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Abstract: In this paper an algorithm for robust stability analysis of linear systems with parametric uncertainty is 
presented. The algorithm is based on multivariate interpolation-evaluation methods and fast Fourier transform used for 
computing determinant of a multivariate polynomial matrix. Positivity of a multivariate polynomial on a 
hyperrectangle is tested by Bernstein algorithm. The high efficiency of the proposed algorithm is demonstrated on 
automatic steering control of Daimler Benz city bus – an 8-th order closed-loop system with two uncertain parameters. 

 

1. INTRODUCTION 

Robust stability of polynomials with parametric uncertainty 
is intensively studied since the celebrated Kharitonov 
theorem (Kharitonov, 1978) has been published. Kharitonov 
solves the robust stability problem for interval continuous-
time polynomials. The same problem for polynomials with 
parametric uncertainty of affine structure is solved by the 
Edge theorem (Bartlett et al., 1988) that states that it is 
sufficient to check stability of polynomials lying on exposed 
edges. Mapping theorem (Zadeh and Desoer, 1963) shows 
that the non-convex value set of multilinear interval 
polynomials is contained in the convex polygon given by its 
vertices.  

To date there are only few results solving the problem of 
robust stability of polynomials with polynomic structure of 
coefficients (polynomic interval polynomials). There are two 
basic approaches – algebraic and geometric. The first one is 
based on utilization of criteria commonly used for stability 
analysis of fixed polynomials – Hurwitz or Routh criterion – 
and their generalization for uncertain polynomials. The 
second one transforms the multidimensional problem in 
twodimensional test of frequency plot of the closed-loop 
polynomial using zero exclusion principle. Such algorithm is 
used in (Zettler and Garloff, 1998). In this paper the attention 
will be focused on algebraic approach and its improvement.  

To be able to perform Hurwitz stability test we have to 
compute determinant of Hurwitz matrix and test its positivity. 
For systems with polynomic dependency of the coefficients 
of characteristic polynomials on system parameters Hurwitz 
matrix turns into multivariate polynomial matrix. 
Computation of its determinant is usually performed by 
generalization of the procedure used for constant matrices – 
triangularization and subsequent multiplication of the 
elements on the main diagonal or by symbolic computations. 
The drawback of both methods consists in their low 
efficiency. Even for systems of moderate order or number of 
parameters the computational time goes to the tenths of 
seconds. The presented algorithm reduces the computational 
time dramatically.  

 

2. PROBLEM STATEMENT 

A family of continuous-time polynomials is considered, 
where the coefficients are polynomic functions of an interval 
parameter , i.e. the corresponding family P can 
be expressed in the following form: 

lQ ℜ⊂∈q
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is a multidimensional interval parameter. 

Each coefficient aj(q), j=0,...,n is supposed to be a polynomic 
function of q. Such a family is referred to as a polynomic 
interval polynomial. Our task is to determine if the 
polynomic interval polynomial (1) is robustly stable, i.e. 
whether each member of the family is asymptotically stable.  

3. HURWITZ STABILITY CRITERION 

The well-known Hurwitz criterion for stability test of a fixed 
polynomial is also applicable in robust stability analysis. 

For an uncertain polynomial (1) of degree n the nn×  array 
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is called the Hurwitz matrix associated with p(s,q). 

Then the family of polynomials (1) is stable if and only if  

a) there exists a stable polynomial p(s,q)∈P, 

b) .   Qn ∈≠ qqH  allfor   0)(det

Since all the coefficients aj(q), nj ,,0 …=  of polynomial (1) 
are continuous functions the condition b) is equivalent to 
testing positivity (or negativity) of the determinant of 

on the set Q.  )(qHn

4. DETERMINANT OF MULTIVARIATE POLYNOMIAL 
MATRIX 

In order to be able to use Hurwitz stability criterion the 
determinant of multivariate polynomial matrix has to be 
determined. For small or moderate number of parameters this 
can be performed using symbolic computations but for more 
extensive problems with higher number of parameters and/or 
higher order of uncertain polynomial this method is not 
effective. In this section new algorithm for computing 
determinant of multivariate polynomic matrix is presented. 
The procedure is based on interpolation techniques (Bini and 
Pan, 1994). 

First of all it will be shown that an l-variate polynomial can 
be uniquely represented by its values in appropriately chosen 
N interpolation points (l-tuples) and all its coefficients can be 
recovered from these two sets. 

Let p be an l-variate polynomial 
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where di, i=1,...,l are degrees of p in variable qi. The 
polynomial (4) can be expressed as 
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where , i( , , )

li
p q q −1 … l=0,...,dl are some (l-1)-variate 

polynomials. Let us suppose that ωl is a primitive (dl+1)-th 
root of 1 and the values of p(q1,...,ql) are known for some 
fixed (l-1)-tuple (q1,...,ql-1) = (s1,...,sl-1) where si, i=1,...,l-1 are 

complex scalars, and for all , h=0,...,dh
lq = ω l. Then using 

the inverse fast Fourier transform (FFT) algorithm all the 
values of the (l-1)-variate polynomials , 
i

( , , )
li lp q q −1 1…

l=0,...,dl in the point (s1,...,sl-1) can be recovered. This step 
can be repeated for any point ((l-1)-tuple) (s1,...,sl-1).  

Any of the (l-1)-variate polynomials , 
i

( , , )
li lp q q −1 1…

l=0,...,dl can be written as 
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where , i( , , )

l li i lp q q
− −1 1 … l-1=0,...,dl-1, il=0,...,dl are some (l-2)-

variate polynomials. Let us again suppose that ωl-1 is a 
primitive (dl-1+1)-th root of 1 and the values of 

, i( , , )
li

p q q −1 … l=0,...,dl are known for some fixed (l-2)-

tuple (q1,...,ql-2) = (s1,...,sl-2) where si, i=1,...,l-2 are complex 
scalars, and for all h

l lq − −= ω1 1

2

, h=0,...,dl-1. These values can 
be determined using previous step of this algorithm. Then 
again using the inverse FFT algorithm all the values of the (l-
2)-variate polynomials , i( , , )

l li i lp q q
− −1 1 … l-1=0,...,dl-1, 

il=0,...,dl in the point (s1,...,sl-2) can be recovered. This step 
can be repeated for any point ((l-2)-tuple) (s1,...,sl-2). 
Repeating this procedure one arrives in the last but one step. 
Any of the bivariate polynomials , i( , )

li i ip q q
3 4 1 2… j=0,...,dj, 

j=3,...,l can be written as 
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where , i( )

li i ip q
2 4 1… j=0,...,dj, j=2,...,l are some univariate 

polynomials. Let us again suppose that ω2 is a primitive 
(d2+1)-th root of 1 and the values of , i( , )

li i ip q q
3 4 1 2… j=0,...,dj, 

j=2,...,l are known for some fixed point (scalar) q1=s1 and for 
all hq = ω2 2

l…

, h=0,...,d2. These values can be determined using 
previous steps of this algorithm. Then using the inverse FFT 
algorithm all the values of the univariate polynomials 

, i( )
li i ip q

2 3 1… j=0,...,dj, j=2,...,l  in the point s1 can be 
recovered. This procedure can be repeated for any point s1. 

Finally, the last step can be performed. Each of the univariate 
polynomials , i( )

li i ip q
2 3 1… j=0,...,dj, j=2,...,l can be expressed 

as 
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where , i
li ic

1… j=0,...,dj, j=1,...,l are the coefficients of the 

original l-variate polynomial (4). Suppose that ω1 is a 
primitive (d1+1)-th root of 1 and the values of , 

i

( )
li i ip q

2 3 1…

j=0,...,dj, j=2,...,l are known for all , h=0,...,dhq = ω1 1

)+

j

1. These 
values can be determined using previous steps of this 
algorithm. Then using the inverse FFT algorithm all the 
coefficients , i

li ic
1… j=0,...,dj, j=1,...,l can be determined. 

The described procedure proves that an l-variate polynomial 
can be uniquely determined by its values given in 

 distinct interpolation points (l-tuples). 

Moreover, if the interpolation l-tuples (s

(l
jj

N d
=

= ∏ 1
1

1,...,sl) are chosen as 
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where ωj, j=1,...,l are primitive (dj+1)-th roots of 1, then the 
coefficients , i

li ic
1… j=0,...,dj, j=1,...,l of (4) can be determined 

by ( )-multiple using of inverse FFT algorithm. l
jj

d l
=

+∑ 1

In order to evaluate an l-variate polynomial (4) in the 
prescribed set of interpolation points (9) the forward FFT 
algorithm is used. One can run the above mentioned 
procedure in the reverse order. At first the univariate 
polynomials 
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are evaluated at d1 scalar Fourier points  (ωhq = ω1 1 is a 
primitive (d1+1)-th root of 1), h=0,...,d1, using forward FFT 
algorithm. Then the bivariate polynomials 

 
( , ) ( ) ( )

( )

, , ,   , ,

l l l

l

i i i i i i i i i

d
d i i i

j j

p q q p q q p q

q p q

i d j l

= + +

+

= =

3 4 3 4 3 4

2

2 3 4

1 2 0 1 2 1 1

2 1

0 3

… … …

…

… …

 (11) 

 
are evaluated at (d1+1)*(d2+1) Fourier points (pairs) (q1,q2), 

 and  (ωhq = ω 1
1 1

hq = ω 2
2 2 2 is a primitive (d2+1)-th root of 1), 

h1=0,...,d1, h2=0,...,d2 using forward FFT algorithm and the 
values computed in the previous step. The last but one step of 
the procedure consists in evaluation of (l-1)-variate 
polynomials 
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at (l
jj

d−

=
+∏ 1

1
1  Fourier points ((l-1)-tuples) (q1,...,ql-1), 

jh
j jq = ω  (ωl-1 is a primitive (dl-1+1)-th root of 1), hj=0,...,dj, 

j=1,...,l-1 using forward FFT algorithm and all the values 
computed in all the previous steps. Finally, the original 
polynomial (4) is evaluated at  Fourier points 

(l-tuples) (q

(l
jj

d
=

+∏ 1
1)

1,...,ql), jh
j jq = ω  (ωl is a primitive (dl+1)-th root 

of 1), hj=0,...,dj, j=1,...,l using FFT algorithm and all the 
values computed in all the previous steps. 

Now the algorithm computing the determinant of multivariate 
polynomial matrix using evaluation-interpolation techniques 
can be described. 

Let A(q) be an )( nn×  multivariate polynomial matrix, 
( , , )lq q=q 1 … . The task is to compute the coefficients of its 

determinant 
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At first the highest degrees iδ , i = 1,...l of all variables of the 
resulted determinant has to be estimated (or at least their 
lowest possible values). One can for example take 
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i.e., iδ , i = 1,...l, are taken as the sum of column degrees of 
corresponding variables (the highest degree of each variable 
appearing in the column). 

Let ωi denote a primitive ( iδ +1)-th root of 1, i = 1,...,l. Then 
the whole procedure consists of three steps: 

1. evaluate the matrix A(q) in the  Fourier 

points (l-tuples) , 

(∏ = += l
i iN 1 1δ )
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1
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(by means of multiple application of forward FFT 
algorithm), 

2. compute the values of determinant of A(q) in those N 
complex interpolation points (l-tuples): 

 for   ),,,(det),,( 11
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ll k
l
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l

kc ωωωω …… A=
 ,,,0 iik δ…= li ,,1…= , 

3. recover all the coefficients of the determinant c(q) of A(q) 
from the set of its values  by applying the 

multiple inverse FFT algorithm on the  

Fourier l-tuples ,
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This procedure is applied to compute the Hurwitz 
determinant (3). The complexity bound of the presented 
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procedure is  This is a 
considerable improvement to the straightforward algorithm 
with numerical complexity . 

.  ),logloglog( 222
lmNmNNO =

)( 2NO

In order to test positivity of determinant of Hurwitz matrix 
determined by the algorithm mentioned above on the 
uncertainty set the algorithm of Bernstein expansion is used. 
The Bernstein form of a polynomial is well-known for a long 
time but its generalization to multivariate case is quite recent 
The first application to the range of bivariate polynomials 
was given by Garloff in (Garloff, 1985). The generalization 
to multivariate case is proposed in (Garloff, 1993). Some 
improvements of the original algorithm are in (Garloff et al., 
1997) and (Zettler and Garloff, 1998) where also more details 
can be found. Using iterative sweep procedure the algorithm 
is able to determine lower and upper bound of a multivariate 
polynomial on a hyperrectangle. Here the basic algorithm of 
Bernstein expansion will be described. 

5.  BERNSTEIN EXPANSION 

Define a multi-index I as an ordered l-tuple of nonnegative 
integers (i1,…,il) and for q=(q1,…,ql)∈ℜl set 

. Write I≤N if N=(nli
l

ii qqq ⋅⋅⋅= 21
21

Iq 1,…,nl) and if 0≤ ik 
≤nk, k = 1,…,l. Further, let S = {I : I ≤ N}. 

Consider a polynomial 
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The univariate i-th Bernstein polynomial of degree n is 
defined as 
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for an arbitrary q∈ℜ. In the multivariate case, the I-th 
Bernstein polynomial of degree N is defined by 
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Without loss of generality consider the unit box U=[0,1]l, 
since any nonempty box of ℜl can be mapped affinely onto 
this box. 

The transformation of a polynomial into its Bernstein form 
results in 
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where the Bernstein coefficicents bI(U) of w over U are given 
by 

 

( ) SwUb ∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= ∑
≤

I

J
N
J
I

IJ
JI    , . (19) 

 
Denote by S0 a special subset of the index set S comprising 
those indices which correspond to the indices of the vertices 
of the array bI(U), i.e.  

 
{ } { }lnnS ,0,0 10 ××= . (20) 

 
The corresponding Bernstein coefficients bI(U), I∈S0 are 
called sharp ones.  

Let us list some useful properties of the Bernstein 
coefficients: 

 
( ) SUB ∈∈∀≥ IqqIN ,  0,  (21) 

( ) l

S

B ℜ∈∀=∑
∈

qq
I

IN   1,  (22) 

( ) ( ) 0  / SwUb ∈∀= INII  (23) 
( )( ){ } ( )( ){ }SUbConvUwConv ∈⊆∈ INIqqq I ;,/;, . (24) 

 
The following statements are the consequence of (21)-(24). If 
the minimum of the Bernstein coefficients bI(U), I∈S is 
positive, the w(q) is positive on U. If the maximum of the 
Bernstein coefficients bI(U), I∈S is negative, the w(q) is 
negative on U. If there exists a nonpositive sharp Bernstein 
coefficient , I)(

0
UbI 0∈S0, the polynomial w(q) is not 

positive on U, if there exists a nonnegative sharp Bernstein 
coefficient , I)(

0
UbI 0∈S0, the polynomial w(q) is not 

negative on U. In other case it is necessary to test positivity 
of w(q) computing Bernstein coefficients on new regions by 
using the Sweep procedure. 

5.1 Sweep procedure 

Let D be any subbox of U generated by sweep operations (at 
the beginning D=U, then subsequently D is obtained by 
successively dividing). Define a sweep in the r-th direction 
( lr ≤≤1 ) as recursively applied linear interpolation. 
Starting with B(0)(D)=B(D) set for k=1,…,nr the following 
equation: 
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for ij = 0,…,nj and j = 1,...,r-1,r+1,…,l. 

Then the Bernstein coefficients on D0, where the subbox D0 
is given by 
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are obtained as ( ) ( ) ( ).0 DBDB rn=  The Bernstein 
coefficients B(D1) on the subbox D1 given by 
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The sweep procedure is repeated as long as positivity, 
negativity, nonpositivity or nonnegativity of w(q) is proved 
for all the subregions of U or such two subregions are found 
that on one of them the tested polynomial is positive and on 
another of them is negative. 

The presented algorithm was used to verify robust stability of 
automatic steering control of  the Daimler Benz city bus. 

6. EXAMPLE 

The Daimler-Benz city bus is an example of automatic car 
steering system (Ackermann, 1993). A guiding wire in the 
street may play the role of the planned path. The magnetic 
field from the guiding wire is measured by a sensor at the 
front end of the vehicle in order to determine the lateral 
deviation from the guiding wire. The reference trajectory may 
also be calculated from the data of a TV camera. The 
deviation is kept small by feedback control via the steering 
motors. 

In the example two-wheel car steering (2WS) is considered. 
It means that the reference trajectory is kept small only by 
front wheel steering, the rear wheel angle remains constant. 
The pair of wheels is steered by the same angle. It is 
supposed that the front wheel steering angle is generated by 
an integrating actuator. 

The transfer function of the uncontrolled bus from the front 
wheel angle [rad] to the measured displacement from the 
guiding wire y [m] obtained by linearization yields 

f∆
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where m [kg] is the mass of the bus and v [m/s] is its velocity. 
The mass of the bus and the velocity are considered as 
uncertain parameters of the system with the values lying 
inside the intervals m∈ [9950,32000] and v∈[1,20]. 

In (Muench, 1996) the constant controller with the transfer 
function R(s) was designed:  
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The controller (7) with the uncontrolled bus (6) leads to the 
closed-loop polynomial of the 8-th order 
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with both uncertain parameters entering quadratically to the 
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5

4 503 10

5 253 10 3 625 10

5 699 10 1 128 10 4 299 10

6 908 10 9 062 10 4 203 10

1 448 10 1 680 10 3 363 10

1 563 10 8 315

( )

( )
( )

. .
, . .

. .
, .

, .

mv

mv
a m v m v mv

mv
a m v m v mv

a m v m v

+ ⋅ + ⋅

= ⋅ + ⋅

+ ⋅ + ⋅

= + ⋅

=

5 2

9 13

3 2 2 4 2
6

7 11

2 2 6
7

2 2
8

10

1 344 10 1 345 10
1 25 10 1 663 10

5 376 10 2 690 10
50 1 075 10

(32) 

 
The question is whether the controller (30) stabilizes the bus 
for all admissible values of the mass m and velocity v, i.e., 
whether the closed-loop polynomial (31) is robustly Hurwitz 
stable. 

The determinant of the 8-th order Hurwitz matrix was 
computed using the presented algorithm based on evaluation-
interpolation techniques in less than 0.01s. The determinant 
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ii
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contains 225 nonzero coefficients, about one third of them is 
negative. 

The Bernstein algorithm reports after 1 sweep in less than 
0.01s that the determinant  is positive on the given 
uncertainty set. The obtained result corresponds with result 
reported in (Ackermann, 1993) achieved in 11s using 
symbolic packages for determination of the Hurwitz 
determinant. All the computations were performed on a 
Pentium 4 CPU 3GHz 504MB RAM. 

),( vmc

7. CONCLUSIONS 

An improved algorithm for robust stability analysis of 
systems with polynomic parameter uncertainty is presented in 
this paper. The proposed method is based on Hurwitz 
stability criterion. The main step consisting in computing 
determinant of multivariate polynomial matrix was 
performed by very efficient and numerically reliable 
algorithm based on interpolation methods. Positivity of the 
determinant of Hurwitz matrix is tested by Bernstein 
algorithm. The proposed algorithm was used to verify robust 
stability of automatic steering control of Daimler Benz city 
bus. 
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