
A Stackelberg Game Approach to Mixed
H2 /H∞Control
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Abstract: The H2 /H∞ robust control problem is formulated as a Stackelberg differential game
where the leader minimizes an H2 criterion while the follower deals with the H∞ constraint.
For a closed loop information structure in the game, the necessary conditions to solve such a
constrained optimization problem are derived for the finite time horizon case. It is shown that
such an approach leads to a singular control and the Stackelberg strategy degenerates due to the
omnipotence of the leader. Using conjugate times theory, we prove that the derived necessary
conditions are also sufficient. Copyright c©IFAC 2008

1. INTRODUCTION

Robust H2 /H∞ control problem has been treated exten-
sively in recent years to achieve a compromise between
H2 and H∞ norm specifications Bernstein and Haddad
[1989], Zhou et al. [1994], Doyle et al. [1994]. In fact, a
predefined level for the H∞-norm cannot be guaranteed
by a pure H2-control. Several approaches have been pro-
posed to solve the mixed H2 /H∞ control problem. This
includes non-standard Riccati equations Bernstein and
Haddad [1989], Youla parametrization Scherer [1995], con-
vex optimization Khargonekar and Rotea [1991], entropy
interpretation Mustafa et al. [1991]. . . The state feedback
case was treated in Rotea and Khargonekar [1991] while
a compromise between H2 and H∞-regulators is proposed
in Halder et al. [1997].

In this note, the mixed H2 /H∞ robust control problem
is formulated as a Stackelberg differential game Başar and
Olsder [1995], Starr and Ho [1969a,b], Ho [1970], Simaan
and Cruz [1973a,b]. A gametheoretic approach has been
already proposed to solve the H2 /H∞ control problem
Limebeer et al. [1994], Florentino and Sales [1997], Chen
and Zhou [2001] via a Nash strategy. However, due to the
symmetry between players in a Nash strategy, one player is
minimizing the H2 norm and the second one is associated
with the worst case disturbance seen in terms of H∞ norm.

For the Stackelberg strategy, the hierarchy between the
leader and the follower leads to minimizing the H2-norm
by the leader subject to the H∞-constraint dealt with by
the follower. The information bias in such a game is quite
suitable to solve such a constraint optimization problem.
The model used here was introduced in Zhou et al. [1994],
Doyle et al. [1994].

The paper is organized as follows. The problem is formu-
lated in Section 2. The main contribution is given in Sec-
tion 3 where the Stackelberg strategy and the associated
necessary conditions are derived under closed loop infor-
mation structure condition. It is shown in Section 4 that
the necessary conditions become sufficient using conjugate
times theory. Concluding remarks make up Section 5.

2. PROBLEM STATEMENT

Consider the plant described by (Fig. 1)


















ẋ(t) = Ax(t) +B∞w∞(t) +B2w2(t) +Bu(t)
= f(x,w∞, w2, u),

z∞(t) = C∞x(t) +D∞w∞(t) +D∞uu(t),
z2(t) = C2x(t) +D2uu(t),
z(t) = x(t),

(1)

with x(t) ∈ R
n, w2(t) ∈ R

r2 , w∞(t) ∈ R
r∞ , u(t) ∈ R

r,
z2(t) ∈ R

m2 , and z∞(t) ∈ R
m∞ . The matrices A, B∞, B2,

B, C∞, C2, D∞, D∞u and D2u are constant matrices with
appropriate dimensions. B∞ is assumed of full rank.

−K

Σ
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z∞

z2w2

w∞

u

Fig. 1. System structure.

The finite horizon [t0, tf ] case is studied here (initial time
t0 and final time tf > t0). The H2-norm of a signal,
denoted ‖.‖2,[t0,tf ], allows to define the induced norms H2

and H∞ of the system. The input w2 (respectively w∞)
and the output z2 (resp. z∞) define the channel for H2
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norm ‖z2‖2,[t0,tf ] (resp. H∞ norm supw

‖z∞‖2,[t0,tf ]

‖w∞‖2,[t0,tf ]
). For

simplicity, the feedback output z is assumed to be equal to
the state x. The problem of mixed H2 /H∞-control design
is to find a feedback control u(t) stabilizing the system (1)
and minimizing the H2-norm under the constraint that the
H∞-norm is less than a fixed level γ, i.e. u(t) = −K(t)x(t)
such that

inf
u∈U

‖z2‖2,[t0,tf ] subject to sup
w∞∈W∞

‖z∞‖2,[t0,tf ]

‖w∞‖2,[t0,tf ]
< γ.

The system (1) being linear, the admissible set for the
inputs u, w2 and w∞ are respectively U = L∞([t0, tf ] ×
R

n,Rr), W2 = L∞([t0, tf ],Rr2), and W∞ = L∞([t0, tf ] ×
R

n,Rr∞). The input w2 is assumed to be known.

3. STACKELBERG STRATEGY

3.1 Definition

Let

J2(w∞, w2) =

∫ tf

t0

L2(x, u, w∞, w2)dt

=
1

2

∫ tf

t0

[

zT
2 (t)z2(t) + α2wT

∞(t)Rγw∞(t)
]

dt, (2)

with Rγ = γ2I −DT
∞D∞ > 0, for γ > σ(D∞), the largest

singular value of D∞, and

J∞(u,w∞) =

∫ tf

t0

L∞(x, u, w∞)dt

=
1

2

∫ tf

t0

[

−zT
∞(t)z∞(t) + γ2wT

∞(t)w∞(t)
]

dt, (3)

where x(·), z∞(·) and z2(·) are solutions of (1). The
criterion J2 defined by (2) is associated with the H2-norm
of system (1). For α 6= 0, J2 is convex with respect to
w∞. The criterion J∞ defined by (3) is associated with
the H∞-norm of system (1). Note that, if J∞ > 0, for

any input w∞ ∈ W∞, then supw∞∈W∞

‖z∞‖2,[t0,tf ]

‖w∞‖2,[t0,tf ]
< γ.

The infinimum of J∞ over w∞ ∈ W∞ is either finite
(and attained) or equal to −∞, depending on the values
of γ and of the final time tf . In fact, denoting tc the
first conjugate time of the system (see Section 4), then
inf J∞ ≥ 0 whenever tf < tc, and inf J∞ = −∞ whenever
tf > tc.

The optimal control u = u∗ minimizes the H2-norm when
w∞ = w∗

∞, the worst case input according to the H∞-
norm, is applied.

Stackelberg strategy is well adapted to deal with this kind
of constrained minimization problem. The leader acts by
choosing the control u and the follower by choosing the
input w∞. For a control ũ of the leader, the rational
reaction set R∞ (ũ) of the follower is defined by the set
of the admissible input w∞ which leads to the infinimum
of J∞(ũ, w∞).

A Stackelberg equilibrium (u∗, w∗
∞) is defined by

{

w∗
∞ ∈ R∞(u∗),

max
w∞∈R∞(u∗)

J2 (u∗, w∞) 6 max
w∞∈R∞(u)

J2 (u,w∞) , (4)

∀u ∈ L∞([t0, tf ],Rr) (see Simaan and Cruz [1973a,b]).

There are three inputs in the system u, w2 and w∞. u
and w∞ are considered as the two players of this non-
zero sum game. The input w2 is not a player and is
considered as a disturbance. The framework corresponds
to a closed-loop information structure, u∗ = u∗(x, t) ∈ U
and w∗

∞ = w∗
∞(x, t) ∈ W∞ are implicit functions of the

time t and the state x (see Papavassilopoulos and Cruz
[1979]).

3.2 Necessary conditions for the follower

Solving the problem from the point of view of the follower
corresponds to determine its rational reaction set R∞(·).
This is a standard optimization problem that could be
solved by applying Pontryagin’s Minimum Principle. We
define the Hamiltonian (see Pontryagin et al. [1962])H∞ =
ψ◦
∞L∞ + ψ∞f , where the line vector ψ∞ ∈ R

n is the
costate vector associated with the dynamic constraint (1)
and the scalar ψ◦

∞ ≥ 0 with L∞. The necessary conditions
to be satisfied by the follower could be written along the
solution as

∂H∞

∂w∞

(t) = ψ◦
∞

∂L∞

∂w∞

(t) + ψ∞(t)
∂f

∂w∞

(t) = 0, (5)

ψ̇∞(t) = −ψ◦
∞

(

∂L∞

∂x
(t) +

∂L∞

∂u
(t)
∂u∗

∂x
(t)

)

−ψ∞(t)

(

∂f

∂x
(t) +

∂f

∂u
(t)
∂u∗

∂x
(t)

)

. (6)

In addition, since the final state is free, the transversality
condition leads to ψ∞(tf ) = 0. This implies that ψ◦

∞ 6= 0.
Without loss of generality and for the sake of normaliza-
tion we assume that ψ◦

∞ = 1.

It follows from (5) and from γ > σ̄(D∞), that Rγ is
invertible and that the optimal input w∗

∞ (the worst input
in sense of H∞-norm for an input u) is given by

w∗
∞(t) =−R−1

γ

[

−DT
∞C∞x(t) −DT

∞D∞uu(t) +BT
∞ψ

T
∞(t)

]

= S(x, u, ψ∞). (7)

We introduce the following notations

Wγ = I +D∞R
−1
γ DT

∞,
U = DT

2uD2u + α2DT
∞uD∞R

−1
γ DT

∞D∞u,
N = Rγ + α2DT

∞D∞uU
−1DT

∞uD∞,
B = B +B∞R

−1
γ DT

∞D∞u,

B̃ = B∞ + α2BU−1DT
∞uD∞,

Cu = DT
2uC2 + α2DT

∞uD∞R
−1
γ DT

∞C∞,

C∞ =
(

DT
∞D∞uU

−1Cu −DT
∞C∞

)

,

Ŝλ = BU−1B
T
,

Ŝ∞ = S∞ + α2BU−1DT
∞uD∞R

−1
γ BT

∞,
S∞ = B∞R

−1
γ BT

∞,

S∞ = S∞ + α2B∞R
−1
γ DT

∞D∞uU
−1DT

∞uD∞R
−1
γ BT

∞,

S̃ = Ŝλ +
1

α2
B̃N−1B̃T ,

Q = CT
2 C2 + α2CT

∞D∞R
−1
γ DT

∞C∞ − C
T

uU
−1Cu,

Q̃ = Q− α2C
T

∞N
−1C∞,

A = A+B∞R
−1
γ DT

∞C∞,
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Â = A−BU−1Cu,

Ã = Â− Ŝ∞S
−1

∞ B∞R
−1
γ C∞,

and

F 1
∞(x, u, ψ∞) = xTCT

∞WγC∞ + uTDT
∞uWγC∞ − ψ∞A,

F 2
∞(x, u, ψ∞) = xTCT

∞WγD∞u + uTDT
∞uWγD∞u − ψ∞B.

Then

ẋ(t) = f̃(x(t), u(t), ψ∞(t), w2(t))

=Ax(t) +Bu(t) − S∞ψ
T
∞(t) +B2w2(t), (8)

x(t0) = x0, (9)

ψ̇T
∞ =

(

F 1
∞(x, u, ψ∞) + F 2

∞(x, u, ψ∞)
∂u∗

∂x

)T

, (10)

ψ∞(tf ) = 0, (11)

and

L̃∞(x, u, ψ∞) =−
1

2
(C∞x+D∞uu)

T
Wγ (C∞x+D∞uu)

+
1

2
ψ∞S∞ψ

T
∞,

L̃2(x, u, ψ∞, w2) =L2(x, u, S(x, u, ψ∞), w2).

3.3 Pontryagin Minimum Principle for a particular case

The minimization of J2 subject to (8) and (10) is not a
standard optimization problem. For the sake of clarity, we

denote in the sequel
∂u∗

∂x
, the Jacobian of u(t, y) w.r.t.

the second variable, by uy. To solve this problem from
the point of view of the leader, the extended state X
is introduced. X includes the state x, the costate vector
ψT
∞, and the instantaneous cost x◦ (verifying ẋ◦ = L̃2):
XT =

(

xT ψ∞ x◦
)

∈ R
2n+1 is solution of

Ẋ = F (t,X, u, uT
y ) =





f̃
F 1T
∞ + uT

y F
2T
∞

L̃2



 , (12)

with boundary conditions

x(0) = x0, ψ∞(tf ) = 0, x◦(0) = 0, (13)

where u = u(t, h(X)) = u(t, x), with h the projector

h(X) = h
(

xT ψ∞ x◦T
)T

= x.

It is shown below that every optimal control u∗ for the
optimization problem of the leader (minimizing J2 subject
to the constraints (8) and (10)) is a singular control for
the system (12). This crucial fact permits to derive a
Pontryagin Minimum Principle adapted to this type of
problem (12). A similar approach is provided for the LQ
case in Papavassilopoulos and Cruz [1979]. However the
used arguments are not complete, even though the final
result is correct.

We next recall the definition of the end-point mapping and
of a singular control (see Lee and Markus [1967], Trélat
[2005], Bonnard and Chyba [2003]).

Definition 1. The end-point mapping at time tf of system
(12) with initial state X0 is the mapping

EX0,tf
: U = L∞ ([0, tf ] × R

n,Rr) −→ R
2n+1

u 7−→ Xu(tf ),
(14)

where Xu(·) denotes the trajectory solution of (12) asso-
ciated with the control u such that Xu(t0) = X0.

If the function F in (12) is of class Cp, p ≥ 1, then the
end-point mapping EX0,tf

is also of class Cp.

To determine the Fréchet derivative of EX0,tf
, consider a

control δu such that u+δu ∈ U and let X be the trajectory
associated with u and X + δX with u+ δu. By definition,
we obtain

d(X + δX)

dt
=

F
(

t,X + δX, u(t, h(X + δX)) + δu(t, h(X + δX)),

uy(t, h(X + δX))T + δuy(t, h(X + δX))T
)

.

A Taylor series expansion leads to

d(δX)

dt
= ÃδX + B̃δu+ C̃δuT

y , (15)

where Ã =
(

FX + FuuyhX + Fuy
uyyhX

)

, B̃ = Fu and

C̃ = Fuy
.

Let M(t) be the transition matrix associated with Ã(t),
i.e. the solution of the Cauchy problem

Ṁ(t) = Ã(t)M(t), M(0) = I. (16)

Then,

δX(tf) = M(tf )

∫ tf

0

M−1(s)
(

B̃(s)δu(s)+C̃(s)δuT
y (s)

)

ds,

(17)
and the next result follows.

Lemma 2. The Fréchet derivative of EX0,tf
at a point

u ∈ U is given by

dEX0,tf
(u) · δu

= M(tf )

∫ tf

0

M−1(s)
(

B̃(s)δu(s) + C̃(s)δuT
y (s)

)

ds.

(18)

Definition 3. Let u be in U , the control u is said to be
singular on [0, tf ] if the Fréchet derivative dEX0,tf

(u) is
not surjective.

If the control u is singular, then there exists a line vector
ϕ ∈ R

2n+1/{0} such that

ϕ · dEX0,tf
(u) = 0. (19)

The line vector p(t) = ϕM(tf )M−1(t) verifies

ṗ(t) = −p(t)Ã(t), p(tf ) = ϕ. (20)

It follows from (18), (19) and (20) that
∫ tf

0

p(t)
(

B̃(t)δu(t, h(X)) + C̃(t)δuT
y (t, h(X))

)

dt = 0,

(21)
for every δu(t, h(X)). In particular, considering first con-
trols δu(t), (21) yields

p(t)B̃(t) = 0, and p(t)C̃(t) = 0, a.e. on [t0, tf ].

Define the HamiltonianH2(t,X, u, uy, p) = pF (t,X, u, uy).
Then a singular control u(t, h(X)) is characterized by

Ẋ =
∂H2

∂p
, ṗ = −pÃ = −

dH2

dX
,

∂H2

∂u
= p(t)B̃(t) = 0,

∂H2

∂uy

= p(t)C̃(t) = 0.
(22)
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This Hamiltonian characterization is next used to derive
necessary conditions for the leader.

3.4 Necessary conditions for the leader

Lemma 4. If the control u∗ is optimal for the problem
defined by (8) - (10) and (2), then it is singular on [0, tf ]
for the extended system (12).

Proof of Lemma 4. Let X be the trajectory solution of
the system (12), associated with a control u issued from
X0 = (xT

0 , ψ
T
∞,0, 0)T . If u is optimal for J2, the final state

X(tf ) lies at the boundary of EX0,tf
(U). Hence the end-

point mapping EX0,tf
is not open at u, and it follows

from the Implicit Functions Theorem that the control u
is singular for system (12) on [0, tf ].

The Hamiltonian H2 associated with J2 subject to the
constraint (12) can be rewritten as

H2 = λ1f̃ + λ2

(

F 1
∞ + F 2

∞ux

)T
+ λ◦L̃2, (23)

by setting p(t) = (λ1(t), λ2(t), λ
◦(t)), with λ1(t) ∈ R

n,
λ2(t) ∈ R

n (line vectors) and λ◦(t) ∈ R. The Hamiltonian
characterization of a singular control leads to

∂H2

∂u
= λ1

∂f̃

∂u
+λ2

(

∂F 1
∞

∂u
+
∂F 2

∞

∂u
uy

)T

+ λ◦
∂L̃2

∂u
= 0,(24)

∂H2

∂uy

= λT
2 F

2
∞ = 0, (25)

λ̇1 =−λ1
∂f̃

∂x
− λ2

(

∂F 1
∞

∂x
+
∂F 2

∞

∂x
uy

)T

− λ◦
∂L̃2

∂x
,(26)

λ̇2 =−λ1
∂f̃

∂ψ∞

−λ2

(

∂F 1
∞

∂ψ∞

+
∂F 2

∞

∂ψ∞

uy

)T

− λ◦
∂L̃2

∂ψ∞

,(27)

λ̇◦ = 0. (28)

From (28), λ◦(t) = λ◦ is constant. According to the
Pontryagin Minimum Principle, we assume that λ◦ ≥ 0.

3.5 Transversality conditions

Since the initial state x(0) = x0 and the final costate line
vector ψ∞(tf ) = 0 are fixed, the extended costate line
vector (λ1, λ2, λ

◦) must verify the transversality conditions

λ2(0) = 0, λ1(tf ) = 0. (29)

(see for example [Trélat, 2005, page 104] for more details)

3.6 Degenerate Stackelberg strategy

From (25), we infer that λ2 ≡ 0 or F 2
∞ ≡ 0 (or both).

Proposition 5. If the matrix

∂F 2
∞

∂u
= DT

∞u

(

I +D∞R
−1
γ DT

∞

)

D∞u = DT
∞uWγD∞u

(30)
is invertible, then λ2 ≡ 0. In this case, the Stackelberg
strategy degenerates, due to the omnipotence of the leader.

Proof of Proposition 5. By contradiction, assume that λ2 6=

0. Then, F 2
∞ ≡ 0. Since

∂F 2
∞

∂u
invertible, it follows from

the Implicit Functions Theorem that, locally around the
trajectory u = u(t, x, ψ∞).

Hence, system (8) - (10) writes

ẋ = f̃(x, ψ∞, u(t, x, ψ∞)), ψ̇∞ = F 1
∞(x, ψ∞, u(t, x, ψ∞)).

(31)

The dynamics and the criterion J2 are both independent of
uy. Hence, every control uy is optimal, which contradicts
(24).

The fact that λ2 ≡ 0 means that the leader does not
take into account the rational response of the follower
represented by the evolution of the costate vector ψ∞ to
minimize his own criterion J2. The Stackelberg strategy
with a closed-loop information structure seems to lose
globally its hierarchical structure. In fact the condition
(30) indicates that, if the criterion of the follower depends
on u, then the leader is able to impose to the follower
a desired control. Even though the hierarchy seems to
disappear, the leader is omnipotent with respect to the
follower. To a certain extent, this could justify using Nash
strategy in Limebeer et al. [1994] for a mixed H2 /H∞

problems.

3.7 Computation of the optimal control

Since the costate vector (λ1(tf ), λ2(tf ), λ◦) = (0, 0, λ◦)
must be nontrivial, up to normalizing, we next assume
λ◦ = 1.

From (24), we deduce the expression of the optimal control

u∗ =−U−1Cux− U−1B
T
λT

1

+α2U−1DT
∞uD∞R

−1
γ BT

∞ψ
T
∞. (32)

Plugging this expression into the dynamics (8) yields

f̃ = Âx− Ŝλλ
T
1 − Ŝ∞ψ

T
∞ +B2w2. (33)

According to (26), we obtain

λ̇T
1 = −ÂTλT

1 −Qx− α2C
T

∞R
−1
γ BT

∞ψ
T
∞ = gT (x, λ1, ψ∞).

(34)

The evolution of ψ∞ (10) reads now

ψ̇∞ = F̃ 1
∞(x, λ1, ψ∞) + F̃ 2

∞(x, λ1, ψ∞)uy, (35)

with F̃ 1
∞(x, λ1, ψ∞) = F 1

∞(x, u∗(x, λ1, ψ∞), ψ∞), and

F̃ 2
∞(x, λ1, ψ∞) = F 2

∞(x, u∗(x, λ1, ψ∞), ψ∞).

Since λ2 = 0, the relation (27) yields the constraint

ŜT
∞λ

T
1 − α2S∞ψ

T
∞ − α2B∞R

−1
γ C∞x = 0. (36)

Remark 6. If α = 0, then the necessary condition (36)

becomes λ1Ŝ∞ = 0. In particular, taking into account
the transversality condition (29), the first and second
derivatives of this relation at t = tf yield

{

xT (tf )QŜ∞ = 0,

xT (tf )(QÂ− ÂQŜ∞) = wT
2 (tf )B2QŜ∞.

(37)

These conditions are additional constraints. The relation
(37) is a relation at time tf between the exogeneous
input w2 and the state x. This necessary condition is
not generally verified all the more so since w2 is in
general considered as a disturbance. In conclusion, the case
α = 0 does not lead to a relevant solution for the mixed
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H2 /H∞ problem. This result justifies the additional term
α2wT

∞Rγw∞ in the criterion J2 associated with the H2-
norm, which yields convexity with respect to the control
u whenever α 6= 0. In the sequel, we assume that α 6= 0.

Differentiating (36) with respect to t, it is clear that (36)
is equivalent to the following relations

xT (tf )C∞ = 0, (38)

F̃ 2
∞

∂u∗

∂x
B∞R

−1
γ NR−1

γ BT
∞ = v =

( 1

α2
gŜ∞−F̃ 1

∞−f̃TC
T

∞

)

.

(39)

The relation (38) implies that every x0 is not necessarily
the starting point of an optimal trajectory. The initial
state x0 of an optimal trajectory must belong to a r∞-
codim subspace of R

n, where r∞ = rank C∞. The con-
straint (39) leads to

F̃ 2
∞

∂u∗

∂x
B∞ = vB∞

(

BT
∞B∞

)−1
RγN

−1Rγ , (40)

and hence

F̃ 2
∞

∂u∗

∂x
∈ vB∞

(

BT
∞B∞

)−1
RγN

−1Rγ

(

BT
∞B∞

)−1
BT

∞

+
(

KerBT
∞

)T
. (41)

Even though the optimal trajectory is unique, the expres-

sion for
∂u∗

∂x
in not unique.

Remark 7. w2 is not the action of one player, but a

disturbance. Contrary to
∂u∗

∂x
and f̃ , the control u∗(t, x)

does not depend on this input w2.

Remark 8. To facilitate the research of the optimal con-
trol, a restricted class of u∗(t, y) can be imposed. By
choosing an affine representation (see Papavassilopoulos
and Cruz [1979]) of u∗(t, y)

u∗(t, y) = uy

(

y − x(t)
)

+ u(t), (42)

it is possible to avoid the exact computation of
∂u∗

∂x
on

the optimal trajectory x(t).

3.8 Solving by Riccati equation

From (36), and by assuming that B∞ is of full rank,

ψ∞ =
( 1

α2
λ1B̃ − xTC

T

∞

)

N−1Rγ(BT
∞B∞)−1BT

∞. (43)

Plugging this relation into (33) and (34), we obtain

ẋ(t) = Ã(t)x(t) − S̃(t)λT
1 (t) +B2w2(t), (44)

λ̇T
1 (t) =−Q̃(t)x(t) − ÃT (t)λT

1 (t). (45)

Similarly to LQ problems, it is possible to express λ1(t) in
the form

λT
1 (t) = K1(t)x(t) + h1(t). (46)

Indeed, it is clear that if the matrix K1(t) ∈ R
n×n and the

column vector h1(t) ∈ R
n verify

K̇1(t) = −K1(t)Ã(t) − Ã(t)TK1(t)

−Q̃(t) +K1(t)S̃(t)K1(t), (47)

ḣ1(t) = −K1(t)S̃(t)h1(t)

+ÃT (t)h1(t) +K1(t)B2w2(t), (48)

with boundary conditions

K1(tf ) = 0, h1(tf ) = 0, (49)

then λ1(t) defined by (46) solves the differential equation
(45) and the boundary condition (29). Equation (47) is a
standard Riccati equation, which can be linearized using
Radon’s Lemma (see Abou-Kandil et al. [2003]). For a
given input w2, both equations (47) and (48) can be solved
by backward integrating from final conditions (49).

4. SUFFICIENT CONDITIONS

In order to obtain sufficient conditions for this problem,
some well known facts of conjugate times theory are next
recalled (see for example [Bonnard et al., 2006, chapter 9]
for more details).

Definition 9. The variational system

d

dt

(

δx

δλ1
T

)

=

[

Ã −S̃

−Q̃ −ÃT

] (

δx

δλ1
T

)

(50)

is called Jacobi’s equation. The Jacobi’s field J(t) =
(δxT (t), δλ1(t)) is a nontrivial solution of (50).

The transition matrix associated with (50) is denoted φ(t),
and
(

δx(t)
δλT

1 (t)

)

=φ(t)

(

δx(0)
δλT

1 (0)

)

=

[

φ1(t) φ2(t)
φ3(t) φ4(t)

](

δx(0)
δλT

1 (0)

)

.

(51)

Definition 10. The first conjugate time tc is the first
positive time for which there exists a Jacobi field such
that δx(0) = δx(tc) = 0.

This is equivalent to rank φ2(tc) < n.

The following results are standard in LQ theory (see
[Bonnard et al., 2006, chapter 9]).

Proposition 11. The first conjugate time tc corresponds to
the first finite escape time of the Riccati equation (47).

Proof of Proposition 11. The solution of the Riccati equa-
tion (47) is given by

K1(t) = φ4(t)φ
−1
2 (t). (52)

The first conjugate time tc is the first time at which φ2(tc)
is not invertible, that is, ‖K1(t)‖ → +∞, when t→ tc.

Proposition 12. The solutions of Pontryagin Minimum
Principle are optimal before their first conjugate time. The
control (32) with λ1(t) given by the Riccati equation (47)
is optimal if and only if this equation admits a well defined
solution on [0, tf ].

Thanks to these results the necessary conditions are also
sufficient. Before the first conjugate time, the optimal
control -if it exists- is unique. Actually, if Q̃ is nonnegative,
then the following additional properties hold.

Proposition 13. If Q̃ ≥ 0, then the solution K1(t) of (47)
is symmetric and nonnegative.

Proof of Proposition 13. See [Abou-Kandil et al., 2003,

Theorem 4.1.6], observing that K1(tf ) = 0, S̃ ≥ 0 and

Q̃ ≥ 0.

Proposition 14. If Q̃ ≥ 0, then tc = +∞.

Proof of Proposition 14. It is sufficient to apply [Abou-
Kandil et al., 2003, Corollary 3.6.7, Example 3.6.8], ob-

serving K1(tf ) = 0, Q̃ ≥ 0 and S̃ ≥ 0.
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Proposition 15. If Q̃ ≥ 0, and if K1(t) converges to a limit

K∞
1 when t→ +∞, then

(

Ã− S̃K∞
1

)

is stable.

Proof of Proposition 15. Taking the limit in (47) leads to
the Lyapunov equation

K∞
1 (Ã− S̃K∞

1 )+(Ã− S̃K∞
1 )TK∞

1 = −Q̃−K∞
1 S̃K∞

1 < 0.
(53)

The result follows because K∞
1 is symmetric and nonneg-

ative.

In general, we do not know whether Q̃ is nonnegative or
not. In the scalar case however we are able to prove the
following result.

Proposition 16. In the scalar case, r = n = 1,m∞ = m2 =
1 and r∞ = r2 = 1, Q̃ is nonnegative.

Proof of Proposition 16. Let β = DT
∞uD∞ and η = D2u,

the matrix Q̃ writes

Q̃ =
[

CT
2 CT

∞D∞R
−1
γ

]

M

[

C2

R−1
γ DT

∞C∞

]

, (54)

where

M =
2α4β2

(

η2 +
α2β2

Rγ

) (

η2 + 2
α2β2

Rγ

)





β

Rγ

−η





[

β

Rγ

−η

]

.

5. CONCLUSION

This paper analyzes the mixed H2 /H∞ control for a
multi-channel system. The framework used is the Stack-
elberg strategy with a closed loop information structure.
This strategy is well adapted to manage several criteria
with different hierarchical roles. Necessary conditions are
provided and lead to a differential Riccati equation. It
is emphasized that the Stackelberg strategy globally de-
generates, due to the omnipotence of the leader. Using
conjugate times theory, sufficient conditions are given in
terms of finite escape time for the solution of the Riccati
equation.
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