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Abstract: This paper presents two new dynamic hysteresis models obtained from the Bouc-
Wen model by incorporating position and acceleration information. On one hand, the model
employing position information is rate-independent and it is able to reproduce some kind of
double hysteretic loops unable to be reproduced with the original Bouc-Wen model. On the
other hand, the model employing acceleration information is insensitive to linear time-scale
variations. Double hysteretic loops have been experimentally reported and seen in shape memory
alloys, reinforced concrete structures, wood structures and lightweight steel shear wall structures.
The proposed hysteretic models represent a prominent use in the field of structural dynamics
and earthquake engineering because they can capture the non-linear dynamics of the materials
and structures presented earlier when they are subjected to dynamic loads as an earthquake
excitation, using the position and acceleration information, being the last one an available source

in the field with the use of accelerometers. Copyright© 2008 IFAC

1. INTRODUCTION

Hysteresis is a property of systems (usually physical sys-
tems) that do not instantly follow the forces applied to
them, but react slowly, or do not return completely to their
original state, that is, systems whose states depend on
their immediate history. In other words, hysteretic systems
have been recognized as systems with memory, and they
generate loops (Visintin, 1991). Also, and according with
Oh and Bernstein (2005), there is no precise definition of
hysteresis, but it is adopted that hysteresis is effectively a
nontrivial quasi-dc input-output closed curve in the input-
output map that persists when a periodic input is applied
and its frequency content approaches to dc value. Hys-
teresis phenomena occurs in biology, optics, electronics,
ferroelectricity, magnetism, structural mechanics, among
other areas (Oh and Bernstein, 2005; Krasnosel’skii and
Pokrovskii, 1989). Modeling of hysteresis phenomenon has
been reported, for instance, in Oh and Bernstein (2005);
Chua and Steven (1972); Clarke (2005); Song and Ki-
ureghian (2006), and reference there in. This paper is
primarily concerned with modeling of a hysteretic case
where double hysteretic loops have been experimentally
observed, as seen in smart materials, such as shape mem-
ory alloys (SMA) (Aiken et al., 1992; Bruno and Valente,
2002; Dolce et al., 2000, 2005; Saadat et al., 2002); and
mechanical and structural systems, such as reinforced con-
crete structures (Kunnath et al., 1997), wood structures

* This work was supported by CICYT through grant DPI2005-
08668-C03-01.

978-1-1234-7890-2/08/$20.00 © 2008 IFAC

498

(Foliente, 1995), and lightweight steel shear wall structures
(Pastor and Rodriguez-Ferran, 2005). Modeling of asym-
metric hysteretic loop resembling double-loop behavior has
been reported in Dobson et al. (1997), where hysteresis
modeling is based on a modification to a previously re-
ported model which uses hysteretic cycle decoupling by
making the shape parameters system dynamic dependent,
but no position or acceleration information are considered.
Moreover, in Li et al. (2004), a model of a kind of double-
loop hysteretic behavior is also shown. Again, no position
or acceleration is invoked. It is convenient to note that
in both models Dobson et al. (1997) and Li et al. (2004),
the internal dynamic model of hysteresis is converted from
first to second order. Traditionally, the internal dynamic of
hysteresis model is a first order differential equation with
velocity information supplied as its input, which is the
case of the Bouc-Wen model (Wen, 1976). Nevertheless,
hysteresis model can depend on position and velocity, as
is shown in Oh and Bernstein (2005), Chua and Steven
(1972), Song and Kiureghian (2006), and Chatterjeea and
Basub (2006). The main objective of the present work is to
bear witness that double-loop hysteretic behavior can be
obtained from the Bouc-Wen when just the signum of the
position or the signum of the acceleration is incorporated.
So, this paper presents two new dynamic hysteresis models
obtained from the Bouc-Wen model (Wen, 1976) by, in
the first case, incorporating acceleration information, and
in the second one, position information. It is shown by
numerical simulations that double hysteretic loops can be
captured by using the proposed models. It is also shown
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that the proposed model using position information is rate-
independent meanwhile the second one is insensitive to
linear time-scale variations. Even so, asymmetric double-
loop behavior can be obtained from the position case when
dc value is supplied to the position input.

The paper is organized as follows. In Section 2, the
new dynamic hysteresis model obtained from the Bouc-
Wen model by incorporating acceleration information is
presented. Section 2 also presents numerical simulations
of an isolated structure using passive devices like SMA
cables as seen in Wilde et al. (2000) and Yamashita (2004),
to give us an overlook of the simulated response of the
new hysteretic model. In Section 3, the position case is
then shown with the same numerical simulation platform
employed in Section 2. Finally, in Section 4 the conclusions
are drawn.

2. HYSTERETIC MODEL USING ACCELERATION
INFORMATION

Consider the Bouc-Wen model Smith et al. (2002):
5= DTN (Ad - Blalln s = dalln), (1)

where A, 3, A are dimensionless parameters which control
the shape and the size of the hysteresis loop, n > 1 is
a scalar that governs the smoothness of the transition
from elastic to plastic response. Conceive now the following
model:

=D~ (Ai — fl#]|2]" 2 = Ailz|" + ysgn(@)]i]),  (2)
Z(O) = 20, t > 07

where the acceleration information has been introduced by
means of the signum term, where sgn(0) = 0, sgn(z) = 1 if
x>0, and sgn(z) = —1 if < 0. Acceleration dependence
for a kind of hysteretic dynamic system has already
been reported in Benftez et al. (2006) by employing the
LuGre friction model. Following this strategy, we have
incorporated the acceleration information in the same way
as in Benitez et al. (2006).

Proposition 1. The dynamic system (2) is insensitive to
linear time-scale variations.

Proof. For simplicity, let D = 1. Let 7(¢) = at, a > 0
be a positive linear time-scale (Oh and Bernstein, 2005).
Then 7(0) =0, 7 = «, ¥ = 0 and, thus, z,(0) = z(7(t)) =
2(0) = z9. Now, for all ¢ > 0, consider

dZ‘r(t) _ dx'r(t) de(t) n—
dt =A dt - 5 T |Z'r(t)| 1Z'r(t)
dz(t) . d (d,(t) dz(t)
— A (O +osen (dt ( dt >> dt ‘
Jdz(T) . dx(T) _dx(T) n—1
T 77 = At ir - B\ ar |z(T)|" " 2(7)
— )\%dL(T)\z(Tﬂ"

dr

o (2 (50

Since 7(t) is a linear positive time-scale, 7 = a > 0 and
7 = 0. Hence, it follows that:
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+dz(:> = A%dZS_T) — Bt dz(:) |2(r)|" " 2(7)
Y d‘z(:) |2(7)|"
o 2 ()5
T _ D g O oyt
A s ( (4) 5]
as required. m

Moreover, we have the next property.

Proposition 2. Consider system (2) with input & and out-
put z. If 8 > 0, then this system is bounded-input
bounded-output (BIBO).

Proof. Taking the Lyapunov function V(z) = 122, its

time derivative along the trajectories of system (2) yields:
V(2) = — |#]|2|[|2|8 — sgn(i)sgn(z) — ysgn(i)sgn(=)]
< — [af]2|[[2]8 = 1 = 7]
The above is non-positive if
1+
B )
with |#| bounded, which implies that z(¢) is bounded. W

2| =

2.1 Numerical simulations

Consider the following system

mi + ct + P(x,t) = u(t),
where ®(x,t) is the restoring force with hysteretic behav-
ior, x(t) the position, u(t) the control input, and m and ¢
the mass and the damping coefficients, respectively.

This system is composed of a base-isolated structure with
passive and active devices like SMA cables, which can act
as a passive device (previously treated - superelasticity
or shape-memory effect (Bruno and Valente, 2002)) or as
an active device (temperature-induced transformation -
shape-memory effect (Saadat et al., 2002; Elahinia and
Ashrafiuon, 2002)). This feature makes the structure very
versatile, due to the fact that for near-fault earthquakes,
the maximum displacements induced by this impulse-like
seismic excitations, can be controlled by this SMA cables,
to keep the structure in the elastic range. The base-isolated
system will stay out of its ultimate failure limit due to the
superelastic and recentering properties of the SMA cables.

In order to study the behavior of our hysteretic model, the
restoring force is implemented as follows:

D(z,t) = x(t) + 2(t),
s =i~ Blile — sn()#]. 3)

In numerical simulations, we set m = ¢ = 1. We take
u(t) = sin((0.03t+0.2)t) as in Smith et al. (2002). Plots of
z(t) versus z(t) are depicted in Figure 1 for two different
values of 3. As we can see, the double-hysteretic loops
are seen in Figure 1 with an asymmetric behavior with
large residual strains for § = 4 than for § = 8 for the
first load cycles. As the load cycles increase, there exist a
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residual strain prior to the loading curve or an offset with
respect to the initial cycles. Furthermore, this behavior
may represent degrading systems and pinching as seen
in reinforced concrete structures, which encounter large
residual strains at the end of their loading cycles and the
energy dissipated diminishes its larger initial value with
the incremental loading cycles.
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Fig. 1. Simulation results. Plot of z(t) versus z(t) with
B =4 (up) and 8 = 8 (down).

3. HYSTERETIC MODEL USING POSITION
INFORMATION

Consider the modified Bouc-Wen model (for simplicity, we
set D71 =1).

z= f(z,x,x)
= Ai — Bla||z|" "z — Ad|z|" + ysgn(2)|E],  (4)

where the position information has been introduced by
means of the signum term.

Proposition 3. The dynamic system (4) is rate-independent.

Proof. Let 7(t) be a positive time-scale (Oh and Bern-
stein, 2005). Then 7(0) = 0 and, thus, 2,(0) = z(7(0)) =
z(0) = z9. Now, for all ¢ > 0, consider

dZ;t(t) _ Ad‘rc‘ll't(t) o 5 dx;t(t) ‘ |ZT(t)|n712.,-(t)
N 0+ st )| 25|

+dz(:) = A+dfl<:) Sy ‘+d‘z(:) |2(r)|" " 2(r)
3O 4 sy [ 20

Since T is a positive time scale, 7(t) > 0. Hence, it follows
that:

dz(t) dx(T) dx(7) e
dr A dr p dr ()" 2(7)
AED 1 st | 240
as required. |

Moreover, we have the next property.

Proposition 4. Consider system (4) with input & and out-
put z. If 8 > 0, then this system is bounded-input
bounded-output (BIBO).

Proof. Taking the Lyapunov function V(z) = %22, its
time derivative along the trajectories of system (4) yields:
V(2) = — ||| [~ Asgn(i)sgn(=) + B|=["
+A|2|"sgn(#)sgn(z) — ysgn(x)sgn(2)]
< — 2zl [-A = [+ (B+ A)lz]"]

The above is non-positive if |z| > ¢} A;lel with |z
bounded, which implies that z(t) is bounded. [ |

8.1 Numerical simulations

Consider again the system
mi + ck + O(x, 1) = u(t). (5)
In order to study the behavior of our hysteretic model,
now the restoring force is implemented as follows:
O(z,t) = x(t) + 2(t),
z =& — p|&|z + sign(x)|Z|. (6)

In numerical simulations, we set m = ¢ = 1. We take
u(t) = sin((0.03t 4 0.2)t). Simulation results of z(¢) versus
x(t) are pictured in Figure 2.

Moreover, asymmetric double-loop behavior can be repro-
duced by introducing a DC component to the position
information, as follows:

(a,1) = 2(t) + (1),
2 =14 — [B|%|z + sign(z + DCyalue) | %] (7)
where DCyq14e is the position offset component. Repeating

simulation experiment but invoking (7) with 8 = 10 and
DCyainve = 0.2, the output is described in Figure 3.

Remark 1. The system (4) is dependent of DC value in
position. This dependence can be eliminated by doing the
following modification:
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Fig. 2. Simulation results. Plot of z(t) versus x(t) with
B =4 (up) and 8 =8 (down).
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Fig. 3. Simulation results. Plot of z(¢) versus z(t).

z :f(z,x,x)
=Ai — Bl#||2]" 2 — Ai|z|" + ysgn(w)|E],  (8)
w(0) = 0.

W= g,

As we can see in Figure 2 the double hysteretic loops
present smaller values of residual strains per cycle than as
seen in Figure 1. Therefore, it represents in a more feasible
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manner the behavior of recentering materials like SMA,
which have very small residual strains under many load
cycles. We can conclude about this that for § — oo the
residual strain in the double hysteretic loops will be close
to 0. At the same time, for large values of 3, the energy
dissipated per cycle is larger due to the large area of the
loop. Moreover, a large pre-yield stiffness is seen in the
initial loading slope for large values of 3 and consequently
smaller values of post-yield stiffness is encountered. This
may be beneficial when modeling materials and systems
that have recentering properties, small residual strains,
superelastic properties, shape memory effects, and need to
dissipate large energy per cycle under a dynamic load. At
the same time, as we can see in Figure 3, an initial offset is
perceived and similar recentering behavior shown in Figure
1 and Figure 2 is captured. This type of responses may be
useful to represent systems with a mass distribution offset
under dynamic loads.

4. CONCLUSIONS

This paper has dealt with the modeling problem of double-
loop hysteretic systems by incorporating the signum in-
formation of acceleration and position. Two new mod-
els have been proposed. Numerical simulations were per-
formed in a system incorporating a base-isolated with a
passive or active device like SMA cables. The numerical
simulations represent in a feasible way the double-loop
hysteresis. Future work using these two models can be
used to pinching and degrading hysteretic systems (Baber
and Nouri, 1986; Baber and Wen, 1981; Mostaghel, 1999),
or more complex structural systems including reinforced
concrete structures, wood, and lightweight steel shear wall
structures under earthquake excitations.
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