem consists of building an unknown
input observer with the role to estimate the friction force produced by the interaction between
the wall of the fuel channel and the fuel assembly. This let to estimate the shape of the graphite
bricks that comprise the core monitoring any distortion of them. Copyright c©2008 IFAC.
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1. INTRODUCTION

This work concerns with the problem of monitoring an
Advanced Gas-cooled Nuclear Reactor (AGR) core. This
plant makes use of the heat given by the nuclear efficient
reaction to produce electricity by means of steam turbines.
These are driven by steam, which is heated, from the AGR
gas using a heat exchanger. One of the advantages of a gas
cooled reactor is the high temperature that the gas can
achieve so that when it is used in conjunction with the
heat exchanger and steamed turbine the thermal efficiency
is very high.

In the world, and specifically in the United Kingdom, the
advanced gas-cooled reactor (AGR) nuclear power stations
are approaching the end of their predicted operational live.
The reactor core is composed of a hundreds of hollow
graphite bricks (that acts as neutron moderator), and the
graphite ages because of neutron irradiation and radiolytic
oxidation causing distortion and potentially cracking of
the bricks. Since it is impossible to repair or replace
the graphite bricks the graphite core is one of the main
components that determinate the operational life of a
nuclear station. In other terms the major factor that
dictates the life of a nuclear power station is the condition
of the graphite reactor core, which distorts over time with
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prolonged exposure to heat and radiation. Currently, it
has been proposed to extend the operational lifetime of
the nuclear plants if the distortions of the reactor cores
are not as severe as initially predicted, and if it is possible
to prove that the reactors are still safe to operate. From
this, it is clear how important is to keep under monitoring
the integrity of the plant and especially of the core; this
is actually made possible by a routine performed during
planned station outage. These outages occur roughly every
three years and result in a large volume of detailed
information collected by a system called Channel Bore
Monitoring Unit (CBMU). This data consists of accurate
measures of the channel bore diameter and tilt angles; this
information is used to provide an overall assessment

To perform a more accurate monitoring of the core over
their predicted operational life, the estimation of its state
should be more frequent; on the other side it is impor-
tant that the reactor is not offline frequently or for long
periods. On the other hand data is also gathered during
core refueling operations, i.e. when the uranium dioxide
fuel is replaced with a weekly rate. An important source of
information during the refueling phase is the fuel grab load
trace data, that consists in collecting information on the
position of the uranium bar inserted in the core and infor-
mation on the force produced by the interaction between
the wall of the fuel channel and the fuel assembly support-
ing brushes. Since interfaces between adjacent brick layers
result in changes in the bore diameter of the channel, as
the brushes supporting the fuel rods pass through these
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features, there is an equivalent change in the friction forces
between the walls and the brushes, which correspond to
an apparent change of the load force on the fuel assembly.
This change in load manifests itself as peaks within the
refueling load trace. In West et al. [2005b], CBMU data
was compared with load trace data coming from different
refueling event and it has been shown how a load trace and
a CMBU trace can furnish the same information (see Pang
et al. [2006], Pang et al. [2007] and West et al. [2005a]).

Following these considerations, the purpose of this work is
to explore a monitoring system based on analytical redun-
dancy and directional residual generation using measure-
ments obtained during the refueling process. In short this
problem consists of building an unknown input observer
with the role to estimate the friction force produced by
the interaction between the wall of the fuel channel and
the fuel assembly supporting brushes. This let to estimate
the shape of the graphite bricks that comprise the core
and, therefore, monitor any distortion of them. The the-
oretical machinery exploited is the Kalman filter theory
(e.g. Jazwinski [1970],Grawal and Andrews [1993]), which
is used to estimate the information above mentioned. In
a different nuclear context, in particular in safeguards
problems, a similar approach has been used in Bonivento
[1983]. In this paper we will discuss the model of the
system used for estimation purposes and the application
of a discrete-time Kalman filter to estimate the friction
force from the fuel grab load signal stored during the refu-
eling process. Since the initial condition of the system are
not known, and considering the fact that the estimation
process is performed off-line, a smoothing algorithm based
on Kalman filter is introduced to improve the estimate.
This is important as a matter of fact that, even if the
grab load data is a time signal, it should be considered
as parametrized in the height dimension of the fueling
channel wall. Hence a perfect estimate both for t = 0
and t = N is necessary. Moreover it will be presented
how to deal with the quantization of the filtered data
that introduce a noise in data streams (see e.g. Ziskand
and Hertz [1993]). Some ideas about this approach can be
found also in Bonivento et al. [2007].

2. USING KALMAN FILTER AND SMOOTHER TO
ESTIMATE THE CORE CONDITION

Each refueling phase provides two data traces, one ob-
tained by lowering the fueling assembly into the nuclear
core, and the other one by raising the fuel assembly out
from there. The fuel grab load trace data is obtained dur-
ing the refueling by load cells positioned on the refueling
machine which directly measure the force applied by the
fuel assembly. This force depends on several factors, among
which the most significant are in the following described

a) The weight of the fuel assembly: this term depends on
the fuel rod mass which changes due to the nuclear
reactions in the core.

b) The frictional forces: is the quantity that we want
to estimate, is caused by the interaction with the
stabilizing brushes on the fuel channel wall: any
distortion in the channel geometry will reflects in
friction force changes.

c) The buoyancy force: is caused by the gas that, circu-
lating in the fuel chamber, makes the fuel assembly

appear lighter. This force is unknown and changes its
effect on the fuel assembly with the position of the
uranium bar into the channel.

During refueling process, the fuel assembly is governed by
the interaction of forces that simultaneously act on the
fuel assembly; the simple discrete time model used is:
[

x1(t + 1)
x2(t + 1)

]

=

[

1 0
∆t 1

] [

x1(t)
x2(t)

]

+ ∆t

[

−1/m
0

]

Ff (t)+

+∆t

[

−Fl/m− g
0

]

+ w(t)

y(t) =

[

1 0
0 1

] [

x1(t)
x2(t)

]

+ v(t) .

(1)
where x1 is the position of the fuel assembly, x2 is its speed,
w is system noise and v is measurements noise, m is the
fuel assembly mass, g is the gravitational acceleration, Fl

is the grab load force, Ff is the brushes friction forces and
applied by the supporting brushes on the assembly and
Fa is the aerodynamic force due to the gas flow in the fuel
chamber; moreover t is the discrete time and ∆t is the
sample period.

Aim of this section is to present a 3-step estimation pro-
cedure that, starting from model (1) and having available
the measure of the position of the fuel assembly along the
channel and the grab force applied on it, is able to estimate
the friction force Ff . Considering the friction force Ff as
an unknown input for system (1) and using an adapted
version of Kalman filter for systems with unknown inputs
(see Emara-Shabaik [2003]), we will estimate the system
state. Having the state estimation it is possible to evaluate
the friction force term Ff using the first equation in (1). In
order to improve the estimation for small time instants (i.e.
for the initial position of the fuel assembly), having a first
estimation of the unknown input Ff , it is possible to use
a Kalman smoother to process the system in the reverse
way, find an estimation of the state and, consequently, of
the friction force at time t = N ; N − 1; . . . 1; 0. Finally, in
order to find an optimal estimation of the system state,
and hence an optimal estimation of the friction force, the
system will be processed using a forward known input
Kalman filter. Roughly speaking running the Kalman filter
forward in time we estimate the state of the system, while
running it backward in time we make a correction of the
previous estimate of the friction force thanks to additional
information of the system gathered during the first forward
estimation.

Recalling system (1), our aim is to write it in the form
[

zd(t + 1)
zf (t + 1)

]

=

[

F1 F2

F3 F4

] [

zd(t)
zf (t)

]

+

[

D̄
0

]

d(t)+

+

[

Ḡ1

Ḡ2

]

+ w

y(t) =
[

C̄1 C̄2

]

[

zd(t)
zf(t)

]

+ v(t) .

(2)

where the disturbance d(t) acts as the friction force Ff .
Defining the non-singular real matrix U

U =

[

1 −1
0 1

]

, (3)

it is possible to find the relation between system (1) and
(2):
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[

F1 F2

F3 F4

]

= U

[

1 0
∆t 1

]

U−1 := Ā (4)

[

D̄
0

]

= U

[

−∆t/m
0

]

:= B̄ (5)

[

C̄1 C̄2

]

=

[

1 0
0 1

]

U−1 := C̄ (6)

[

zd(t)
zf(t)

]

= Ux(t) :=

[

x̄1(t)
x̄2(t)

]

. (7)

Note that the term

∆t

[

−Fl/m − g
0

]

(8)

in first equation of system (1) is not present in the
correspondent equation of system (2); this matrix, referred
as E, will be consider as a known input of the system (1).
Following this reasoning, the system can be rewritten in
the form

[

x̄1(t + 1)
x̄2(t + 1)

]

= Ā

[

x̄1(t + 1)
x̄2(t + 1)

]

+ B̄Ff (t) + Ē + w

y(t) = C̄

[

x̄1(t + 1)
x̄2(t + 1)

]

+ v(t) .

(9)

where

Ē = UE = ∆t

[

−Fl − g
0

]

(10)

In order to estimate the system state in presence of an
unknown input, its effect on the system must be isolated;
to this aim it is possible to define a non-singular real
matrix V , such that

V y(t) :=

[

ȳ1(t)
ȳ2(t)

]

= ȳ(t) V C̄ =

[

C̄11 C̄12

0 C̄22

]

V v(t) =

[

v̄1(t)
v̄2(t)

]
(11)

in this way we have transformed the second equation of
(9) in the following form:

ȳ1(t) = C̄11x̄1(t) + C̄12x̄2(t) + v̄1(t)

ȳ2(t) = C̄22x̄2(t) + v̄2(t) ;
(12)

where C̄11 is a matrix with rank l in order to preserve
system observability.

Now it is possible to rewrite the first equation in (12) as

x̄1(t) = C̄−1
11

[

ȳ1(t) − C̄12x̄2(t) − v̄1(t)
]

(13)

and substituting this into the first equation of (9) it is
possible to find that

x̄2(t + 1) = Ãx̄2(t) + B̃ȳ1(t) + Ē2 + G̃w̃(t)

ȳ2(t) = C̄22x̄2(t) + v̄2(t) ,
(14)

where

Ã =
[

Ā22 − Ā21C̄
−1
11 C̄12

]

B̃ = Ā21C̄
−1
11

G̃ =
[

Ḡ2 − Ā21C̄
−1
11

]

w̃(t) = [ w(t) v̄1(t) ]
T

.
(15)

Now it si possible to estimate the state of system (14)
applying the known input Kalman filter.

First step (unknown input Kalman Filter)

State estimation a priori:

x̂2(t + 1) = Ãx̂2(t | t) + B̃ŷ1(t) (16)

Error covariance a priori:

P2(t + 1) = ÃP2(t | t)Ã
T + Q2 (17)

Kalman gain matrix:

K(t+1) = P2(t+1)C̄T
22

[

C̄22P2(t + 1)C̄T
22 + R2

]−1
(18)

State estimation a posteriori:

x̂2(t + 1 | t + 1) = x̂2(t + 1) + K(t + 1) [ȳ2(t + 1)+

− C̄22x̂2(t + 1)
]

(19)
Error covariance a posteriori:

P2(t+1 | t+1) = P2(t+1)−K(t+1)C̄22P2(t+1) (20)

Initial conditions

x̂2(0) = 0 P2(0) = 1e7 . (21)

Having the estimate x̂2(t) it is possible to compute x̂1(t)
from equation (13) as

x̂1(t) = C̄−1
11

[

ȳ1(t) − C̄12x̂2(t | t)
]

(22)

with conditional covariance

P1(t) = C̄−1
11 C̄12P2(t | t)C̄

T
12C̄

T
12

−1
+ C̄−1

11 R1(t)C̄
−1
11

T
,

(23)
where R1(t) is the covariance matrix of the noise term
v1(t).

From the estimates x̂1(t) and x̂2(t) it is possible to
compute the friction force Ff (t) using the first equation
of (9):

F̂f (t) = B̄−1
[

x̂1(t + 1) − Ā11x̂1(t) − Ā12x̂1(t | t) − Ē1

]

.
(24)

Moreover the estimate state x(t) of system (1) and its error
covariant matrix can be computed as:

x̂(t) = U−1

[

x̂1(t)
x̂2(t)

]

P (t) = U−1

[

P1(t | t) L(t)
LT(t) P2(t | t)

]

(25)
where L(t) = −C̄−1

11 C̄12P2(t | t). The Kalman filter based
algorithm just presented is able to estimate the state of the
system even if a disturbance (represented in our case by the
friction force determined by the brushes) is acting on it.
From this estimate it is possible to compute the magnitude
of the friction force Ff simply using (9). It is important to
note that the statistic property of the friction force at the
instant time t = 0 are not known, and therefore the state
estimation in t = 0 is not appropriate. Remember that
this fact reflects in a wrong estimation of the friction force
applied on the fuel assembly around its initial position.

The idea to deal with this problem is to use the estimation
of the friction force to improve the state estimates just by
gathering information in the reverse way. Thus, applying
the backward Kalman filter on system (1), here rewritten
as

x̄(t + 1) = Ax̄(t) + BFf (t) + E(t) + w(t)

y(t) = Cx̄(t) + v(t) ;
(26)

it is possible to obtain the optimal estimate of the friction
force at time t = 0. The backward Markovian model
considering now the friction force as a known input is
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x̄b(t) = A−1x̄b(t + 1) − A−1BF̂f (t) − Ā−1E(t) + w(t)

y(t) = Cx̄b(t) + v(t) ;
(27)

applying the Kalman smoothing algorithm to system (27)
it is possible to estimate its state from t = N up to t = 0
using the following procedure.

Second step (known input Kalman Smoother)

State estimation a priori:

x̂b(t − 1 | t) = A−1x̂b(t | t) − A−1BFf (t − 1) − A−1E(t)
(28)

Error covariance a priori:

Pb(t − 1) = A−1Pb(t | t)A
−1T

+ A−1Q(t)A−1T
(29)

Kalman gain matrix:

Kb(t − 1) = Pb(t − 1)CT
[

CPb(t − 1)CT + R(t − 1)
]−1

(30)
State estimation a posteriori:

x̂b(t−1 | t−1) = x̂b(t−1)+Kb(t−1) [y(t − 1) − Cx̂b(t − 1)]
(31)

Error covariance a posteriori:

Pb(t− 1 | t− 1) = Pb(t− 1)−Kb(t− 1)CPb(t− 1) (32)

Initial conditions:

x̂b(N) = x̂(N |N) Pb(N) = P (N |N) (33)

Applying this algorithm, a new state estimate for t = N
through t = 0 has been computed, and, consequently, the
estimate of the friction force from time t = N up to t = 0
has been obtained using the second equation of (26).

Running forward in time and backward in time the
Kalman filter algorithm, we have obtained an estimate
of the static property of the disturbance that acts on
the system, which was not known; with this additional
information, it is possible to estimate the state of the
system in a proper way using a standard forward in time
Kalman filter for systems with known inputs.

Third step (known input Kalman Filter)

State estimation a priori:

x̂(t + 1) = Ax̂(t | t) + BFf (t + 1) + E(t) (34)

Error covariance a priori:

P (t + 1) = AP (t | t)AT + Q(t) (35)

Kalman gain matrix:

K(t + 1) = P (t + 1)CT
[

CP (t + 1)CT + R(t + 1)
]−1

(36)
State estimation a posteriori:

x̂(t+1 | t+1) = x̂(t+1)+K(t+1) [y(t + 1) − Cx̂(t + 1)]
(37)

Error covariance a posteriori:

P (t + 1 | t + 1) = P (t + 1) − K(t + 1)CP (t + 1) (38)

Initial conditions:

x̂(0) = x̂b(0) P (0) = Pb(0) (39)

Finally the estimation of the friction force can be com-
puted as

F̂f (t) = B−1 [x̂(t + 1) − Ax̂(t) − E(t)] . (40)
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Fig. 1. First iteration estimation.
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Fig. 2. Second iteration estimation.

3. SIMULATION RESULTS OF THE PROPOSED
ESTIMATION SCHEME

The three steps algorithm just explained has been applied
to real data stored during refueling operations. In figure
1 is depicted the estimation of the friction force after the
first step of the algorithm, i.e. after having applied the
unknown input Kalman filter. It is possible to observe
that the estimated friction force has the same trend of
the grab force, but its shape is not exactly the same.
This is due to the fact that statistic property of the
disturbance Ff are not known for t = 0. In figure 2 is
presented the estimation of the friction force after having
applied the Kalman smoothing algorithm. Remembering
that the smoother algorithm has the role to propagate
the estimation of the friction force from time t = N , to
time t = 0, a better result can be obtained by processing
the system once more by a forward Kalman filter, where
now the statistic property of the friction force for t = 0
are known, because they are given by the combined use
of the first forward Kalman filter and the smoother. The
results of this third step are shown in figure 3. In this case
the trend and the shape of the estimate friction force are
exactly the same as the grab load, and this demonstrates
that it is possible obtain an optimal estimation of the
acting disturbance without an a priori knowledge on it.
Still some small errors in the estimate are present; these
imperfections are due to the approximate model of the
system used to estimate the friction force. For example
the model does not consider the noise introduced by the
quantization of data, moreover both the mass m of the
fuel assembly and the value of the buoyancy force Fa are
approximated and considered constant.
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4. DEALING WITH QUANTIZATION

Aim of this section is to give some guidelines on how to
face the problem of state estimation using quantized mea-
surements; this is necessary since grab load data are quan-
tized and the quantization introduce a noise that affect
the estimate. In the following some necessary condition
for the maximum likelihood estimate (see Raunch et al.
[1965]) when the observations have been quantized will be
given and a Quantization Regression (QR) algorithm (still
based on Kalman filter) which generates an estimate of an
autoregressive time series from quantized measurements
will be described.

As reported in Widrow et al. [1996], the effect of a uniform
quantization can be modeled as an additive noise that is
uniformly distributed, uncorelated with the input signal,
and has white spectrum. Consider the following model
with quantized measurements:

xt+1 = f(xt, wt)
zt = h(xt) + et

yt = Qm(zt)
(41)

where Qm(·) is the quantization function. The problem
of optimally estimate the state of (41) is a problem of
nonlinear non-Gaussian filtering; as explained in Jazwinski
[1970] such a problem has a Bayesian solution given by

p(xt+1 |Yt) =

∫

Rn

p(xt+1|xt)dxt

p(xt |Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
.

In the following a slightly different Kalman filter obtained
by the Bayesian equation as shown in Curry [19703] will be
introduced; considering this filter, necessary conditions for
the maximum-likelihood estimate of parameters when the
observations are quantized will be formulated. Consider
the following linear measurement equation z = Hx + v,
where x is the vector to be estimated, z is the measurement
vector, and v is the measurement noise. Recall that, with
non-quantized measurements, the maximum-likelihood es-
timate (cf Raunch et al. [1965]) is the value of x that
maximizes the likelihood function L(z; x):

x̂ = arg[max
x

L(z, x)] = arg[max
x

p(z : x)] , (42)

where the notation p(z : x) means the probability-density
function of z with x as a parameter of the distribution.

When the measurements are quantized numerical values of
z are not available and the knowledge of the measurements
is reflected in the inequalities

{

ai ≤ zi < bi
}

, (43)

where ai and bi are the lower and upper bounds of the
quantum interval in which the i-th component of z is
known to lie. Considering this fact, the likelihood function
to be used is the probability that the measurements fall in
the hypercube defined by equation (43):

L(ai, bi, x) =
∏

i

P
[

ai − (Hx)i ≤ vi < bi − (Hx)i
]

.

(44)
Hence the maximum-likelihood estimate of x with quan-
tized measurements is

x̂ = arg

{

max
x

∏

i

P
[

ai − (Hx)i ≤ vi < bi − (Hx)i
]

}

.

(45)
Denoting as Pi the term P

[

ai − (Hx)i ≤ vi < bi − (Hx)i
]

,

such that Pi =
∫ bi−(Hx)i

ai−(Hx)i pvi(u)du, the necessary condition

for maximum likelihood estimate is the following:

1

L(ai, bi, x)

(

∂L(ai, bi, x)

∂x

)

=
∑

i

∂Pi/∂x

Pi

=

=
∑

i

pvi(bi − (Hx)i) − pi
v(a

i − (Hx)i)

Pi

hi = 0 ,

(46)

where the row vector hi is the i-th row of H. Hence
the problem can be formulated as following. Given the
measurement equation z = h(x, v), the joint probability
density function of parameter and noise vectors px,v(ξ, v),
the constraint z ∈ A, where A is some hypercube for
quantized measurements, the estimation problem with
quantized measurements consists in finding the conditional
mean of f(x) given a measurement z: E [f(x) | z] and
averaging this function of z considering the constraint
z ∈ A.

Assume that the state vector and measurements variables
satisfy the relationships

xi+1 = Φixi + wi

zi = Hixi + vi

E(x0) = x̄0 cov(x0) = P0

E(wi) = 0 E(wiw
T
j ) = Qiδij

E(vi) = 0 E(viv
T
j ) = Riδij

E(wiv
T
j ) = 0 E(wix

T
0 ) = E(vix

T
0 ) = 0

(47)

where xi is the system state vector at time ti, Φi is the
system transition matrix from time ti to ti+1, wi is a
realization of the process noise at ti, zi is the measurement
vector at time ti, Hi is measurements matrix at time ti and
vi is a realization of the observation noise at time ti. Each
of the m components of the normally distributed vector
z has zero mean and lies in a interval whose limits are
{ai} and {bi}, ai ≤ zi < bi, (i = 1, 2, 1 . . . , m). Let (γi)
(i = 1, 2, 1 . . . , m) be the m components of the geometric

center vector γ of the region A, γi =
1

2
(bi + ai), and

let (αi) (i = 1, 2, 1 . . . , m) be the m components of the

quantum interval half-widths vector α, αi =
1

2
(bi − ai). It

is possible to show that, expanding the probability-density
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Fig. 4. Estimation of friction force using the modified
Kalman filter to deal with quantization (zoom in).

function in power series in an interval containing γ and
neglecting terms higher than the fourth order, the mean
and covariance of z conditioned on z ∈ A are given by
E(z | z ∈ A) ≈ γ − AΓ−1γ and cov(z | z ∈ A) ≈ A =
{

(αi)2

3 δij

}

where Γ = E(zzT ) and δij is the Kronecker

delta. In this case the minimum-variance linear estimate
x∗ and its covariance E∗ are given by

x∗ = x̄ + K∗(γ − Hx̄) (48)

E∗ = M − MHT (Γ + A)−1HM (49)

where K∗ = MHT (Γ + A)−1 and Γ = HMHT + R.
This problem can therefore be solved recursively with a
modified Kalman filter, leading to the following result.
Assuming the conditional distribution of the state just
before the i-th measurements being N(x̂i | i+1, Mi), then
the Gaussian fit alghorithm for a linear system with
quantized system is the following:

x̂i | i = x̂i | i−1 + Ki[E(zi | zi ∈ Ai) − Hix̂i | i−1] (50)

Ki = MiH
T
i (HiMiH

T
i + Ri)

−1 (51)

Pi = Mi − MiH
T
i (HiMiH

T
i + Ri)

−1HiMi (52)

Ei = Pi + Kicov(zi | zi ∈ Ai)K
T
i (53)

x̂i+1 | i = Φix̂i | i (54)

Mi+1 = ΦiEiΦ
T
i + Qi , (55)

where x̂i | i is the conditional mean of xi for quantized
measurements up to and including ti, x̂i | i−1 is the con-
ditional mean of xi for quantized measurements up to
and including ti−1, Ai is the quantum region in which zi

falls, Mi is the conditional covariance of xi for quantized
measurements up to and including ti−1, Ki is the Kalman
filter gain matrix at ti, Pi is the conditional covariance
of estimate, and Ei is the conditional covariance of xi for
quantized measurements up to and including ti−1. The
algorithm just proposed has been applied to the AGR
monitoring problem and a set of simulations has been
performed; the results are presented in figure 4. It is
possible to see that now the estimation algorithm leads
to a perfect estimate of the friction force.

5. CONCLUDING REMARKS

In this work we have presented a 3-step estimation algo-
rithm based on Kalman filter to monitor the integrity con-
dition of the core of AGR nuclear stations. The following
conclusions can be drawn:

- it is possible to estimate the friction force that the
fuel rods apply on the supporting brushes;

- as a consequence it is possible to estimate the shape
of the graphite bricks that compose the core and
therefore the integrity condition of the core itself.

More work needs to be done in order to check the ro-
bustness of the approach, gathering existing and historical
data in a single location and defining patterns for veri-
fying whether time, location, operating condition have a
misleading effect on the trace.
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