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Abstract: Driver loss of vigilance is an important cause of road fatalities. The improvement of 

technologies makes now possible the implementation of in-vehicle driver monitoring systems 

assessing in real time the evolution of the driver state. Within this paper a Driver Vigilance 

Monitoring (DVM) system developed by Continental Automotive is described. This system includes a 

compact CMOS camera for observing the driver eyelid movements and a set of algorithms for 

analyzing in real time the image provided by the camera, to classify this information and at last to 

provide drowsiness diagnostic.  
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1  INTRODUCTION 

Tiredness is one of the major causes of fatal accidents on 

highways. This risk is particularly great owing to the 

sudden, extreme tiredness afflicting drivers, who are on the 

road at night, and who drive uniformly and monotonously. 

Since the 70’ extensive research has been carried out to 

develop on board systems able to measure and to detect 

degradation of the driver’s vigilance and then to inform 

him in case of critical situation. In the 70’ and 80’ 

researchers were mainly looking to driver behavior i.e. 

steering wheel and pedal movements. In the mid 90’ 

carried by the strong improvement of vision based 

technologies a focus has been brought to driver’s face 

analysis and more specifically to on-line analysis of eyelid 

movements.   

Within the EU programs SAVE (SAVE 1996) and 

AWAKE (AWAKE 2000) Continental Automotive 

(formerly Siemens VDO Automotive) developed a first real 

time vision based prototype called EyeLid Sensor (ELS). 

The ELS prototype used a costly CCD camera to 

automatically detect and measure the driver's blink 

parameters and to provide a first ruled based drowsiness 

diagnosis (Boverie et al. 2002). Most recently, Continental 

Automotive has developed a complete Driver Vigilance 

Monitoring (DVM) function which uses a compact camera 

including a low cost CMOS sensor compatible with 

automotive constraints. A fuzzy based drowsiness 

diagnostic has been developped so to deal with the 

variability of the blinking behaviors. 

This function has been implemented in a vehicle and tested 

in real driving conditions. 

The aim of this paper is to present the main results of this 

development. In section 2 a brief system overview is given. 

Then in section 3 and 4 the image processing, feature 

extraction and diagnostic algorithms are depicted. At last in 

section 5 the experimental equipment of the test vehicle as 

well as some results are presented and commented. 

2 System overview 

DVM is a monocular vision system which includes a 

CMOS camera and a set of pulsed Near Infrared (NIR) 

LEDs (invisible light) integrated in the same packaging. A 

set of algorithms implemented in a distant processing unit 

analyze in real time the image flow provided by the camera 

to extract information about the driver's eyelid and blink 

patterns and to provide vigilance diagnostic. The system is 

fully automatic and works by night and day taking into 

account that drowsiness is not just a night-time 

phenomenon and is also likely to occur during the morning 

or the afternoon. It provides multi-level information in 

relation with the evolution of the driver state. Various 

warning strategies combining acoustic visual and haptic 

modalities can then be foreseen.  

The general architecture of the DVM is given in Figure 1. 
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Figure 1: Architecture of the DVM  

The camera (see Figure 2) is integrated into the instrument 

cluster. The lens is defined to provide a field of view that 

covers 95% driver's eyellipse. The lens is equiped with a 

cut visible light filter to increase the ratio of the light 

received by the sensor coming from the NIR leds to the 

received sun light. The main characteristics of the CMOS 

sensor are the following: 

o a low cost compatible with mass car production  

o a sampling frequency of about 50Hz full image (SW 

driven), 
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o High resolution 750 (H) x 480 (V). 

o  a low consumption,  

o a global shutter for the synchronization of the camera 

acquisition with the NIR pulsed lights. 

 

Figure 2: CMOS sensor with integrated Near Infrared light 

units  

3 Eyelid sensing and feature extraction 

algorithms  

The Eyelid sensing algorithms are feature based, meaning 

that small characteristics regions of the images are used to 

locate the face and eyes. Such approach allows robust eye 

detection, in real time, by reducing the image analysis to 

the feature regions. In counter part it requires an accurate 

localization of a minimal set of features including the eye 

corners, the corner of the mouth and the eyebrows The 

algorithms can be divided into three main modules (see 

Figure 3) 

o The initialization detects the face and eyes and 

initializes the features Figure 3 shows the image of the 

driver's face taken by the sensor. The overlaid blue 

rectangles indicate the position of the selected features 

by the initialization module 

o The face tracker tracks at frame rate the features  

o The facial measurements module uses the position of 

the tracked features to determine the upper and lower 

eyelid and measure eyelid patterns (blink duration, 

closing and opening durations, blink amplitude). The 

"eye opening, blink duration" graphic of Figure 3 

shows a sample signal of left and right eye opening. 

Blinks are characterized by a "V" or "\__/" shape like 

pattern. 
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Figure 3: Eyelid sensing algorithm architecture 

3.1 The initialization phase  

The initialization aims to detect the driver's face and eyes. 

It scans the overall image till it detects the different 

features. This includes symbolic features (eye corners, 

mouth corners) and natural features (small regions on the 

eyebrows and on other non identified part of the face). The 

initialization can last some hundred of ms (on a Pentium 4 

2 Ghz) depending on the characteristics of the driver's face 

(head position, contrast, etc.). The accuracy of the feature 

localization impacts drastically on the performance of the 

overall application. The initialization is automatically 

restarted if the global system confidence rate is too low 

during a given duration.  

3.2 The Feature tracking  

The tracking is launched once the initialization is 

completed. Tracking focuses on locating the features in 

small area around by using geometrically constrained 

Kalman filter (use of geometric relations between natural 

features). By that mean real time consraints are achieved. If 

the tracking process cannot locate the features anymore 

because of a major head movement or an occlusion a phase 

of recovery is launched.   

3.3 Face recovery 

The face recovery aims to locate the features after the 

tracking was lost. It scans the overall image. During the 

recovery phase no measurement is available.  

3.4 The Eye opening measurement 

The eye opening is the height difference between the upper 

and lower eyelid. The position of the eye corners provides a 

reduced search area of the eye enabling robust estimation 

of eyelid position. Upper eyelid is modelled as a 2
nd

 degree 

curve on the eye edge image. Lower eyelid is modelled as a 

line on the eye edge image.  

3.5 The Blink detection and classification 

3.5.1 Blink characteristic parameters 

A typical spontaneous blink for an alert person presents 3 

phases (see Figure 4). 

o a closing phase (the eyelid goes down),  

o a closed phase (the eye is shut),  

o an opening phase (the eyelid goes up).  
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Figure 4: Typical shape of blinks 

The closing phase of a normal blink is shorter and faster 

than the opening phase; it takes about 60 ms with a 

maximum velocity of approximately 350mm/sec. The 

opening phase takes about 120 ms with a maximum 

velocity of 150mm/s. The maximum velocity and durations 

of eyelid closing and opening do not depend on the starting 

lid position. A typical blink duration of an alert driver is 

around 200 ms. Drowsy drivers exhibit long blinks 

(typically above 300 ms) while driver getting sleepy can 

exhibit very long blink (typically above 600 ms). 

The blink amplitude of an alert person, with eyes wide 

open, is characterized by a maximum value of 10 mm. The 

amplitude can be much lower for some eyes morpholoy or 

also during day driving conditions when the driver closes 

partly his/her eyes to reduce the light input.  
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3.5.2 Blink detection  

The objective of the blink detection algorithm is to detect 

the blinks to measure their durations and of course to reject 

artifacts as looking at dashboard patterns.  

The blink detection process looks for specific patterns 

within the given eyelid signals. The Opening signal is first 

processed to determine an open eye reference (base line). A 

transition from the upper part of the base line to the lower 

part is then considered as a start of the closing phase of a 

potential blink. Finally various shape criterias are applied 

to decide if a potential blink is a blink. The following main 

criterias are applied: 

Steepness of the closing and opening phase: Each phase 

must last at least 3 samples. 

Minimal blink duration: A blink is rejected if its duration 

is lower a given threshold (in ms). 

Maximal blink duration. To take into account as much as 

possible very long eye closure the maximal duration is set 

to a max threshold.  

A minimal and maximal Amplitude: of respectively 5 

pixels and 20 pixels are considered. 

Symmetry: The test of Symmetry compares the opening 

values of the eyelids at the beginning, the end and for the 

minimum of the blink signal. The blink is rejected if the 

ratio of the higher edge of the blink and the lower edge is 

higher than a fixed threshold (typ. value is 20%;  

Figure 5). 

 

Figure 5: Results for the test of symmetry 

3.5.3 Blink duration measurement 

The usual measure of a blink is done at 90% of the 

maximal opening. Such a 

measure is very noise 

dependant. A more precise 

measurement is obtained for 

amplitudes corresponding to 

the steeper part of the opening 

and closing.. This corresponds 

to more or less 40% of the 

amplitude ( 

Figure 6). 

Figure 6: Measurement of the blink duration 

Figure 7 shows left and right eye opening of a drowsy 

driver. The duration of the detected blinks is indicated in 

milliseconds below each detected blink. The driver exhibit 

3 short blinks (149ms, 159ms and 178ms) 3 long blinks 

(322ms, 328ms and 536ms) and 1 very long blinks (854 

ms). 

 

 

Figure 7: Eyelid opening curve of a drowsy driver 

3.5.4 Blink classification 

The objective of the blink classification is to sort out blinks 

into several classes. 4 classes have been determined 

experimentally: Short Blinks, Long Blinks, Very Long 

Blinks and Sleepy blinks (see  

Figure 8). Each class is related with a drowsiness state: 

short blinks are related with an alert state, long blinks with 

a slightly drowsy state, very long with a drowsy state while 

sleepy blinks are related with sleep onset. To take into 

account uncertainties as well as drivers’ inter and intra 

variability Fuzzy subsets have been used to describe these 

classes. Then, depending on its duration, a blink can be 

simultaneously classified in two different and adjacent 

classes except in the case of the Sleepy blinks.  

Blink duration in ms

membership 

degree short long very  long

Blink duration classes

Sleepy Blink

0

1

 

Figure 8: Blink duration classification 

The degree of membership [0, 1] is describing how much a 

blink belongs to a class. Then each detected and validated 

blink is associated to a dim (4, 1) vector, which 

components are representing its degree of membership to 

each of the class: 
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It should also be noticed that when 

01 ==== VLLSSB then µµµµ or 00 =≠ SBVLLS thenoror µµµµ  

3.5.4.1 Estimation of the blink confidence rate 

For each detected blink a measurement confidence is 

estimated. It depends on the quality factor of the eyelid 

opening assessed in real time for each new image delivered 

by the sensor. The following criteria are considered to 

determine a  

o Contour quality (mainly based on the contrasts of the 

contours) 

o Confidence level in the eye corner tracking 

o Geometrical data (for example the matching between 

an eyelid edge and a parabola shape). 
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Each of these criteria provides a score. and all the scores 

are aggregated thanks to a weighted average. The weights 

are related to the importance of the criterion. The Blink 

Confidence rate is the average of the opening quality factor 

for all measurements during a given blink. 

N

factorqualityOpening

rateConfidenceBlink

N

i

i∑
== 1

 
blinktheduringtsmeasuremenofnumberN =  

[ ]1,0∈rateConfidenceBlink  

 

Figure 9: Opening signal 

Figure 9 gives an example of the opening quality signal. 

This picture displays for left eye (top) and right eye 

(bottom) the eyelid opening signal (in white), the opening 

quality of the signal (in yellow). The red bar indicates that 

a blink has been detected and the green bar indicates that 

the blink has been validated according to the blink 

confidence rate. In addition the duration of each blink is 

written in white below the blink signals. 

4 Diagnostic.  

4.1 State of the art 

The PERCLOS diagnostic has been developed a few years 

ago by Wierville (1999). It is the most popular measure of 

drowsiness. PERCLOS measures the proportion of time 

over 1 or 3 minutes where the eyes are 70 or 80 % closed. 

However the reliability of PERCLOS in real driving 

conditions is questionable. In fact PERCLOS is a function 

of two parameters: blink duration and blink frequency. 

Blink rate differs a lot from one driver to another. Tests 

performed within SAVE project (1996) have shown an 

important disparity. One of the drivers blinked 54 times in 

a minute, while another only 3 times. Besides, blink 

frequency is modified by some external conditions, like 

heat, brightness, humidity.  

N. Galley et al. (2002) performed a wide study on different 

oculomotor parameters. He concluded that besides blink 

duration other parameters, like delay of reopening, speed of 

eyelid opening and closure and blink interval are at some 

degree indicator of drowsiness.  

(Johns W.et al., 2005) focused their work on  lid closure 

and opening velocities and more specifically the peak 

velocities They  conclude that sleepiness is associated with 

reduced lid closing and opening speed). The main 

drawback of these parameters is the inter-subject 

variability. 

The AVRBs proposed by Johns W (2002) estimates the 

amplitude/peak closure velocity ratio of blinks. (Hargutt et 

al 2000) found that the blink velocity and the blink 

amplitude are strongly and linearly correlated for alert 

subjects. They stated that there is a control process that 

strives to maintain constant this ratio. Furthermore it has 

been observed that the AVRBs ratio is changing from alert 

subjects to drowsy subjects.  

Most of these parameters require a high sampling rate and 

resolution. Thus they cannot be measured by the Eyelid 

sensor. The Blink rate and Blink interval are affected by 

other factors depending on the driving situation, 

environmental conditions (sun light) on the emotional state 

and stress 

For these reasons the DVM diagnosis is based on blink 

duration. This parameter is a strong drowsiness indicator, 

robust to driver inter variability and measurable with a low 

frequency camera. 

4.2 Fuzzy based diagnostic 

Based on these conclusions, a specific diagnostic algorithm 

has been developed (Boverie et al.2005) Four different 

classes are used to describe the driver vigilance level: Alert 

(A), Slightly Drowsy (SD), Drowsy (D), Sleepy (S). They have 

been selected in accordance with physiologist expertise but 

also with the agreement of ergonomic engineers in order to 

take care about the Driver understanding and acceptance. 

Obviously the transition from one class to another is not 

crisp. Then the different classes can be described by fuzzy 

subsets. The vigilance diagnostic is calculated on a time 

sliding window ∆T and is updated when a new blink 

occurs.  

Basically this diagnostic depends on the number of blinks 

of each category (Short, Long, Very Long, Sleepy Blink) 

that can be observed on this time window. For example for 

the Drowsy state it depends on the number of Long and/or 

Very Long blinks, while for the Sleepy state it only depends 

on the number of Sleepy blinks. It should be noticed that 

the Short blinks are not used for the diagnostic because 

their number is highly variable from one driver to another. 

Short blinks are only used for the calculation of the 

confidence level.  

Nevertheless, instead of directly using the number of 

blinks, the sum of the membership degrees to each blink 

class of all blinks detected over the time windows is  used 

as inputs of the vigilance diagnostic. In that way it is 

possible to preserve the progressiveness of the fuzzy 

information and also to cope with incertitude and inter and 

intra drivers’ variability all along the process. For example 

if 4 Long blinks are detected on the window ∆T, with each 

of one a membership degree equal to 1, the vigilance state 

will be Drowsy with a membership degree of 1. The results 

will be the same with 5 Long blinks with for each a 

membership degree equal to 0.8.  

The values of the sum of the membership degrees of the 

Long blinks, ΣLong, are fuzzified in 3 fuzzy subsets: Small, 

Medium, and Large. 

Those of the Very Long blinks, ΣVeryLong, are fuzzified in 

2 fuzzy subsets Small and Large.  

The reasoning rules are directly deduced from the 

physiologist expertise. Only a few rules are used: 
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DrowsyisStateThen

eLisVeryLongoreLisLongIfRule

DrowsySlightlyisStateThen

SmallisVeryLongandMediumisLongIfRule

AlertisStateThen

SmallisVeryLongandSmallisLongIfRule

ectednotif

SleepyisStateThen

ectedBlinkSleepyIfRule

argarg:3

:2

:1

det

det:0

ΣΣ

ΣΣ

ΣΣ
 

A representation of the core 

of the vigilance subsets is 

given in Figure 10. It is 

assumed that there are a 

minimum number of blinks 

(N) on the window; 

otherwise, the current 

diagnostic is not validated. In 

that case, no diagnostic is 

delivered.  

Figure 10: Representation of the core of the vigilance 

subsets  

In addition, a "Diagnostic Confidence Level" is calculated 

for each vigilance class. This confidence level is achieved 

by aggregating the Confidence rates of the blinks that 

contribute the more to the corresponding state (respectively 

Short blinks for Awake state, Long and Very Long for 

Drowsy and Slightly Drowsy, Sleepy blinks for Sleepy). 

SDSDA CCCC ,,, are the Confidence level for each 

vigilance class. 
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SBVLLS CCCC ,,,  the confidence rate of each class of 

blink on ∆T and N the number of blinks on ∆T. 

The diagnostic output is a (4, 2) vector which components 

are the degrees of membership of each of the predefined 

vigilance state classes with their associated confidence 

level. 
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5 Experimentation 

The objectives of these experiments were to compare the 

performances of the DVM diagnostic with the expert 

references provided by a medical team. 

The processing algorithms have been developed in a C++ 

environment and implemented in a Lap top. The camera 

and NIR units have been integrated into the instrumet 

cluster of the test vehicle. During the experimentations 

several information are recorded in real time:  

Output of the system: Eyelid closure time, diagnostic. 

Supervision data: During the experiments a technical 

supervisor and a medical team (a doctor) accompanied the 

drivers. Drivers are instrumented with physiological 

sensors to record their Electroencephalogram (EEG) and 

ElectroOculogram (EOG). Drivers are also asked to self 

rate the evolution of their state. In addition the technical 

supervisor annotations are recorded. At last videos of the 

driver head and upper part of the body as well as, front and 

back videos of the road are recorded. The images provided 

by these cameras, plus the images of the driver face from 

the DVM sensing device are mixed into a QUAD and then 

recorded by a VCR. 

In addition some vehicle parameters are stored: Vehicle 

speed; Steering wheel angle; In-vehicle temperature; Yaw . 

. . 

Experimentations have been performed on motorway, in 

real driving conditions, with 11 drivers following a strict 

experimental protocol. Each driver drove about 360 km for 

each experiment. The driver is not allowed to talk, listen to 

the radio or open the window. The driver is asked to stay as 

much as possible in the right lane and drive smoothly so to 

enhance the occurrence of drowsy situations.  

 

Figure 11: In vehicle experimental architecture 

Figure 12 shows the comparison between the diagnostic 

automatically provided by the DVM system and the 

expertise deduced from the electrophysiological data by the 

medical team. Each experiment lasts about 3 hours. In the 

following pictures, only results for Drivers 05 and 11 are 

reported. For the first driver two Drowsy phases have been 

detected by the medical team and have been confirmed by 

the diagnostic. For the second driver drowsy and then 

sleepy situations occur by the end of the drive test. The 

diagnostic is able to detect this evolution quite well but 

under evaluates the state by the end of the test. It should 

also be noticed that some isolated slightly drowsy 

situations are detected by the expert and not confirmed by 

the diagnostic but this is not critical at all. For each 

experiment, a table of correlation between diagnostic and 

expertise is built up (see Table 1).The tii variables are 

calculated by analyzing the experimental results. The tii are 

representing the duration where expertise is rated as "state 

i" and diagnostic is rated as "state j". For example t11 

represents the data points where the expertise is rated as 

sleepy and diagnostic as sleepy. 

From this set of variables some statistics can be calculated. 

The HIT corresponds to the case when the expertise detects 

a degradation of the driver state and this degradation is well 
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detected by the diagnostic. The PASS corresponds to the 

case when the expertise does not detect any degradation 

and that is confirmed by the diagnostic. The MISS 

corresponds to the case when the diagnostic under 

evaluates the expertise. And the FA corresponds to the case 

when diagnostic over evaluates the expertise. 
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Figure 12: Comparison between physiological expertises 

issued from EEG and EOG and the diagnostic provided by 

the DVM system for drivers D04 and D11. Red bar 

indicates Sleepy state Orange for Drowsy and yellow for 

Slightly Drowsy 

 Expertise 

 Sleepy Drowsy Slight. 

Drowsy 

Alert 

Sleepy Hit  t11 FA t12 FA  t13 FA  t14 

Drowsy Miss t21 Hit  t22 FA t23 FA t24 

Sligh.Drowsy Miss t31 Miss t32 Hit  t33 FA t34 

D
ia

g
n

o
st

ic
 

Alert Miss t41 Miss t42 Hit t43 Pass  t44 

Table 1: Table of correlation  

Then two statistics can be derived from these data:  

The Sensitivity refers to the proportion of people with state 

degradation who have a positive test result. 

NDriverNDriver

Ndriver

MISSHIT

HIT

NdriverySensitivit +=  

The Specificity refers to the proportion of people without 

state degradation who have a negative test result.  

NDriverNDriver

Ndriver

MISSPASS

PASS

NdriverySpecificit
+

=  

The final results are reported in Table 2. This table shows 

that the Sensitivity is good for all the subjects (greater then 

80% for most of the subjects) with an average value of 

86%. The Specificity is above 96% for 7 drivers. The 

average value is nearby 89% (92% without driver D04).  

Drivers 01 02 04 05 06 

Sensitivity 0.58 0.85 0.92 1.00 1.00 

Specificity 1.00 0.75 0.49 1.00 1.00 

Drivers 07 08 09 10 11 

Sensitivity 0.81 0.95 0.75 0.89 0.87 

Specificity 0.96 0.99 0.70 0.97 1.00 

Table 2 Diagnostic performances for the set of 

experimented drivers 

6 Conclusion 

A robust vision based system for monitoring driver's 

vigilance has been designed, able to work autonomously in 

various conditions by night or day with critical sun 

illuminations. This system has been implemented in an 

experimental vehicle. The camera has been fully integrated 

in the vehicle instrument cluster leading to a good driver 

acceptance. At last the system has been tested in real 

driving conditions with different drivers. The results 

achieved are very promising with a very high detection rate 

and an extremely low false alarm rate for most of the 

drivers. The future steps will be mainly concerned by the 

test and evaluation on a wider Driver sample but also of the 

complete process including HMI in regard with Driver 

acceptance. 
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