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Abstract: This paper deals with the position control of a mobile vehicle. The main constraints
refer to the lack of measurements, presence of input/output delays and actuator saturations.
Position measurement of this vehicle is given by a vision system, whose frequency is limited due
to picture computation, whereas the control action can be applied at a faster rate. Not only the
measurement rate is low, also a conversion delay must be considered. Additional delays can also
appear in the control action updating, where actuator saturations should be considered. This
paper demonstrates that the use of a prediction-observer scheme, based on a linear model of the
system and executed at a high rate, can stabilize the system. This is done even if the control law
is non linear, due to the appearance of saturations, also coping with the input/output delays.

1. INTRODUCTION

In mobile robots and automated vehicles, vision sensors are
more and more essential in order to resolve complex prob-
lems of the environment perception. Its miniaturization
and recent image processing developments have allowed
the mounting of the visual sensor on the robot/vehicle and
the integration of visual information in the control loop.

These developments have permitted the realization of
many more robotic tasks such as target tracking and
obstacle avoidance. The first works concerning the use of
visual information in robot control were presented by ??).
They present two separate approaches. The first approach,
commonly called ‘look and move’, is synthesized in terms
of regulation of the end effector situation. In the second
approach, the end effector of a robot is controlled by using
visual information. This control scheme is called ‘visual
servoing’.

Data acquisition using slow measuring procedures, such
as image processing, has more time constraints than ac-
tuators and, as a result, different rates could be used for
control updating and output sampling. Thus, instead of
using the same lowest sampling rate for all the variables
in the process, the multirate (MR) approach tries to reach
the fastest sampling rate control performances but using
the available data, that is, data sampled at different rates
?).
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Also, image processing introduces a delay between the
image capturing time and the time the information is
available for monitoring and/or control purposes. In many
practical applications, time delays may be intrinsic to the
process to be controlled, such as in chemical and biologi-
cal processes, distillation columns, processes with thermal
exchanges, and so on. Delays can also be introduced in
the implementation of the controller itself (computation
time of the control algorithm, distributed systems, remote
control) or they can appear due to the sharing of commu-
nication networks. As previously mentioned, the internal
information processing in sensors and/or actuators may
also result in additional delays.

In general, the control system performance is very sensitive
to delays, even more than to other parameters in the
model. In fact, a closed-loop control system may become
easily unstable as a consequence of delays. Systems with
delay are infinite-dimensional systems, and thus their
transfer function has an infinite number of poles. Thus,
the tuning of the parameters of a conventional regulator
to adjust these poles can be very difficult.

The use of state or output predictors, as for example
the very popular Smith Predictor ?), and finite spectrum
assignment (FSA), ?), may be considered as the main
control methods for linear processes having a significant
delay in their input or output, see ?). The initial results
were reported for continuous time systems, later on being
also applied to regularly sampled-data systems. However a
common drawback, linked to the internal instability of the
prediction, is that they fail to stabilize unstable systems.
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The issue of missing data is usually tackled by designing
a predictor based on the process model to either infer the
lacking measurements or estimate the state and all the
required process variables, by using a Kalman filter. In ?)
a control-prediction scheme to solve the scarce measure-
ments prediction problem with delay is proposed. The use
of both approaches, ?) and ?), has shown good perfor-
mances, but in the first approach the control algorithm
is restricted within the MR framework, so if a different
control law is required, as for example a non-linear control,
the use of this approach is not possible. The use of the
second approach is also a good solution, because there is
no restriction about the control scheme the system being
either stable or unstable, but the use of these techniques
requires a relatively high computational cost.

Recently a new method to control unstable systems with
time-varying delays has been presented by ?). The pro-
posed algorithm is based on a discrete-time state feed-
back controller using the prediction of the state. A con-
vergence analysis shows that the state converges to the
origin in spite of uncertainties in the knowledge of the
plant parameters, the system delay and even variations of
the sampling period. The proposed control scheme also
has been successfully implemented to control the yaw
displacement of a real four-rotor mini-helicopter, see ?).
The experimental validation has been developed on an
embedded system, MaRTE OS (see ?)), which allows the
implementation of minimum real-time systems according
to standard POSIX.13 of the IEEE.

Other than the consideration of the input/output delays,
in this paper we propose a control system for the position
of a mobile vehicle dealing with the nonlinearities intro-
duced by the saturation in the actuators and the low rate
in getting the vehicle position which is estimated by a
laser vision system. The process is open loop unstable and
almost impossible to control at the measurement sampling
rate imposed by the vision captor. If a prediction-observer
scheme based on a linear model is applied to the same
system and if a better frequency is used for the control,
thus the vehicle behavior can be stabilized. Moreover, the
system should remain stable even with additional delays
in actuation and/or measurement.

The rest of the paper is organized as follows: first, the
ingredients of the problem setting are summarized in
the next section. Then, the proposed control solution is
derived. This solution is first implemented on a simulated
system and later on is applied to a real electric car. The
obtained results are discussed and some conclusions are
drafted.

2. PROBLEM FORMULATION

As previously mentioned, this work is application oriented,
the final goal being to control an unstable mobile vehicle
under constraints in the actuation and measurement and
delays in the sensing device. Thus, time delay counter-
action, multirate pattern and saturating control are the
ingredients of the proposed solution. Some previous results
are summarized in this section.

2.1 Prediction-observer based control

A brief revision of the predictor-observed control scheme
proposed in ??), for time delayed linear systems, is out-
lined. For a deeper analysis the reader is remitted to these
references, where a more general treatment of this problem
is presented.

Let us consider the following continuous-time state space
representation of a system with input delay

ẋ(t) = Acx(t) + Bcu(t − τ) (1)

where the nominal plant parameter matrices are Ac ∈
ℜn×n, Bc ∈ ℜn×m and τ > 0 is the time delay.

As a computer implementation is intended, let us define
the sampling period as T = tk+1 − tk. Furthermore, it
is assumed to simplify the notation that τ = dT where
d ∈ Z+.

The discrete-time version of (1), is given by

xk+1 = Axk + Buk−d (2)

where: A = eAcT , and B =
∫ T

0
eAcλdλBc.

Let us assume that

τ = dT = (h + ∆h)T (3)

where dT is the actual unknown delay, hT is the delay
to be considered for computing the prediction scheme and
∆hT is the delay error, where ∆h ∈ Z, and h ∈ Z+.

Consider the following control input

uk = −Kx̂k+h (4)

where K ∈ ℜm×n, and define

x̂k+h = Ahxk + Ah−1Buk−h + · · · + Buk−1 (5)

It has been demonstrated in ?) that the prediction x̂k+h

in (5) can be expressed as

x̂k+h = xk+d + Ahxk − Ahxk+(d−h) (6)

Concerning the stability of the closed-loop system, the
closed-loop system composed of (2), (4 ), and (5) leads
to

xk+1 = (A − BK)xk − BKAhxk−d + BKAhxk−h (7)

Introducing (6) in (4),

uk = −K(xk+d + Ahxk − Ahxk+d−h) (8)

or

uk−d = −K(xk + Ahxk−d − Ahxk−h) (9)

Introducing (9) in (2), it yields

xk+1 = Axk − BKxk − BKAhxk−d + BKAhxk−h

Defining M = (A − BK), and A1 = BKAh, from (7) it
yields

xk+1 = Mxk + A1xk−h − A1xk−d (10)

Then it has been demonstrated ?) that the system in (10)
will be asymptotically stable if there exist positive definite
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matrices P , Q1, Q2, Z1 and Z2, and matrices X1, X2, Y1
and Y2, such that the following LMI constraints hold.
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Y T
1 Z1
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Y T
2 Z2

)

≥ 0 (12)

where Γ := (M − I) and

(1, 1) := −P +hX1 + dX2 +Y1 +Y T
1 +Y2 +Y T

2 +Q1 +Q2

Remark Note that if d = h, then x̂k = xk (see (6)),
therefore (7) yields

xk+1 = (A − BK)xk

In general the state of the system is not fully accessible
and therefore we require an observer to estimate the
state. In ?) the stability of the system when the state
is estimated using a state observer is also proved, as
the separation principle between the observer and the
predictor is fulfilled.

2.2 Multirate sensor

Now, let us consider the output availability. Assume that
the output equation is:

yk = Cxk (13)

but the measurement is only accessible once every N time
instants, NT being the image processing rate.

To implement (4), the state should be available at any
sampling period. The observer or virtual sensor is designed
following the ideas in ?), based on the plant model (2):

x̂k+1 = Ax̂k + Buk−d + Lmk(yk − ŷk), (14)

ŷk = Cx̂k. (15)

where L is the observer matrix and mk = 1 if the
measurement is available and mk = 0 if it is not. That
is, the estimation updating is only activated when a new
measurement is accessible.

The innovation term, Lmk(yk − ŷk), should be designed to
assure the state estimation error convergence:

x̃k = xk − x̂k; lim
k→∞

x̃k = 0 (16)

Considering the state estimation evolution over N sam-
pling periods, it yields

x̃k+N = Ax̃k =
(

I − LCA−d
)

AN x̃k (17)

The necessary and sufficient condition to stabilize the
predictor is to take a matrix L such that all eigenvalues
of A are inside the unit circle. See (?)) where a detailed
treatment of virtual sensors design can be found.

2.3 Actuator saturation

To complete the problem setting, the actuators saturation
must be considered. That means, the linear control law, as
presented in (4), cannot be applied if the absolute value of
the control action is out of limits.

Thus, the control law should be such as

uk = −σ [K(x̂k+h)] (18)

where σ(s) is a ramp-shaped saturation function such that
∀s, |σ[s]| ≤ Umax.

An analysis of the closed-loop stability for simple rate,
undelayed plants is reported in ?).

3. EXPERIMENTAL PLATFORM

3.1 Presentation of the platform

Fig. 1. Experimental cart

The experimental platform (see Figure 1) is composed
by an electrical cart moving only along the x axis, a
vision-laser sensor and the Matlab XPC target system.
The distance d between the cart and the wall is measured
using a new low-cost sensor composed by a camera and a
laser. The camera is ‘looking’ a point in the wall produced
by a laser pointer, then the image is sent to a ground
computer station (PC vision) to estimate and express
the distance with respect to a ground frame coordinates
system. In this paper we assume the calibration of the
system {camera, laser} is done.

The resulting x-position is sent to the ground station com-
puter to compute the control inputs using XPC Target and
the RS232 serial communication. The control input is sent
to the cart’s motors through Advantech PCL-726 output
card. Due to physical constraints in the cart’s motors, the
control input signal should satisfy the following inequality:

0V < τ1 < 5V

3.2 Dynamic model of the vehicle

We will apply the proposed control scheme to stabilize the
electrical cart in the x-coordinate. The dynamical equation
of the cart in the x-axis (see Figure 2) could be obtained
scheming it in 2D, with two identical wheels and a chassis
(see Figures 3–5). We will denote m the mass of each
wheel, Ci its center (which is assumed to be also its center
of gravity), r its radius and J its moment of inertia. For
the chassis we will denote M its mass and L the distance
between wheels. The center of gravity of the chassis is
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assumed to be on its middle. The contact between ground
and wheels is assumed to be a point, and the study will
be done in the case of limiting friction for each wheel.

Fig. 2. Scheme of the cart

Each wheel i, ∀ i = 1, 2, is subjected to the following forces:
a) its weight Pi = mg, b) the reaction force, Ri, from the
ground and c) the force, Fch/i, from the chassis applied
in the axis of the wheel. Under the hypothesis of limiting
friction, we have :

−→
Ri = Ff,i.−→x + Ni.−→z and Ff,i = µNi,

with µ the coefficient of friction between wheel and ground.
The torque applied to the axis of the wheel is denoted by
τi. For the driving wheel, i.e. the driving torque and for
the free wheel the torque is due to the friction in the axis.
Moreover, the chassis is subjected to its weight P = Mg,
applied in its center.

Fig. 3. Driving wheel Fig. 4. Free wheel

Fig. 5. Chassis of the cart

¿From Figures 3–5 and using Newton’s equations, we
obtain the following equations for the driving wheel

µN1 −
−−−→
Fch/1.

−→x = mẍ (19)

−mg −
−−−→
Fch/1.

−→z + N1 = 0 (20)

τ1 − rµN1 =
J

r
ẍ (21)

The dynamic for the free wheel is described by,

−µN2 +
−−−→
Fch/2.

−→x = mẍ (22)

−mg −
−−−→
Fch/2.

−→z + N2 = 0 (23)

−τ2 + rµN2 =
J

r
ẍ (24)

and for the chassis is

−−−→
Fch/1.

−→x −
−−−→
Fch/2.

−→x = Mẍ (25)

−Mg +
−−−→
Fch/1.

−→z +
−−−→
Fch/2.

−→z = 0 (26)

−τ1 + τ2 − L
−−−→
Fch/2.

−→z + Mg
L

2
= 0 (27)

After some algebraic manipulations using (19)–(27), we
obtain,

ẍ = kττ1 + kµ (28)

with

kτ =
Lr

µr3(2m + M) + J(2µr + L)
(29)

kµ =
−µgLr2(m + M/2)

µr3(2m + M) + J(2µr + L)
(30)

Note that (28) is the classical mathematic equation of
a cart moving in the x-axis. The last term, kµ, in this
equation could be considered as the friction.

3.3 Non linear control law

To stabilize the cart in a xd desired position we will use a
non linear control law based on saturation functions.

Let us propose the following non linear control law to
stabilize the cart in the x-coordinate

τ1 = −[σd(kdẋ) + σp(kp(x − xd)) + kµ]/kτ (31)

where kp and kd are positive constant and σ(s) is a ramp-
shaped saturation function such that ∀s, |σb(s)| ≤ b, b ∈ ℜ.

Introducing (31) into (28) we obtain

ẍ = −σd(kdẋ) − σp(kp(x − xd)) (32)

As already mentioned, the stability analysis of this closed-
loop system was proved in ?).

4. SIMULATIONS

The continuous time model of the cart is (28). Based on
the parameters from the experimental platform, the linear
model is:

˙̄x = Ax̄ + Bu (33)

where x̄ = [x1 = x, x2 = ẋ]T , A =

[

0 1
0 0

]

, B =

[

0
kτ

]

and u = τ1. For our study, the term kµ is considered as
perturbations in the system.

The image capturing and processing introduces a delay of
Lr = 1s. Moreover, it is not possible to sample the image
faster than 500 ms. Thus, the output sampling period is
NT = 0.5s. As already mentioned, the input is bounded
(0 ≤ u ≤ 5V ).
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If the plant model is discretized at this period (NT ), the
control action required to stabilize the cart immediately
saturates. If the input updating period is reduced to
T = 0.01s, a multirate scheme can be used.

The observer gain to fulfil (16) is chosen as L =

[ 268.80 3.28 ]
′

. Gains used for the control law are : kp =
0.1, kd = 0.5. Bounds for saturation are p = ±0.5 (the
proportional part) and d = ±1.5 (the derivative part).

Fig. 6. Control system scheme.

Thus, we propose two situations:

1 Dealing with a multi-rate situation, with a sample
rate of NT = 0.5s and an actuator working at the
sample rate of T = 0.01s, the step responses with and
without the proposed predictor are shown in figure 7.
The unstability of the system without predictor is
clearly shown.
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Fig. 7. Multi-rate, without delay

2 The same scheme as above (sample rate of NT = 0.5s,
actuator sample rate T = 0.01s) plus an actuator
delay of Lr = 1s gives the results showed in figure 8.
The simulation is done with and without the proposed
predictor. It also shows the unstability of the system
without predictor.

5. EXPERIMENTAL RESULTS

In this section, the parameters used are the following:

• observator gain : L = [ 0.02 0.12 ]
′

,
• control law gains : kp = 0.05, kd = 0.001,
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Fig. 8. Multi-rate, with actuator delay

• bounds for saturator : p = ±0.5 (proportional part),
d = ±1.5 (derivative part).

In the experimental setting, we tried to reproduce the same
cases as in simulations. Thus we made four experiments:

1 A multi-rate scheme, with a sample rate of NT = 0.5s
and an actuator working at the sample rate of T =
0.01s.

2 Same scheme as above, using the proposed predictor.
3 Same scheme as the first one, adding a delay in

actuator of Lr = 1s.
4 Same scheme as above, using the proposed predictor.

Results are respectively shown on figures 9, 10, 11 and 12.

Figure 9 shows that the system cannot reach the desired
position in such conditions. Indeed, the measurement
sample rate is too slow. But the addition of the proposed
predictor helps the stabilization, as shown in figure 10.

As shown in figure 11, the addition of the actuator delay
makes the system unstable, if no predictor is used. The
same experiment with the predictor, showed in figure 12,
gives better results. In this experiment, we see that the
system sometimes oscillates a little (but less than without
predictor) and sometimes is stable. This might be due to
the high delay in actuator (100 times the sample rate),
and to the uncertainty of the car’s model.
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Fig. 9. Experiment without predictor, without delay
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Fig. 10. Experiment with predictor, without delay
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Fig. 11. Experiment with delay but without predictor
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Fig. 12. Experiment with delay and predictor. Note that
in this case, the real initial position is 350 mm.

6. CONCLUSION

In this paper we propose a non linear law coping with
saturations to control the position of a mobile vehicle,
estimated by a laser vision system. Due to the computa-
tional time of each image, the system is unstable using the
frequency given by the vision sensor. Yet, if a prediction-

observer scheme based on a linear model is applied to the
same system and if a faster frequency is used for the con-
trol then the resulting system becomes stable. Moreover,
the system remains stable even with additional delays in
actuator and/or measurement.

Unlike others papers of control for multi rate systems, the
proposed scheme is independent of the control law used.
Moreover, the scheme is quite simple and robust against
model or sample rate errors and also against noise in data.
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