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are worked out.
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1. INTRODUCTION

Simultaneous stabilization of linear systems is a fundamen-
tal issue in system and control theory, and is of theoretical
as well as practical significance. Simultaneous stabilization
problem focuses on the following:

Let p1, p2, · · · , pk be k scalar linear time-invariant systems.
Under what condition does there exist a fixed controller c
that is stabilizing for each pi(i = 1, · · · , k)?

When k = 1, this problem is reduced to the stabilization
of a single system and there always exists a stabilizing
controller for a single system provided no unstable pole-
zero cancellations occur. Meanwhile, once a stabilizing
controller of a single system is found, it is easy to pa-
rameterize the set of all stabilizing controllers of this
system. This parametrization is known as Youla-Kucera
parametrization discovered by Youla et al. (1976) and
Kucera (1979), respectively.

If k = 2, according to the Youla-Kucera parametrization,
it is possible to rephrase simultaneous stabilization of
two systems into strong stabilization (stabilization with
a stable controller) of a single systems. This relationship
was discovered for scalar systems by Saeks and Murray
(1982), and for multi-variable systems by Vidyasagar and
Viswanadham (1982). For the strong stabilization problem
of a single system, Youla et al. (1974) established an
elegant criterion: a system is stabilizable by a stable
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controller if and only if it has an even number of real
unstable poles between each pair of real unstable zeros!
This remarkable and easily testable condition is called
PIP(Parity Interlacing Property).

For the case of simultaneously stabilizing k ≥ 3 systems, it
is much more complicated than one expected. Vidyasagar
and Viswanadham (1982) indicated that it is possible to
transform simultaneous stabilization of k systems to strong
stabilization of corresponding k−1 systems. Blondel et al.
(1994) proved that simultaneous stabilization of k systems
is equivalent to bistable stabilization of associated k − 2
systems. Bistable stabilization means stabilization with
a stable and inverse-stable controller. Such a controller
is called bistable controller or unit controller. Although
many necessary or sufficient conditions for simultaneous
stabilization of three or more systems were obtained in
recent years, easily testable necessary and sufficient con-
ditions have not been found yet. Blondel and Gevers
(1994) showed that the simultaneous stabilization of three
systems is not rationally decidable, i.e. it is not possible
to find tractable necessary and sufficient conditions for
simultaneous stabilization of three systems that involve
only a combination of finite arithmetical operations (ad-
dition, substraction, multiplication and division), logical
operations (and, or) and sign test operations (equal to,
greater than, greater than or equal to, less than, less than
or equal to) on the coefficients of the three systems!

To illustrate the complexity of the simultaneous stabi-
lization problem of three systems, a specific simultaneous
stabilization problem called French Champagne Problem
(FCP) was proposed in (Blondel et al. 1993) and a bottle
of good French champagne was offered for its solution.

For the equivalence between simultaneous stabilization of
three systems and bistable stabilization of a single associ-
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ated system, a difficult problem called Belgian Chocolate
Problem (BCP) was proposed in (Blondel 1994). In ad-
dition, concerning the general case, another one, namely
Generalized Belgian Chocolate Problem (GBCP), was con-
sidered in (Blondel 1994). Blondel promised a kilogram of
Belgian chocolate for the solution to each of these two
problems.

Patel (1999) gave the FCP a negative answer and solved
it completely. Furthermore, a more general simultaneous
stabilization problem, the Generalized French Champagne
Problem (GFCP), was proposed in (Patel 1999). For the
BCP, the positive answer was given in (Patel et al. 2002)
and (Burke et al. 2006), respectively. Although many
numerical improving results were reported in (Patel et al.
2002), (Burke et al. 2006) and (Chang et al. 2007), the
GBCP is still open up to now.

Apparently, when the degree of the controller is fixed, the
controller design problem of simultaneous stabilization can
be transformed in essence to the problem of how to solve
a set of algebraic inequalities.

In the early 1950’s, Tarski (1951) published the well-known
work on the decidability of this kind of problems. Tarski’s
decision algorithm is of theoretical significance only, since
it can not be used to verify any non-trivial algebraic or
geometric propositions in practice due to its very high
computational complexity. The Cylindrical Algebraic De-
composition (CAD) algorithm proposed by Collins et al.
(1984) and subsequently improved by him and his collab-
orators is the first practical decision algorithm and can
be used to verify non-trivial algebraic or geometric propo-
sitions on computer. Although, as a generic program for
automated theorem proving, its computational complexity
was still very high, the CAD and its improved variations
have become one of the major tools for solving this kind
of problems.

Wu (1978) proposed a new decision procedure for proving
geometry theorems. As an important progress in auto-
mated theorem proving, Wu’s method is very efficient
for mechanically proving elementary geometry theorem
of equality type. The success of Wu’s method inspired
the research of algebraic approach to automated theorem
proving. However, automated inequality proving has been
a difficult topic in the area of automated reasoning for
many years since the relevant algorithms depend on real
algebra and real geometry. In 1996, Yang et al. introduced
a powerful tool, the Complete Discrimination Systems
(CDS) of polynomials, for automated reasoning in real
algebra. By means of CDS, many inequality-type theorem
from various applications have been proved or disproved.

Recently, combining discriminant sequences of polynomi-
als with Wu’s method as well as Partial Cylindrical Alge-
braic Decomposition, Yang et al. (1999 and 2001) proposed
some algorithms which are able to discover new inequali-
ties. These algorithms are complete for an extensive class
of problems involving inequalities and are applicable to the
controller design in simultaneous stabilization. Based on
these algorithms, two generic programs called Discoverer
and Bottema respectively were implemented as Maple
packages. Some of the following results are obtained by
calling Discoverer and Bottema.

In this paper, we investigate the GFCP and GBCP un-
der the conditions that the degree of the stabilizers is
fixed beforehand. Based on the recent development in
automated inequality-type theorem proving, the explicit
bounds which guarantee the existence of stabilizers with
fixed order are determined. In addition, two conjectures
concerning the GBCP are formulated.

2. FRENCH CHAMPAGNE PROBLEM AND
BELGIAN CHOCOLATE PROBLEM

In this paper, all polynomials are of real coefficients. We
denote by P the set of polynomials, Pn the set of n-th
order polynomials where n is an non-negative integer, H
the set of Hurwitz stable polynomials (all roots lie within
left half of the complex plane), Hn the set of n-th order
Hurwitz polynomials, MHn the set of monic n-th order
Hurwitz polynomials. The variable of polynomials is s.

2.1 French champagne problem

The following problem is the well-known French Cham-
pagne Problem (FCP) of simultaneous stabilization.

French Champagne Problem (FCP) Does there exist a
controller that simultaneous stabilizes the following three
plants:

p1(s) =
2
17

s − 1
s + 1

, p2(s) =
(s − 1)2

(9s − 8)(s + 1)
, p3(s) = 0?

Patel (1999) solved this problem by showing that there
does not exist a stabilizing controller. In addition, a more
general simultaneous stabilization problem, the General-
ized French Champagne Problem (GFCP), was proposed
by Patel (1999), which contains the FCP as a special case.

Generalized French Champagne Problem (GFCP) What
is the range of real δ for the existence of a controller that
simultaneously stabilizes the following three plants:

p1(s) =
2δ(s − 1)

s + 1
, p2(s) =

2δ(s − 1)2

((1 + δ)s − (1 − δ))(s + 1)
,

p3(s) = 0?

For simplicity of the presentation, let us give the following
equivalent statement of this problem.

Problem statement 1 (GFCP’) Let a1(s) = s + 1,
b1(s) = 2δ(s − 1), a2(s) = ((1 + δ)s − (1 − δ))(s + 1) and
b2(s) = 2δ(s − 1)2. What is the range of real δ for which
there exist stable polynomials x(s) ∈ Hn and polynomials
y(s) ∈ Pm such that ai(s)x(s) + bi(s)y(s) ∈ H (i = 1, 2)?

Obviously, the GFCP focuses on determining the range
of δ when there exists a simultaneously stabilizer while

the FCP asks whether δ =
1
17

is in the range. The

following theorem in (Guan et al. 2007) gives a completely
theoretical solution to the GFCP.

Theorem 1 (Guan et al. 2007) The necessary and suf-
ficient condition for the existence of a controller that
simultaneously stabilizes the following three plants:

p1(s) =
2δ(s − 1)

s + 1
, p2(s) =

2δ(s − 1)2

((1 + δ)s − (1 − δ))(s + 1)
,

p3(s) = 0
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is δ = 0 or |δ| >
1
16

.

Although the GFCP was resolved theoretically by Guan
et al. (2007), it is still difficult in practice to construct the
simultaneously stabilizing controller.

In the follows, some controller examples for the GFCP
will be provided by applying Discoverer or Bottema (Yang
et al. 1999 and 2001). Without loss of generality, the
denominator polynomials of the controllers are supposed
to be monic. In addition, for convenience, only the case
δ > 0 is considered.

Here, the real rational transfer functions are not nec-
essarily proper, that is to say, the degree of numerator
may be greater than that of denominator. Meanwhile, the
existence questions are prior to the properness issues for
the fact proven by Blondel (1994), i.e. if k plants are
simultaneously stabilizble by a non-proper controller, they
are also simultaneously stabilizble by a proper controller.
Indeed, due to the roots of a polynomial continuously de-
pend on its coefficients, the proper controllers can always
be found when the corresponding non-proper controllers
exist.

Example 1 (Guan et al. 2007) Let a1(s) = s + 1, b1(s) =
2δ(s − 1), a2(s) = ((1 + δ)s − (1 − δ))(s + 1) and
b2(s) = 2δ(s − 1)2, δ > 0. There exist stable polynomials
x(s) ∈ MHi(i = 0, 1, 2) and polynomials y(s) ∈ P 0 such
that aj(s)x(s) + bj(s)y(s) ∈ H (j = 1, 2) only for δ > 1

2 ,
whereas there do not exist such polynomials for δ ≤ 1

2 . For
a given δ > 1

2 , for example, δ = 3
4 , c(s) = y0 is a desired

controller if and only if 1
6 < y0 < 1

2 .

Remark 1 Example 1 shows that: 1) When the degree of
the controller is restricted, the explicit bounds of δ can be
obtained by using the packages developed by Yang et al.
(1999 and 2001). 2) Moreover, when δ is fixed, the range of
the parameters of controllers can be obtained. Due to the
completeness of the algorithms, the conditions obtained
are both necessary and sufficient.

Example 2 (Guan et al. 2007) Let a1(s) = s + 1, b1(s) =
2δ(s − 1), a2(s) = ((1 + δ)s − (1 − δ))(s + 1) and
b2(s) = 2δ(s − 1)2, δ > 0. There exist stable polynomials
x(s) ∈ MHi(i = 0, 1) and polynomials y(s) ∈ P 1 such
that aj(s)x(s)+bj(s)y(s) ∈ H (j = 1, 2) for δ > 1

4 , whereas
there do not exist such polynomials for δ ≤ 1

4 . For a given
δ > 1

4 , say, δ = 1
2 , c(s) = y1s+y0 is a requested controller,

where (y1, y0) ∈ {( 1
10 , 51

100 ), (3
5 , 3

5 ), (4
5 , 3

5 )}. Moreover, to
get a proper controller, by the continuous dependence for
roots of polynomials on their coefficients, it is known that
if ε > 0 is sufficiently small, e.g. ε = 1

10 , c̃(s) = y1s+y0
εs+1 is a

desired proper controller, where (y1, y0) ∈ {(4
5 , 3

5 )}.
Example 3 (Guan et al. 2007) Let a1(s) = s + 1, b1(s) =
2δ(s − 1), a2(s) = ((1 + δ)s − (1 − δ))(s + 1) and
b2(s) = 2δ(s − 1)2, δ > 0. There exist stable polynomials
x(s) ∈ MH0 and polynomials y(s) ∈ P 2 such that
ai(s)x(s) + bi(s)y(s) ∈ H (i = 1, 2) for δ > 1

6 , whereas
there do not exist such polynomials for δ ≤ 1

6 . When
δ = 10

59 , for example, c(s) = y2s
2 + y1s + y0 is a desired

controller, where (y2, y1, y0) ∈ {(97
50 , 39001

10000 , 245001
100000 ), (19501

10000 ,
39003
10000 , 4900299

2000000 )}. Moreover, to get a proper controller, by

the continuous dependence for roots of polynomials on
their coefficients, it is known that if ε > 0 is sufficiently
small, e.g. ε = 10−7, c̃(s) = y2s2+y1s+y0

εs2+εs+1 is a desired proper
controller, where (y2, y1, y0) ∈ {(97

50 , 39001
10000 , 245001

100000 )}.
Remark 2 The controllers obtained in the above exam-
ples are the sample points picked out from the cells of some
appropriate decomposition of the parametric space which
satisfy the requirement of simultaneous stabilization.

Remark 3 From the computational experiments, it seems
that the improvement on the bound of δ in the GFCP
mainly depends on the increase on the order of numerator
polynomials of the stabilizing controller.

Example 4 (Guan et al. 2007) Let a1(s) = s + 1, b1(s) =
2δ(s − 1), a2(s) = ((1 + δ)s − (1 − δ))(s + 1) and b2(s) =
2δ(s − 1)2, δ > 0. There do not exist stable polynomials
x(s) ∈ MH0 and polynomials y(s) ∈ P 3 such that
ai(s)x(s) + bi(s)y(s) ∈ H (i = 1, 2) for δ ≤ 1

8 . However,
when δ = 1

7 , for example, c(s) = y3s
3 + y2s

2 + y1s + y0

is a desired controller, where (y3, y2, y1, y0) ∈ {(26
25 , 376

125 ,
50001
10000 , 300001

100000 ), (11407
10000 , 121

40 , 50001
10000 , 300001

100000 )}. Moreover, to get
a proper controller, by the continuous dependence for roots
of polynomials on their coefficients, it is known that if
ε2 > ε1 for sufficiently small ε1 > 0 and ε > 0, e.g.
ε = 10−7 and ε1 = 10−15, c̃(s) = y3s3+y2s2+y1s+y0

ε1s3+εs2+εs+1 is a
desired proper controller.

Remark 5 The value of δ appeared in Example 4 is a
improvement over the minimal bound proposed in (Patel
et al. 2002).

2.2 Belgian chocolate problem

The following problems were proposed in (Blondel 1994).

Belgian Chocolate Problem (BCP) Can the continuous-
time second-order system

p(s) =
s2 − 1

s2 − 1.8s + 1

be stabilized by a stable and inverse stable controller?

Generalized Belgian Chocolate Problem (GBCP) For
what values of real δ is the scalar linear system

p(s) =
s2 − 1

s2 − 2δs + 1

stabilizable by a stable controller whose inverse is also
stable?

We give the equivalent statement of the GBCP as follows.

Problem statement 2 (GBCP’) Let a(s) = s2 − 2δs + 1,
b(s) = s2 − 1. What is the range of real δ for which there
exist stable polynomials x(s) ∈ Hn and y(s) ∈ Hm such
that a(s)x(s) + b(s)y(s) ∈ H?

Apparently, the GBCP concerns the range of δ when there
exists a bistable controller while the BCP asks whether
δ = 0.9 is in this range.

For the BCP, many bistable controllers were obtained in
(Patel et al. 2002), (Burke et al. 2006) and (Chang et al.
2007), respectively. Yet the GBCP is still open up to now.
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Note that stabilization of GBCP is impossible for δ = 1
since then an unstable pole-zero cancellation occurs in
p(s). Conversely, stabilization is easy for δ < 0.5 (Burke
et al. 2006). According to Blondel (1994), there exists a
number δ∗ < 1 such that stabilization is possible for all
δ < δ∗, but impossible for δ ≥ δ∗. That is to say, there
exists a critical value which splits the stabilizable and
unstabilizable parameter region. Thus the GBCP reduces
to determining δ∗. A theoretical bound for δ∗ was first
given in (Rupp 1994) and improved further in (Blondel
et al. 1995). These bounds were given for an equivalent
problem in the z-domain. The corresponding result in the
s-domain is given below. It is known that δ∗ lies in the
following range:

0.7615941559557649 < δ∗ < 0.9999800001999982

According to (Patel et al. 2002), we know that δ∗ > 0.937.
In addition, (Burke et al. 2006) improved the results
by finding a bistable stabilizer when δ = 0.94375 and
predicted that δ∗ > 0.951. Recently, some improving
numerical results were reported in (Chang et al. 2007).
Now, it is known that δ∗ > 0.973974.

In this section, we concern the GBCP under the conditions
that the degree of the stabilizers is fixed beforehand. Thus
we hope to indicate the interesting relationships between
the explicit bounds of δ and the degree of the controllers.

We firstly prove the following proposition:

Proposition 1 (He et al. 2007) Let a(s) = s2 − 2δs + 1,
b(s) = s2 − 1, δ > 0. There do not exist x(s) ∈ H0

and y(s) ∈ Hn(n = 0, 1, 2, . . .), such that a(s)x(s) +
b(s)y(s) ∈ H .

Proof: See Appendix A.

In the follows, we will provide some controller examples
for the GBCP by applying Discoverer or Bottema. Here
we also suppose that the denominator polynomials of the
controllers are monic.

Example 5 Let a(s) = s2 − 2δs + 1, b(s) = s2 − 1,
δ ∈ [0, 1]. There exist stable polynomials x(s) ∈ MH1 and
y(s) ∈ Hi(i = 0, 1), such that a(s)x(s)+b(s)y(s) ∈ H only
for δ <

√
2

2 , whereas there do not exist such polynomials
for δ ≥

√
2

2 . For a given δ <
√

2
2 , say, δ = 7

10 , c(s) = y0
s+x0

is a desired controller, where (x0, y0) ∈ {( 71
100 , 7099

10000 )}.
Example 6 Let a(s) = s2 − 2δs + 1, b(s) = s2 − 1,
δ ∈ [0, 1]. There exist stable polynomials x(s) ∈ MH2

and y(s) ∈ Hi(i = 0, 1, 2), such that a(s)x(s) + b(s)y(s) ∈
H only for δ <

√
3

2 , whereas there do not exist such
polynomials for δ ≥

√
3

2 . For a given δ <
√

3
2 , say, δ = 85

100 ,
c(s) = y0

s2+x1s+x0
is a desired controller, where (x1, x0,

y0) ∈ {(9
5 , 132

125 , 10559
10000 )}.

Example 7 Let a(s) = s2 − 2δs + 1, b(s) = s2 − 1,
δ ∈ [0, 1]. There exist stable polynomials x(s) ∈ MH3

and y(s) ∈ H0, such that a(s)x(s) + b(s)y(s) ∈ H only for

δ <

√
2+

√
2

2 , whereas there do not exist such polynomials

for δ ≥
√

2+
√

2
2 , where the exact value of k =

√
2+

√
2

2 =
0.923879 . . . is the largest real root of 8k4 − 8k2 + 1.

For a given δ <

√
2+

√
2

2 , for example, δ = 923
1000 , c(s) =

y0
s3+x2s2+x1s+x0

is a desired controller, where (x2, x1, x0,

y0) ∈ {(37
20 , 303239

125000 , 1314133
1000000 , 26282659

20000000 )}.
When δ = 0.9 (namely BCP), we obtain a desired con-
troller c(s) = y0

s3+x2s2+x1s+x0
, where (x2, x1, x0, y0) ∈

{(23
10 , 329

100 , 73
40 , 18249

10000 ), (213
100 , 301

100 , 417
250 , 2083

1250 )}.
Example 8 Let a(s) = s2 − 2δs + 1, b(s) = s2 − 1,
δ ∈ [0, 1]. There exist stable polynomials x(s) ∈ MH4

and y(s) ∈ H0, such that a(s)x(s) + b(s)y(s) ∈ H only for

δ <

√
10+2

√
5

4 , whereas there do not exist such polynomials

for δ ≥
√

10+2
√

5
4 , where the exact value of k =

√
10+2

√
5

4 =
0.951056 . . . is the largest real root of 16k4 − 20k2 + 5.
Moreover, we present a fourth-order bistable controller for
δ > 0.9510 in Appendix B, which improves the results in
(Burke et al. 2006).

In addition, more precise details about the distribution
of δ∗ and a conjecture to the GBCP can be found in
Appendix C.

Remark 6 As a special case, we know that there does
not exist δ ≥ 0.96 with x(s) ∈ MH5 and y(s) ∈ H0, such
that a(s)x(s) + b(s)y(s) ∈ H .

2.3 A conjecture to generalized Belgian chocolate problem

Consider the cases of controllers with x(s) ∈ MHn(n =
1, 2, 3, 4) and y(s) ∈ H0. Note that for the real variable
δ → δ∗n, there exists a(s)x(s) + b(s)y(s) → sn+2. Mean-
while, notice that the necessary condition on the stability
of real polynomial requires all coefficients of the polyno-
mial to be of the same sign. Thus each δ∗n(n = 1, 2, 3, 4)
can also be obtained by solving a set of corresponding
equations.

Furthermore, a set of necessary conditions concerning δ∗n in
the GBCP can be formulated from a generalization of these
properties, and can be stated as the following conjecture:

Conjecture 1 For the case of controllers with structure
x(s) ∈ MHn(n = 1, 2, . . .) and y(s) ∈ H0, each δ∗n is equal
to or less than δn, where δn is the largest real root of the
following continued fractions⎧⎨

⎩
fn = − 1

fn−1
− 2δ

f0 = −δ

From Maple 9, we can obtain:

δ1 = 0.7071 . . . is the largest real root of 1 − 2δ2;

δ2 = 0.8660 . . . is the largest real root of −δ(−3 + 4δ2);

δ3 = 0.9238 . . . is the largest real root of −1 + 8δ2 − 8δ4;

δ4 = 0.9510 . . . is the largest real root of −δ(5 − 20δ2 +
16δ4);

δ5 = 0.9659 . . . is the largest real root of 1− 18δ2 + 48δ4 −
32δ6;

δ6 = 0.9749 . . . is the largest real root of −δ(−7 + 56δ2 −
112δ4 + 64δ6);
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δ7 = 0.9807 . . . is the largest real root of −1 + 32δ2 −
160δ4 + 256δ6 − 128δ8;

δ8 = 0.9848 . . . is the largest real root of −δ(9 − 120δ2 +
432δ4 − 576δ6 + 256δ8);

δ9 = 0.9876 . . . is the largest real root of 1−50δ2+400δ4−
1120δ6 + 1280δ8 − 512δ10;

δ10 = 0.9898 . . . is the largest real root of −δ(−11+220δ2−
1232δ4 + 2816δ6 − 2816δ8 + 1024δ10);

. . .

It is easy to see that δ∗n = δn for n = 1, 2, 3, 4 and δ∗n < δn

for n > 4.

On the other hand, as n gets larger, δn is found to get
closer and closer to 1, yet even δ90 = 0.9998510240 . . . is
less than the theoretical upper bound of δ∗ proposed in
(Blondel et al. 1995), namely δ∗upper = 0.99998000019999
82.

Consequently, a stabilizer with fifth-order was presented
for δc

5 = 0.95138549197075 in (Chang et al. 2007), yet it is
known that δc

5 < δ5 = 0.9659 . . .

Similarly, a stabilizer with sixth-order was presented for
δc
6 = 0.96292177890276 in (Chang et al. 2007), yet it is

known that δc
6 < δ6 = 0.9749 . . .

Moreover, a stabilizer with seventh-order was reported for
δc
7 = 0.96292783033099 in (Chang et al. 2007), yet it is

known that δc
7 < δ7 = 0.9807 . . .

Meanwhile, a stabilizer with eighth-order was reported for
δc
8 = 0.96696634493729 in (Chang et al. 2007), yet it is

known that δc
8 < δ8 = 0.9848 . . .

Again, a stabilizer with ninth-order was reported for δc
9 =

0.96700163 in (Chang et al. 2007), yet it is known that
δc
9 < δ9 = 0.9876 . . .

And a stabilizer with tenth-order was reported for δc
10 =

0.97397439924082 in (Chang et al. 2007), yet it is known
that δc

10 < δ10 = 0.9898 . . .

In fact, regarding all the stabilizing controllers found so
far, the Conjecture 1 is satisfied!
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Appendix A. PROOF OF PROPOSITION 1

Proposition 1 Let a(s) = s2 − 2δs + 1, b(s) = s2 − 1,
δ > 0. There do not exist x(s) ∈ H0 and y(s) ∈ Hn(n = 0,
1, 2, . . .), such that a(s)x(s) + b(s)y(s) ∈ H .

Proof: (By contradiction.)

Suppose that there exist Hurwitz polynomials x(s) ∈ H0

and y(s) ∈ Hn(n = 0, 1, 2, . . .), such that a(s)x(s) +
b(s)y(s) ∈ H .

Without loss of generality, we assume x(s) = x0 and y(s)
= ynsn + yn−1s

n−1 + · · · + y1s + y0, where x0 �= 0 and
yny0 > 0. Hence a(s)x(s) + b(s)y(s) = (s2 − 2δs + 1)
x0 + (s2 − 1)(ynsn + yn−1s

n−1 + · · ·+ y1s + y0) = ynsn+2

+ yn−1s
n+1 + (yn−2 − yn)sn + · · · + (x0 + y0 − y2)s2 +

(−2δx0 − y1)s + (x0 − y0).

Consider y0 �= 0. There are two cases, both of which lead
to contradiction.

Case 1: Assume that y0 > 0, since y(s) ∈ Hn, we
obviously have yi > 0(i = 1, 2, . . . n). If x0 > 0, then
(−2δx0 − y1) < 0. Hence yn > 0, (−2δx0 − y1) < 0
and a(s)x(s) + b(s)y(s) ∈ H , which is a contradiction.
Meanwhile, if x0 < 0, then (x0 − y0) < 0. Hence yn > 0,
(x0 − y0) < 0 and a(s)x(s) + b(s)y(s) ∈ H , which is also a
contradiction.

Case 2: Otherwise, assume that y0 < 0, since y(s) ∈ Hn,
we obviously have yi < 0(i = 1, 2, . . . n). If x0 > 0,
then (x0 − y0) > 0. Hence yn < 0, (x0 − y0) > 0
and a(s)x(s) + b(s)y(s) ∈ H , which is a contradiction.
Meanwhile, if x0 < 0, then (−2δx0−y1) > 0. Hence yn < 0,
(−2δx0 − y1) > 0 and a(s)x(s) + b(s)y(s) ∈ H , which is
also a contradiction.

This completes the proof.

Appendix B. STABILIZER WITH X(S) ∈ MH4 AND
Y (S) ∈ H0 FOR δ > 0.951 IN GBCP

The maximal value of δ obtained here is

δmax=0.95105651 62896110 29420643 88946743 89112458
55475719 38,

while the polynomials x(s) and y(s) are x(s) = s4 + x3s
3

+ x2s
2 + x1s + x0, y(s) = y0, where

x0=1.6180339889 4536286946 9494993565 8952157345 86
8769824,

x1=3.0776835375 2911962833 8955905332 3366931516 57
1678076,

x2=2.6180339889 9793598068 1189007281 2013909496 03
0952963,

x3=1.9021130326 7922205884 1287778934 8778224917 10
9514388,

y0=1.6180339889 4536286946 9494993565 8952157344 86
8769824.

Recently, using the numerical algorithm based on a global
optimization methodology, (Chang et al. 2007) improved
the maximal value of δ to 0.97397439924082 and presented
the corresponding bistable controller of tenth-order as
follows:

x(s) = s10 +x9s
9 +x8s

8 +x7s
7 +x6s

6 +x5s
5 +x4s

4 +x3s
3

+ x2s
2 + x1s + x0, where

x9=1.97351109136261, x8=5.49402092964662,

x7=8.78344232801755, x6=11.67256448604672,

x5=13.95449016040116, x4=11.89912895529042,

x3=9.19112429409894, x2=5.75248874640322,

x1=2.03055901420484, x0=1.03326203778346;

and y(s) = y5s
5 + y4s

4 + y3s
3 + y2s

2 + y1s + y0, where

y5=0.00066128189295, y4=3.611364710425,

y3=0.03394722108511, y2=3.86358782861648,

y1=0.0178174691792, y0=1.03326203778319.

Meanwhile, for the δ larger than 0.951, many correspond-
ing stabilizers with order more than four were provided in
(Chang et al. 2007).

Appendix C. THE DISTRIBUTION OF δ∗ IN GBCP

In the following table, we present the upper bounds of δ
(δ∗) obtained so far in GBCP.

x(s) y(s) δ∗ x(s) y(s) δ∗

MH0 H0
No Existence

MH1 H0
√

2
2 MH1 MH0 1

2

MH1 H1
√

2
2 MH1 MH1

No Existence

MH2 H0
√

3
2 MH2 MH0

√
3

2

MH2 H1
√

3
2 MH2 MH1

√
2

2

MH2 H2
√

3
2 MH2 MH2

√
2

2

MH3 H0

√
2+

√
2

2 MH3 MH0
δ′

MH3 H1

√
2+

√
2

2 MH3 MH1
√

3
2

MH3 H2

√
2+

√
2

2 MH3 MH2
√

3
2

MH3 H3

√
2+

√
2

2 MH3 MH3
√

3
2

MH4 H0

√
10+2

√
5

4

MH4 H1

√
10+2

√
5

4 MH4 MH1
δ′′

MH4 H2

√
10+2

√
5

4

MH4 H3

√
10+2

√
5

4

MH4 H4

√
10+2

√
5

4

where δ′ = 0.554194 . . . is the smallest real root of 512δ10

− 1536δ8− 192δ7 + 1536δ6 + 384δ5 − 488δ4 − 192δ3 − 78δ2

− δ + 54 and δ′′ = 0.933781 . . . is the largest real root of
16δ5 − 20δ3 − 2δ2 + 5δ + 2.

Based on these results, we have another conjecture about
δ∗ as follows:

Conjecture 2 In GBCP, assume that δ∗b is the upper
bound of δ for x(s) ∈ MHn and y(s) ∈ H0, then δ∗b is
also the upper bound of δ for x(s) ∈ MHn and y(s) ∈ Hi

(i = 1, . . . n).

Note that the Conjecture 2 is satisfied when n < 5.
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