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Abstract: The main objective of applying robust active control to base-isolated structures is to
protect them in the event of an earthquake. Taking advantage of discontinuous control theory,
a static discontinuous active bang-bang type control is developed using as a feedback only the
measure of the velocity at the base. Moreover, due to that in many engineering applications,
accelerometers are the only devices that provide information available for feedback, our velocity
feedback controller could be easily extended by using just acceleration information through
a filter. The main contributions of this paper are the development and application of (a) a
static velocity feedback controller design, and (b) a dynamic acceleration feedback controller
design, to a benchmark problem which is recognized as a state-of-the-art model for numerical
experiments of seismic control attenuation. The performance indices show that the proposed
controller behaves satisfactorily and with a reasonable control effort. Copyright c©2008 IFAC

1. INTRODUCTION

Base isolation has been widely considered as an effective
technology to protect flexible structures up to eight storeys
high against earthquakes. The conceptual objective of
the isolator is to produce a dynamic decoupling of the
structure from its foundation so that the structure ideally
behaves like a rigid body with reduced inter-story drifts,
as demanded by safety, and reduced absolute accelera-
tions as related to comfort requirements. Although the
response quantities of a fixed-base building are reduced
substantially through base isolation, the base displacement
may be excessive, particularly during near-field ground
motions (Yang and Agrawal, 2002). Applications of hybrid
control systems consisting of active or semi-active systems
installed in parallel to base-isolation bearings have the
capability to reduce response quantities of base-isolated
structures more significantly than passive dampers (Ram-
malo et al., 2002; Yang and Agrawal, 2002).

In this paper, two versions of a robust active bang-bang
type control (Sonnetorn and Van Vleck, 1964) are devel-
oped and applied to a benchmark base-isolated building
model. The first controller uses the velocity at the base of
the structure as feedback information, and it is analyzed
via Lyapunov stability techniques as proposed in Luo et al.
(2001). Due to the fact that, in civil engineering appli-
cations, accelerometers are the most practically available
? This work was supported by CICYT through grant DPI2005-
08668-C03-01.

sensors for feedback control, the second controller is an
extension of the first one where just acceleration infor-
mation is used. Performance of the proposed controllers,
for seismic attenuation, are evaluated by numerical simu-
lations using the smart base-isolated benchmark building
(Narasimhan et al., 2006). Narasimhan et al. (2006) devel-
oped this benchmark problem to provide systematic and
standardized means by which competing control strategies
–including devices, algorithms, sensors, etc.– can be eval-
uated. Moreover, analytical benchmark problems are an
excellent alternative to expensive experimental benchmark
test structures.

This paper is structured as follows. Section 2 is dedicated
to designing the robust active control and it is divided in
three Subsections: Subsection 2.1 describes the problem
formulation. The solution to the problem statement using
just velocity measurements is described in Subsection 2.2,
meanwhile the solution employing only acceleration infor-
mation is presented in Subsection 2.3. The smart base-
isolated structure which serves as a benchmark problem
for numerical testing is presented in Section 3. Numerical
simulations to analyze the performance of the proposed
controllers are presented in Section 4. Final comments are
given in Section 5.

2. SYSTEM DESCRIPTION AND CONTROL DESIGN

Consider a nonlinear base-isolated building structure as
shown in Figure 1. For control design and because the
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mathematical model of the benchmark structure is very
complicated and cannot be used directly for control pur-
poses (Erkus and Johnson, 2006), a dynamic model com-
posed of two coupled subsystems, namely, the main struc-
ture or superstructure (Sr) and the base isolation (Sc)
(Skinner et al., 1992), is employed:

Sr : Mẍ + Cẋ + Kx = −MJẍg + C̄˙̃r + K̄r̃, (1)
Sc : m0ẍ0 + c0ẋ0 + k0x0 =

c1ṙ1 + k1r1 − Φ(x0, t)−m0ẍg + u, (2)
where ẍg is the absolute ground acceleration, x =
[x1, x2, . . . , x8]T ∈ R8 represents the horizontal displace-
ments of each floor with respect to the ground. The mass,
damping and stiffness of the ith storey is denoted by
mi, ci and ki, respectively, r̃ = [x0, rT]T ∈ R9 and r =
[r1, . . . , r8]T ∈ R8, represents the horizontal displacements
of the i-th floor relative to the (i − 1)-th storey. The
base isolation is described as a single degree of freedom
with horizontal displacement x0. It is assumed to exhibit
a linear behavior characterized by mass, damping and
stiffness m0, c0 and k0, respectively, plus a nonlinear be-
havior represented by a hysteretic restoring force Φ(x0, t).
The matrices M,C,K, C̄ and K̄ of the structure have the
following form

M = diag(m1,m2, . . . ,m8) ∈ R8×8,

C = diag(c1, c2, . . . , c8) ∈ R8×8,

K = diag(k1, k2, . . . , k8) ∈ R8×8,

J = [1, . . . , 1]T ∈ R8,

C̄ = (c̄ij) ∈ R8×9, c̄ij =

{
ci, i ≤ j
ci+1, j − i = 2
0, otherwise

,

K̄ = (k̄ij) ∈ R8×9, k̄ij =

{
ki, i ≤ j
ki+1, j − i = 2
0, otherwise

.

The restoring force Φ can be represented by the Bouc-
Wen model (Ikhouane et al., 2005; Ikhouane and Rodellar,
2007) in the following form:

Φ (x0, t) = αKx0 (t) + (1− α)DKz (t) (3)
ż = D−1

(
Aẋ0 − β|ẋ0||ż|n−1z − λẋ0|z|n

)
(4)

where Φ(x0, t) can be considered as the superposition of
an elastic component αKx0 and a hysteretic component
(1− α)DKz (t), in which the yield constant displacement
is D > 0 and α ∈ [0, 1] is the post- to pre-yielding stiffness
ratio. n ≥ 1 is a scalar that governs the smoothness of the
transition from elastic to plastic response and K > 0.

Finally, u is the control force supplied by an appropriate
actuator.

The model in (1)-(2) is used to design an appropriate
control law. The applicability and efficiency of the pro-
posed controller will be then shown using a more realistic
and complex model through the benchmark presented in
Section 3.

It is well accepted that the movement of the superstructure
Sr is very close to the one of a rigid body due to the base
isolation (Skinner et al., 1992). Then it is reasonable to
assume that the interstory motion of the building will be
much smaller than the relative motion of the base (Luo
et al., 2001; Pozo et al., 2008). Consequently, the following

simplified equation of motion of the base can be used in
the subsequent controller design:

S̃c : m0ẍ0 + c0ẋ0 + k0x0 = −Φ(x0, t)−m0ẍg + u. (5)

The feasibility of this simplification is justified in a more
detailed way in Pozo et al. (2008).

2.1 Controller design
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Fig. 1. Base-isolated structure with active control.

The following assumption is stated for system (3)-(5):
Assumption 1. The acceleration disturbance

f (t) = −m0ẍg

is unknown but bounded; i.e., there exists a known con-
stant F such that |f (t) | ≤ F, ∀t ≥ 0.

Assumption 1 is standard in control of hysteretic sys-
tems or base-isolated structures Ikhouane et al. (2005).
Moreover, Theorem 1 in Ikhouane et al. (2005) guarantees
the existence of a computable upper bound ρ̄z on the
internal dynamic variable z(t), i.e., |z(t)| ≤ ρ̄z, ∀t ≥ 0,
independently on the boundedness of x0(t).

Control objective: Our objective is to design a robust
controller for system (5) such that, under earthquake
attack, the trajectories of the closed-loop remain bounded.

To this end, the theorems in the following sections satisfy
this control objective.

2.2 Seismic attenuation using only velocity feedback

Theorem 1. Consider the nonlinear system (3)-(5) subject
to Assumption 1. Then, the following control law

u = −ρsgn(ẋ0) (6)
solves the control objective if

ρ ≥ (1− α)DKρ̄z + F. (7)

Proof. See Pozo et al. (2008).
Remark 1. The signum function in the control law in
Theorem 1 –common in sliding mode control theory–
produces chattering (Utkin, 1982; Edwards and Spurgeon,
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1998). One way to avoid chattering is to replace the signum
function by a smooth sigmoid-like function such as

νδ(s) =
s

|s|+ δ
,

where δ is a sufficiently small positive scalar (Edwards and
Spurgeon, 1998).

Consequently, the following Corollary is stated:
Corollary 2. Consider the nonlinear system (3)-(5) sub-
ject to Assumption 1. Then, the following control law

u = −ρ ẋ0

|ẋ0|+ δ
(8)

solves the control objective if
ρ ≥ (1− α)DKρ̄z + F

and δ is a sufficiently small positive scalar.

2.3 Seismic attenuation using only acceleration feedback

Motivated by the fact that in many civil engineering ap-
plications accelerometers are the only devices that provide
information available for feedback, Theorem 3 (below)
presents a control law based on equation (6) where only
acceleration information is required.
Theorem 3. Consider the nonlinear system (3)-(5) subject
to Assumption 1. Then, the following control law

u = −ρsgn(υ) (9)
υ̇ = ẍ0 (10)

solves the control objective if
ρ ≥ (1− α)DKρ̄z + F.

Proof. This proof is straightforward by considering direct
integration of equation (10). �

Remark 2. In the practical implementation of this control
law, ν may drift due to unmodeled dynamics, measure
errors and disturbance. To avoid this, the following σ-
modification (Ioannou and Kokotović, 1983; Koo and Kim,
1994) can be used,

u = −ρsgn(υ), (11)
υ̇ = −σν + ẍ0, (12)

where σ is a positive constant.

As in the previous Section, a smooth version of the control
law in equations (11)-(12) is considered in the following
Corollary.
Corollary 4. Consider the nonlinear system (3)-(5) sub-
ject to Assumption 1. Then, the following control law

u = −ρ υ

|υ|+ δ
(13)

υ̇ = −συ + ẍ0 (14)
solves the control objective if

ρ ≥ (1− α)DKρ̄z + F,

where σ > 0 and δ are sufficiently small positive scalar.

3. SMART BASE-ISOLATED BENCHMARK
BUILDING

The smart base-isolated benchmark building (Narasimhan
et al., 2006) is employed as an interesting and more

realistic example to further investigate the effectiveness of
the proposed design approach. This benchmark problem
is recognized by the American Society of Civil Engineers
(ASCE) Structural Control Committee as a state-of-the-
art model developed to provide a computational platform
for numerical experiments of seismic control attenuation
(Ohtori et al., 2004; Spencer and Nagarajaiah, 2003).

Fig. 2. Elevation view with devices.

The benchmark structure is an eight-storey frame building
with steel-braces, 82.4 m long and 54.3 m wide, similar
to existing buildings in Los Angeles, California. Stories
one to six have an L-shaped plan while the higher floors
have a rectangular plan. The superstructure rests on a
rigid concrete base, which is isolated from the ground
by an isolator layer, and consists of linear beam, column
and bracing elements and rigid slabs. Below the base, the
isolation layer consists of a variety of 92 isolation bearings.
The isolators are connected between the drop panels and
the footings below, as shown in Figure 2. See Figure 3 for
a representative figure of the benchmark structure.

Fig. 3. A representative figure of the benchmark structure.

4. NUMERICAL RESULTS

The results of the robust active control in equations (13)-
(14) of the benchmark problem are summarized in Tables
1 and 2, for the fault normal (FN) component and the
fault parallel (FP) components acting in two perpendic-
ular directions. The results are also compared with the
performance indices in Erkus and Johnson (2006). The
evaluation is reported in terms of the performance indices
described in the Appendix. The controlled benchmark
structure is simulated for seven earthquake ground ac-
celerations defined in the benchmark problem (Newhall,
Sylmar, El Centro, Rinaldi, Kobe, Ji-Ji and Erzinkan).
All the excitations are used at the full intensity for the
evaluation of the performance indices. The performance
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indices larger than 1 indicate that the response of the
controlled structure is bigger than that of the uncontrolled
structure. These quantities are highlighted in bold.

In this paper, the controllers are assumed to be fully active.
They are placed in eight specific locations, including the
corners and center of mass of the base. At each location,
there are two controllers –one in the x- and the other
in the y-direction. These actuators are used to apply
the active control forces to the base of the structure. In
this control strategy most of the response quantities are
reduced substantially from the uncontrolled cases.

The base and structural shears are reduced between 22
and 55% in a majority of earthquakes (except El Centro
and Ji-ji). The reduction in base displacement is between
11 and 60% in all cases except Ji-ji. Reductions in the
inter-storey drifts between 12 and 49% are achieved in
a majority of earthquakes (except Ji-ji and El Centro-
FN) when compared to the uncontrolled case. The floor
accelerations are also reduced by 8-32% in a majority of
earthquakes (except Rinaldi and Ji-ji).

The benefit of the active control strategy is the reduction
of base displacements (J3) and shears (J1, J2) of up to
50% without increase in drift (J4) or accelerations (J5).
The reduction of the peak base displacement J3 of the
base-isolated building is one of the most important criteria
during strong earthquakes. Moreover, the index J6 in the
proposed scheme reach to small values, which means that
the force generated by all control devices with respect to
the base shear of the structure is acceptable.

For the base-isolated buildings, superstructure drifts are
reduced significantly compared to the corresponding fixed-
buildings because of the isolation from the ground motion.
Hence, a controller that reduces or does not increase the
peak superstructure drift (J4), while reducing the base
displacement significantly (J3), is desirable for practical
applications (Xu et al., 2006). In this respect, the proposed
robust active controller performs well.

4.1 Time-history plots

Figures 5-7 show the time-history plots of various response
quantities for the uncontrolled building, and the building
with robust active controllers using the Erzinkan FP-x,
FN-y earthquake. Figure 4 shows the ground acceleration
for this earthquake. More precisely, Figure 5 presents the
plots for the displacement of the center of the mass of the
base in both the x and y direction. The plotted quantities
in Figure 6 are the eighth floor absolute acceleration in the
x direction and in the y direction, for both the uncontrolled
and the controlled situations. Finally, the interstory drift
between the eighth and the seventh floor in the x direction
is depicted in Figure 7. It is observed from these Figures
that the controlled response quantities can be effectively
reduced compared with the uncontrolled case.

4.2 Comparison

For comparison, the results of a linear quadratic Gaussian
(LQG) controller for the same base-isolated benchmark
structure in Erkus and Johnson (2006) are also presented
in Tables 1 and 2. This LQG controller, which is applied in

0 2 4 6 8 10 12 14 16 18 20
−5

−4

−3

−2

−1

0

1

2

3

4

5

 Ground Excitation in x (EW), y (NS) directions

Time (sec)

A
cc

el
er

at
io

n 
(m

/s
ec

2 )

x (EW) direction
y (NS) direction

Fig. 4. 1992 Erzinkan earthquake, ground acceleration:
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y-axis direction, respectively.

each active controller, is an eighth order dynamic system
requiring position measurements for its implementation.
Moreover, this LQR design is based on an iterative method
employing an equivalent lineal model (ELM) structure of
the benchmark scheme along with an augmented represen-
tation of the model which is also modified using a Kanai-
Takimi filter to shape the excitation. This procedure is
strongly dependent on the linear model and therefore, in
order to acquire a good performance, an iterative proce-
dure is asked. So, the iterative-LQR technique presented in
Erkus and Johnson (2006) is extremely complex (in archi-
tecture and computation) with respect to our controller,
which is based on just one feedback measurement (velocity
or acceleration) and it is static for the velocity feedback
case, and of one order for the acceleration feedback event.
Moreover, from Tables 1 and 2, it can be seen that the
performance indices in the proposed robust active control
case are better than in the LQG controller in almost all
earthquakes of the benchmark. The robust controller with
acceleration information feedback deserves a special at-
tention because most of the sensors installed in structures
are accelerometers. As a summary, our robust controller
that employs only acceleration information is viewed as
an important contribution.

5. CONCLUDING REMARKS

In this paper, two versions of a robust active bang-bang
type control have been developed and applied to a bench-
mark base-isolated building model. The first controller
uses the velocity at the base of the structure as feedback
information, and it has been analyzed via Lyapunov stabil-
ity techniques. The second controller is an extension of the
first one where just acceleration information is used. The
simulation results illustrate that the base and structural
shears, the base displacement, the inter-story displace-
ments and the floor accelerations have been significantly
reduced by using the proposed robust active controllers as
compared with the purely passive isolation scheme. One
of the key points of the proposed control scheme is the
simplicity of the control law. Moreover, the second version
of this robust active control is specially interesting for
practical implementations because it is based on accelera-
tion feedback.
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Table 1. Numerical results for the proposed robust active controller (RAC) (FP-x and FN-y)
and the LQG regulator of Erkus and Johnson (2006)

Earthquake Case J1 J2 J3 J4 J5 J6 J7 J8 J9

Newhall
Erkus et al. 0.902 1.070 0.949 0.869 0.734 0.341 0.926 0.818 0.190

RAC 0.644 0.687 0.696 0.674 0.734 0.473 0.755 0.727 0.052

Sylmar
Erkus et al. 0.766 0.792 0.778 0.910 1.006 0.356 0.678 0.750 0.230

RAC 0.645 0.589 0.655 0.622 0.821 0.387 0.476 0.696 0.018

El Centro
Erkus et al. 0.960 1.029 0.941 0.944 0.830 0.385 0.882 0.919 0.168

RAC 0.949 1.073 0.602 0.737 0.766 0.321 0.983 0.700 0.208

Rinaldi
Erkus et al. 0.857 0.841 1.010 0.949 0.848 0.298 0.909 0.849 0.234

RAC 0.687 0.668 0.895 0.840 0.978 0.323 1.030 0.827 0.125

Kobe
Erkus et al. 0.846 0.869 0.812 0.899 0.939 0.327 0.918 0.864 0.129

RAC 0.729 0.780 0.638 0.884 0.924 0.225 0.767 0.794 0.148

Ji-ji
Erkus et al. 0.741 0.736 0.989 0.907 0.826 0.329 1.025 0.740 0.277

RAC 1.017 1.020 0.941 1.005 0.996 0.086 0.948 0.893 0.239

Erzinkan
Erkus et al. 0.821 0.804 0.797 0.906 0.768 0.290 0.711 0.728 0.247

RAC 0.443 0.493 0.424 0.613 0.818 0.668 0.437 0.817 0.232

Table 2. Numerical results for the proposed robust active controller (RAC) (FP-y and FN-x)
and the LQG regulator of Erkus and Johnson (2006)

Earthquake Case J1 J2 J3 J4 J5 J6 J7 J8 J9

Newhall
Erkus et al. 0.902 1.070 0.949 0.869 0.734 0.341 0.926 0.818 0.190

RAC 0.584 0.630 0.771 0.615 0.691 0.508 0.870 0.659 0.053

Sylmar
Erkus et al. 0.766 0.792 0.778 0.910 1.006 0.356 0.678 0.750 0.230

RAC 0.651 0.576 0.619 0.698 0.847 0.376 0.437 0.693 0.009

El Centro
Erkus et al. 0.960 1.029 0.941 0.944 0.830 0.385 0.882 0.919 0.168

RAC 0.825 1.000 0.704 0.949 0.807 0.342 1.065 0.703 0.202

Rinaldi
Erkus et al. 0.857 0.841 1.010 0.949 0.848 0.298 0.909 0.849 0.234

RAC 0.693 0.643 0.858 0.740 0.985 0.317 0.962 0.791 0.110

Kobe
Erkus et al. 0.846 0.869 0.812 0.899 0.939 0.327 0.918 0.864 0.129

RAC 0.759 0.721 0.602 0.812 0.767 0.216 0.741 0.826 0.116

Ji-ji
Erkus et al. 0.741 0.736 0.989 0.907 0.826 0.329 1.025 0.740 0.277

RAC 1.036 1.035 0.943 1.018 1.010 0.083 0.959 0.876 0.235

Erzinkan
Erkus et al. 0.821 0.804 0.797 0.906 0.768 0.290 0.711 0.728 0.247

RAC 0.506 0.456 0.398 0.510 0.635 0.574 0.360 0.644 0.257
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