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Abstract: In this article a fault detection algorithm for capturing structural and/or sensor
failures in robot manipulators is presented. The robot dynamics is linearizable with respect to a
certain parameter. Using this linearizable representation, common faults in robot arms, such as
failures of actuators or faulty sensor measurements, can be identified as variations encountered
in the parameter vector. The proposed algorithm uses an Orthotopic Set Membership Identifier
that defines the feasible parameter set and the parameters’ bounds, within which the Weighted
Recursive Least Square parameter estimate resides. An Uncertainty Output Predictor that
generates the future region of faultless system operation. A fault is detected, when one of
the following criteria below is validated: a) the WRLS parameter estimate resides out of the
parameters’s bounds, b) there is a sudden increase in the volume of the feasible set and c) the
system’s output is not within the predicted interval. Simulation studies are offered to test this
fault detection methodology, customized to a two-link robot arm.

1. INTRODUCTION

From a general point of view, the fault diagnosis problem
is concerned with the detection of time instants where
there is a significant difference in the nominal system’s
behavior. The next step is the detection of the reason of
the fault occurrence. In case of robot manipulators, De
Luca et al. [2005] determine a fault as the unexpected
behavior observed in its torques, when a technical failure
occurs. Dixon et al. [2000], Shin et al. [1999] report a
Fault Detection Scheme targeting failures of actuators or
active bias to a sensor measurement etc. Similarly, a false
operation in its workspace, because of accidental collision
with unknown obstacles or manipulating an unknown load
has been reported in De Luca et al. [2005] and Spong
[2001], respectively.

The classical statistical methodology for fault detection is
based on a fault indicator, or residual, which is computed
via a specific model and observation, and defines a fault
symptom De Luca et al. [2003], Yen et al. [2000], Green-
wood [2005], Zhang et al. [2004]. This method is applied
mostly in case of sensor failures in robot manipulators. On
the other hand, the deterministic methodology for fault
detection concerns set-membership approach, which takes
into account a priori knowledge of model uncertainties and
measurement errors Adrot et al. [2002], Milanese et al.
[2003], Fagarasan et al. [2004], Ploix et al. [2001]. The goal
of the set-membership approach is the characterization of
a set of all parameter vectors that are consistent with the
data, model structure and bounded noise errors, called fea-
sible parameter set. In most techniques, the system output
must be linearizable with respect to parameter vector. The
benefit of the second methodology is the utilization of the
parameter’s intervals that arise from polytopes Chischi
et al. [1998], Ingimundarson et al. [2005], bounding the
feasible parameter set.
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In this paper, a Fault Detection (FD) algorithm based on
the interactive relation of an Orthotopic Set Membership
Identifier (OSMI) and an Uncertainty Output Predictor is
presented. The OSMI uses two geometric approaches: the
ellipsoid Cheung et al. [1993], Fogel et al. [1982], Milanese
et al. [1982], for the characterization of the feasible
parameter set and the orthotope Le et al. [1997], Tzes
et al. [1999], bounding the ellipsoid, for the computation
of parameters’ bounds. The center of both the ellipsoid
and the orthotope is the Weighted Recursive Least Square
(WRLS)parameter estimate, and its volume reflects the
parameter uncertainties, being induced from the bounded
noise error. The vertices of the orthotope represent the
parameter interval Walter et al. [1990], Fagarasan et al.
[2001]. The bounds of the parameter interval are the inputs
to the Uncertainty Iput/Output Predictor that generates
the limited region of proper system operation. Finally,
the fault detection is accomplished, when: a) the WRLS
estimate of the parameter vector does not reside within
the computed bounds, or b) the volume of the ellipsoid is
suddenly increased Reppa et al. [2007] and c) the systems
output is not within the predicted limited region Reppa
et al. [2006].

This paper is structured in the following manner. The
non linear system dynamics of a robot arm and the
inherent assumptions that must be satisfied for the proper
application of the FD-methodology are presented in the
next section. The mathematical preliminaries of the OSMI
is detailed in section 3, followed by the simulation studies
and the conclusive remarks.

2. PROBLEM STATEMENT

The dynamic equation of an m-link robot manipulator is
given from the Euler-Lagrange theory as:

M(q)q̈ + C(q, q̇) + G(q) = τ (1)
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Fig. 1. Orthotopic Set Membership Identification Scheme

where M(q) ∈ ℜm×m is the symmetric positive definite
inertia matrix, C(q, q̇) ∈ ℜm×m is the Coriolis and cen-
tripetal matrix, G(q) ∈ ℜm is the gravitational vector and
τ ∈ ℜm are the applied torques.

Equation ( 1) can be formed as:

τ = θT Y (q, q̇, q̈) (2)

where θ is a constant (r + p)-parameter vector and Y is
an (r + p) × m matrix of known functions of the general-
ized coordinates and their derivatives (q, q̇, q̈). The above
equation means that the Lagrangian dynamic equations
are linear parametrizable.

It has to be underlined that the fault detection methodol-
ogy is based on three rather “strict” assumptions:

1st assumption: The aforementioned nonlinear system
is linearizable, with its discrete dynamics expressed in
the most general form as

y(n) = θ(n)T φ(n) + e(n), y(n), e(n) ∈ ℜm (3)

φ(n) =






φ1 (u(n − 1), . . . , u(n − r), y(n − 1), . . . y(n − p))
φ2 (u(n − 1), . . . , u(n − r), y(n − 1), . . . y(n − p))

.

..
φm (u(n − 1), . . . , u(n − r), y(n − 1), . . . y(n − p))






T

︸ ︷︷ ︸

regression vector

(4)

θ(n) = [θ1(n), . . . , θr(n), θr+1(n), . . . , θr+p(n)]
T

︸ ︷︷ ︸

parameter vector

(5)

2nd assumption: θ(n) remains constant over a sliding
window with length L′ or θ(n) = θ(n− 1) = ... = θ(n−
L′). The window’s minimum length, L∗ is assumed to
be known, whereas the time instants-(ni) where the
parameter vector can change (jump) (θ(ni) �= θ(ni − 1))
are unknown. This jump-parameter configuration is
typical of systems prone to catastrophic faults.

3rd assumption: The noise sequence is point-to-point
restricted, namely

γn ‖e(n)‖
2
≤ 1,∀n. (6)

This noise sequence indirectly induces an uncertainty in

the utilized identified model, ŷ(n) = θ̂(n)φ(n) and can
be thought as the source of parametric uncertainty. Sub-

sequently, interval bounds on the θ̂(n) -parameter vector
can be defined by mapping the noise-contaminated ob-
servations into uncertainty in the model.

The objective of the suggested FD-scheme, shown in Fig.
1, is to model “generic” faults of robot manipulator,
such as system reconfiguration or accidental collision with
unknown obstacles, as variations in parameter vector and
to identify the time instants where these variations occur.

3. FAULT DETECTION BASED ON ORTHOTOPIC
SET MEMBERSHIP IDENTIFICATION

3.1 Orthotopic Set Membership Identifier

Ellipsoid Definition: The intricacies behind the OSMI
and its utilization in a fault detection scheme are pre-
sented in this section. The identified orthotope bounds an
ellipsoid which contains the true parameter vector. The
ellipsoid is

Ω(n) =

{

θ : (θ − θ̂(n))T C(n)

ξ(n)
(θ − θ̂(n)) ≤ 1, θ ∈ ℜr+p

}

C(n) = [φT(n)φ(n)]

ξ(n) = θ̂T (n)C(n)θ̂(n) +

n∑

i=1

λ(i)

γi

(1 − γiy
2(i))

(7)

where θ̂(n) is the WRLS estimate of the parameter vector,
C(n) is the covariance matrix, and the symmetric positive
definite matrix W (n) = C(n)/ξ(n) determines how far the

ellipsoid extends in each direction from θ̂(n), and λ leads
to the minimization of the ratio of the ellipsoid’s volume
at n and n − 1, namely

λ(n) ∈

{

ℜ+

0 : min
λ

det(B(n))

det(B(n − 1))

}

,

B(n) =
−1

det (W (n)) →ellipsoid’s “volume ratio”

(8)

Orhtotope Definition: In the sequel, the orthotope ori-
ented parallel to the parameter coordinate axes and cen-
tered on the centroid of the ellipsoid, is computed via the
equation [28]

Ωp(n) =

{

θ :
1

|σi(n)|
(θi − θ̂

i
(n)) ≤ 1, i = 1, ..., r + p

}

. (9)

The contact-points between the orthotope and the ellip-
soid are

θ−i = θ̂i − σi, θ
+

i = θ̂i + σi

σi =
√

W−1

i,i (n).
(10)
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and the orthotope’s volume

Vorthotope = 2q+pσ1 × . . . × σr+p (11)

3.2 Uncertainty Output Predictor

The Uncertainty Output Predictor uses the vertices of the
orthotope provided by the OSMI, as the inputs to the
uncertainty-predictor for the computation of the λ-step
ahead predicted output interval, which is given as:

ȳ(n + λ|n) =
[
ŷ−(n + λ|n), ŷ+(n + λ|n)

]

= θ̄(n)φ̄(n + λ) + ē(n), λ ≥ 1, (12)

where ē(n) ∈
[
−eM (n),+eM (n)

]
and γn = 1

/(
eM

)2
in

(6). A recursive relationship is derived for generating the
-step ahead predicted output interval, under the assump-
tion that at time n, all past output quantities are known.
The generic expression for ȳ(n+λ|n), (1 ≤ λ ≤ p) is given
as:

ȳ(n + λ|n) =
λ−1∑

i=0

Bλ−1

i,n ū(n + i) + Aλ + ē(n + λ) +

λ−1∑

i=1

θ̄q+i(n)ē(n + i), (13)

where Aλ, Bλ
i,n, i = 0, ..., λ − 1 are computed using the

following recursive scheme:

Bλ
i,n =

λ−1∑

j=1

θq+j(n)Bλ−j

i,n
+ θλ−1−i(n), i = 0, ...λ − 1

B1
0,n = θ1(n), B1

1,n = 0, i = 0, ..., λ − 1

Aλ =

λ−1∑

i=1

θq+1(n)Ai +

q∑

j=λ+1

θj(n)u(n − j + λ)+

q+p∑

j=q+λ

θj(n)y(n − j + q + λ − 1), λ ≥ 2

A1 =

q∑

j=2

θj(n)u(n − j + 1) +

q+p∑

j=q+1

θj(n)y(n − j + q)

(14)

3.3 Fault Detection Criteria

Using the Orthotopic Set Membership identifier and the
Uncertainty Predictor Error, the FD-scheme recognizes a
fault when:

(1) the centroid θ̂ /∈ Ωp(n), or
(2) det(B(n)) > det(B(n − 1)), or
(3) the actual y(n) is not within the predicted intervals

y(n) �= ȳ(n + i|n), i = 1, ..., λ

4. SIMULATION STUDIES

The grasping of an unknown mass from a two-link robot
arm, which is modelled as a sudden change in the mass
of the second link is considered as a FD-instant. The two-
link robot arm manipulating an unknown load is shown in
Fig. 2, with m1, m2 being the masses of the links with I1,
I2 the corresponding moments of inertia, and l1, l2, their
lengths. The dynamic equations of the two-link robot are:

x

y

mm

I
1

1

m
I2

2

l
l

l
2

lc
2

lc
l

q
1

q
2

ô
1

ô
2

Fig. 2. Dual-link robot arm

[
q̈1

q̈2

]

+ h
[

q̇1

q̇2

]

+
[

g1

g2

]

=
[

τ1

τ2

]

(15)

with

H =
[

H11 H12

H21 H22

]

, h =
[
−hq̇2 −hq̇1 − hq̇2

hq̇1 0

]

(16)

H11 = m1lc
2
1 + I1 + m2

(
l21 + lc2

2 + 2l1lc2 cos q2

)
+ I2

H22 = m2lc
2
2 + I2

H12 = H21 = m2l1lc2 cos q2 + m2lc
2
2 + I2

h = m2l1lc2 sin q2

g1 = m1lc1g cos q1 + m2g (lc2 cos(q1 + q2) + l1 cos q1)
g2 = m2lc2g cos(q1 + q2)

(17)

where q1, q2 are the two joint angles and τ1, τ2 are the
applied torques to the robot arm.

The suggested FD-scheme is applied to the system of the
robot arm, whose parameters are presented in Table 1.
The system under observation of the above two link robot

Table 1. Robot arm Kinematic and Dynamic
parameters

m1 m2 l1 l2 lc1 lc2 I1 I2
10 5 1 1 0.5 0.5 0.833 0.416

is modeled as a MIMO ARMA system. It is assumed that
the lengths of each link and the center of gravity of the first
link are known and invariant. On the contrary, the masses
of the two links and the center of gravity of the second
link are unknown. The collection of system-relevant data
over a time window N ∈ [1, ..., n] that are inserted in the
OSMI-scheme based on Eq. 2 and 3 generates:









τ1(1)
τ2(1)

...
τ1(n)
τ2(n)









T

=





θ1

θ2

θ3

θ4





T









Φ1(1)
Φ2(1)

...
Φ1(n)
Φ2(n)









T

+









e1(1)
e2(1)

...
e1(n)
e2(n)









T

, (18)

where

Φ1 = [ φ11(1) φ12(1) φ13(1) φ14(1) ] ,
Φ2 = [ φ21(1) φ22(1) φ23(1) φ24(1) ]

(19)

or,written in a compact form,

[τi]1×n =
[
θT

]

1x4
[Φi]4×n + [ei]1×n (20)

The elements of the regression vector are
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φ11(n) = l21 q̈1(n) + l1g cos q1(n),
φ12(n) = l1 (cos q2 (2q̈1(n) + q̈2(n)))

− l1
(
sin q2(n)

(
q̇2(n)2 + 2q̇1(n)q̇2(n)

))

+ l1 (g cos(q1(n) + q2(n))) ,

φ13(n) =

(
1

12
l21 + lc2

1

)

q̈1(n) + lc1g cos q1(n),

φ14(n) = q̈1(n) + q̈2(n),
φ21(n) = 0,
φ22(n) = l1 (cos q2(n)q̈1(n)) − l1

(
sin q2(n)q̇1(n)2

)

+ g cos(q1(n) + q2(n)),
φ23(n) = 0,
φ24(n) = q̈1(n) + q̈2(n)

(21)

the elements of the parameter vector are

θ1 = m2,
θ2 = m2lc2,
θ3 = m1,
θ2 = I2 + m2lc

2
2

(22)

and finally the noise sequence |ei(n)| ≤ eM
i .

4.1 Case study assumptions

The simulation studies are based on the above system rep-
resentation for the first link ([τ1]1×n =

[
θT

]

1x4
[Φ1]4×n +

[e1]1×n), which satisfies the first assumption for the appli-
cation of the fault detection methodology. The reason of
using only the system representation of the first link is that
φ21, φ23 are zeros and the corresponding θ1, θ3 cannot be
identified and their bounds cannot be computed. The nom-
inal values of the parameter vector are determined from
the entries of Table 1. The set membership identification
is realized taking into account that the noise error bound

γn is constant and equals to 1
/(

eM
1

)2
. In this example,

eM
1 = 0.01|τ1| is the maximum noise bound for the first

input and |τ1| = 175.2 is the magnitude of this input.
In Fig. 3, the convergence of the four parameters to the
aforementioned nominal values and the variation of the
ellipsoid’s volume are presented.

Fig. 3. WRLS estimate of the four parameters (θi, i =
1, ..., 4) and the variation of ellipsoid’s volume

For simulation purposes, it is assumed that the two-link
robot arm suddenly grasps a load of mass, m = 9 ∗ m2

at the 2501st time instant. The grasping of the unknown
mass results in the increment of m2

new = 10 ∗ m2. In

addition, the applied torque does not equal to the model-
based torque, expected in the absence of the collision.
An issue of concern is the OSMI behavior after the mass
increment.

4.2 Validation of the 1st Fault Detection Criterion

The sudden variation in the mass of the second link of the
robot arm is identified, after the “trigger” of the first fault
detection criterion. Computing at every time instant the
WRLS estimate of the parameter vector and its bounds,
it is proven that before and after the 2501st sample the
estimate always resides within the parameter interval,
except from this particular sample. The recognition of
the fault occurrence and the time that this happens are
shown in Figures 4-7. In each figure, the performance of the
parameter θi, i = 1, ..., 4, the region of the fault occurrence
and the logical fault indicator, which equals to one only
if the parameter estimate is out of the computed bounds

(θ̂i(n) > θ+

i (n) or θ̂i(n) < θ−i (n)) are presented.

Fig. 4. Upper (red line) and lower (green line) bounds and
the WRLS estimate (blue line) of the parameter θ1

and the fault indicator

Fig. 5. Upper (red line) and lower (green line) bounds and
the WRLS estimate (blue line) of the parameter θ2

and the fault indicator
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Fig. 6. Upper (red line) and lower (green line) bounds and
the WRLS estimate (blue line) of the parameter θ3

and the fault indicator

Fig. 7. Upper (red line) and lower (green line) bounds and
the WRLS estimate (blue line) of the parameter θ4

and the fault indicator

4.3 Validation of the 2nd Fault Detection Criterion

The second criterion which leads to the detection of a
faulty behavior of the system is the fact that the volume of
the ellipsoid grows at the 2501st time instant, as observed
in Fig. 8. This fact objects to the basic presupposition of
the deterministic algorithms that characterize the feasible
parameter set via an ellipsoid, which is the reduction of
the ellipsoid’s volume at every time instant, as shown in
Fig. 3. In Fig. 9, the ellipsoid and the orthotope, bounding
the ellipsoid at the time instant n = 2500, are presented.
On the other hand, at the time instant n = 2501, not only
the orthotope does not bound the ellipsoid, but also the
volume of the ellipsoid has been increased excessively in
comparison with the volume of the orthotope, presented
in Fig. 10.

4.4 Validation of the 3rd Fault Detection Criterion

The detection of a “fault” in the behavior of the robot
manipulator is also verified via the Uncertainty Output
Predictor, defined in equation 13. It is already referred
that the dynamic effect of the unexpected grasping is the
augmentation of joint torques to the commanded ones.
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Fig. 8. Variation of ellipsoid’s volume

Fig. 9. Orthotope and ellipsoid representations prior to the
fault

Fig. 10. Orthotope and ellipsoid representations after the
fault

The variations in the joint torques can be predicted via
the Uncertainty Output Predictor. The predicted upper
and lower bound of the “new” torque of the first joint,
and the actual one are presented in Fig. 11, for noise error
bound eM

1 = 0.01|τ1|. In this Figure there is also a fault
indicator, which is equal to 1, when y(n) > y+(n+λ|n) or
y(n) < y−(n + λ|n).

5. CONCLUSION

A Fault Detection scheme is utilized for capturing sudden
variations of the parameter vector encountered in the
linearizable model of a robot arm. The primary goal is the
parameter estimation of the system, when the data are
corrupted by unknown but bounded error, consistent with
the measurements, the model and the error description
(feasible parameter set). A “false” performance is detected
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Fig. 11. The predicted upper(red line) and lower bound
(green line) and the actual (input) torque of the first
link (blue line) and the fault indicator

either when the WRLS estimate resides out of the bounds
that are defined via the orthotopic set membership, or a
sudden increase in the ellipsoid’s volume of the feasible
region, or when the predicted values of the robot’s output
vector are not within a certain interval. Simulation studies
are used to investigate the efficiency of the presented
algorithm.
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