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Abstract: Extremum-seeking control is a class of methods where real-time static optimization
of a dynamic system is achieved by controlling the gradient. Estimation of the gradient is a key
issue in extremum-seeking methods. In multi-unit optimization, the gradient is obtained using
finite difference of the outputs of multiple identical units driven with inputs that are offset by
a design parameter. However, if the units are not identical, the stability of such a scheme is
in question and the point where the scheme converges could be far from the desired optimum.
This paper proposes correctors to compensate for the differences between the units. It is shown
that the scheme with correctors is locally asymptotically stable and converges to the desired
optimum for all the units. The multi-unit optimization method with correctors is applied to
bioreactors producing green fluorescent protein.
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1. INTRODUCTION

Real-time optimization is a valuable tool to bring and
maintain a process at its optimal point of operation.
The classical approach consists of two steps (Marlin and
Hrymak, 1997): First, a model of the process is used
to numerically calculate the optimum and secondly, the
model is updated using the available measurements and
the updated model is used for re-optimization.

Extremum-seeking is an alternate approach (Sternby,
1980; Blackman, 1962), where optimization is achieved by
following the necessary conditions of optimality, i.e., in an
unconstrained case, controlling the gradient to zero. The
different extremum-seeking control methods differ from
one another in the way in which the gradient is estimated.
For gradient estimation, perturbation methods (Krstic and
Wang, 2000) can be used, when measurements of the
performance criterion are available. If only auxiliary mea-
surements are available, a model-based gradient estimation
approach is needed (Guay and Zhang, 2003).

The multi-unit optimization method (Srinivasan, 2007) is
a recent technique for gradient estimation. Here, multiple
identical units are driven with inputs that are offset by
a pre-fixed value. The gradient is obtained as a finite
difference of the outputs of the units. This method has
shown faster convergence than the perturbation method
mainly because perturbations are in the “units” dimension
instead of time dimension. Such a scheme requires several
identical units and examples of such processes can be
found in the domains of micro-array reactors, multiple
production lines, and arrays of fuel cells.

⋆ This work was supported in part by the National Sciences and
Engineering Research Council of Canada

However, the fact that the units have to be identical
is a very strong assumption which does not depict the
reality. The convergence of the multi-unit method with
non-identical units is mainly determined by the sign of the
offset used. Even if the convergence is assured, the point of
convergence can be far from the real optimum (Woodward
et al., 2007).

The main goal of this paper is to show that the optima
of the multiple non-identical units can be reached by the
introduction of correctors within the multi-unit scheme.
Local stability and the fact that the units converge to their
respective optima are guaranteed.

In Section 2, the multi-unit optimization with identical
units is reviewed. Section 3 gives the convergence condi-
tions of the multi-unit scheme with non-identical units.
Section 4 presents the improved multi-unit optimization
method using correctors. The scheme is then applied to
two non-identical bioreactors in Section 5. Finally, conclu-
sions appear in Section 6.

2. MULTI-UNIT OPTIMIZATION

2.1 Problem formulation

Consider a dynamic system with state x ∈ ℜn, input
u ∈ ℜm that has to be operated so as to minimize a
convex function J(x, u) at steady state. The problem is
shown below:

min
u

J(x, u) (1)

s.t. ẋ = F (x, u) ≡ 0 (2)

where F (x, u) is the function describing the dynamics of
the system, which is assumed to be stable. The necessary
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conditions of optimality are given by :

dJ

du
=

∂J

∂u
−

∂J

∂x

(

∂F

∂x

)

−1
∂F

∂u
= 0 (3)

As in the steepest descent method for numerical optimiza-
tion (Nocedal and Wright, 1999), extremum-seeking makes
the process evolve in the opposite direction of the gradient.
But instead of using the iteration index as in numerical
methods of optimization, the iterations evolve in real time.
The extremum-seeking control law is given by :

u̇ = −k

(

dJ

du

)T

(4)

The key problem is the estimation of the gradient, which
could be addressed using several methods (Krstic and
Wang, 2000; Guay and Zhang, 2003). The multi-unit
method provides an estimate of the gradient by finite
differences as will be shown next.

2.2 The multi-unit scheme

The various units are operated with input values that
are offset by a prefixed value. In order to simplify the
presentation of the method, the single input case would
be considered. So, two identical units are required and the
scheme is presented in Fig. 1. The first unit is operated
at the input value u1 = u − ∆

2
while the second unit is

operated with input u2 = u + ∆

2
. Then, the gradient is

estimated by :

ĝ(u) =
J2(x2, u2) − J1(x1, u1)

∆
(5)

The extremum-seeking control law (4) is then applied:

u̇ = −kĝT (u) (6)

Let u∗ be the equilibrium point where the multi-unit
optimization algorithm converges. This means that the
inputs of the two units would converge to u∗

1 = u∗ − ∆

2

and u∗

2 = u∗ + ∆

2
.
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Fig. 1. Schematic for multi-unit optimization

All units follow the same control law and always keep
an input offset of ∆ from each other. The convergence
of this scheme to a ball around the optimum has been
proven despite the errors caused by the dynamics (which
is assumed to be stable) and the error due to finite
differences.

3. MULTI-UNIT OPTIMIZATION WITH
NON-IDENTICAL UNITS

The main limitation of the multi-unit scheme as presented
in the previous section is the requirement of identical units.
The extension to non-identical units is essential to make
this method more realistic.

3.1 Characterization of the difference between the units

The differences between the various units can manifest
in the following ways: differences in dynamics, differences
in static responses, or differences in disturbance effects.
The case considered for analysis in this paper assumes
the following: (i) the system has only one input, (ii) the
dynamics are the same and are very fast compared to the
optimization time-scale, i.e. the process can be considered
quasi-static, (iii) no noise effects are considered, and (iv)
the functions are convex.

Under these conditions, without loss of generality, the
static characteristics of the two units are represented using
J1(u1) and J2(u2). Let the relationship between the two
static maps is given by:

J2(u) = J1(u + β) + γ + J̄(u) (7)

where β = uopt
1

− uopt
2

and γ = J2(u
opt
2

) − J1(u
opt
1

), uopt
1

and uopt
2

are the optima of the first and second units,
respectively.

From this definition, by evaluating the function and its
derivative at uopt

2
it can be seen that

J̄(uopt
2

) = 0,
∂J̄

∂u

∣

∣

∣

uopt

2

= 0 (8)

So, in the neighborhood of the optimum, it can be assumed
that J̄ = 0. The transformation is to bring the second unit
to the same coordinates as that of the first by a translation
on the input and one of the output.

3.2 Convergence with Non-identical Units

As shown in (Woodward et al., 2007), when multi-unit
optimization is applied to processes with non-identical
units the following can be inferred.

• Stability is guaranteed iff ∆ is chosen such that

∆(∆ + β) > 0

• The equilibrium point can be approximated by:

u∗ ≃
uopt

1
+ uopt

2

2
−

γ

(∆ + β)
∂J2

1

∂u2

4. USE OF CORRECTORS IN MULTI-UNIT
OPTIMIZATION WITH NON-IDENTICAL UNITS

In the previous section, it was seen that the equilibrium
point can be quite far away from the real optimal values,
especially when γ 6= 0. To avoid such an occurrence, it will
be shown in this section that correctors could be employed
to push each of the units to their respective optima.

The proposed corrections are motivated by (7). A first

correction, β̂, is applied to the input of the second unit
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u2 so as to translate the curves along the input axis. A
second correction, γ̂, applied onto the objective function of
the second unit, J2, translates the curves along the output
axis so as to eliminate the bias in the estimation of the
gradient.

To derive the update laws for the estimates, the core idea
is to alternate between the multi-unit method and two
different perturbation signals as shown in Fig. 2. Both
perturbation signals are periodic with period T = T1 +T2.

t

d_mu 

d_corr

1

t

Multi-unit

adaptation

Correction

-1

1

T1

T

T2

T

Fig. 2. Perturbation signals for multi-unit with correctors

The adaptation laws are formulated based on the following
ideas. In the correction phase the difference between the
two inputs, ∆, is removed. So, the two units act at the

same operating point (corrected by β̂ if any). Then, the
corrected output values should be equal, if the vertical shift
(γ̂) is computed correctly. So, the difference between the
corrected outputs provides the adaptation law for γ̂. Also
herein, the gradients should be the same if the horizontal

shift (β̂) is compensated. The difference in gradients is

computed using the standard perturbation method and β̂
is adapted to push this difference to zero.

4.1 Scheme with Correctors

Consider two units such that J2(u) = J1(u+β)+γ and J1

is convex. Let the inputs of the two units be synchronized
as follows:

u1 = u −
∆

2
dmu + a dcorr (9)

u2 = u +
∆

2
dmu + a dcorr − β̂ (10)

with the multi-unit adaptation law being:

u̇ = −
kmu

∆
(J2 − J1 − γ̂) dmu (11)

Also, consider the following adaptation laws for the cor-

rectors β̂ and γ̂ :

˙̂
β = −

kβ

a
(J2 − J1 − γ̂) dcorr (12)

˙̂γ = −kγ(J2 − J1 − γ̂) (1 − dmu) (13)

where, kmu, kβ and kγ are positive constants.

The averaged dynamics are derived next. As the pertur-
bation signals of Fig. 2 are periodic signals with period T,
averaging as explained in (Khalil, 1996) can be applied to
the system (11)-(13). The averaged system is given by,

˙̂
β =−

kβ

Ta
Iβ , Iβ =

∫ T

0

D dcorr dt (14)

˙̂γ =
−kγ

T
Iγ , Iγ =

∫ T

0

D (1 − dmu) dt (15)

u̇ =
−kmu

T∆
Iu, Iu =

∫ T

0

D dmu dt (16)

where D = (J2(u2) − J1(u1) − γ̂). As dcorr is equal to
zero during [0, T1] and dmu is equal to zero during [T1, T ],

Iβ =
∫ T

T1

D dcorrdt, Iγ =
∫ T

T1

D dt and Iu =
∫ T1

0
D dt. The

average equilibrium point is represented as (β̂e, γ̂e, ue).

Noting that J2(u) = J1(u+β)+γ, the second order Taylor
series expansion of D around ue,

D = γ − γ̂ +
∂J1

∂u

∣

∣

∣

∣

ue

(u2 + β − u1) (17)

+
∂2J1

∂u2

∣

∣

∣

∣

ūe

(u2 + β − u1)(u1 + u2 + β − 2ue)

The expansion is in fact exact if the second derivative
is computed at an intermediate point ūe. In the interval

[T1, T ], (u2+β−u1) = β− β̂ and (u1 +u2+β−2ue) = β−

β̂ + 2adcorr + 2(u − ue). So, Iβ is given by

Iβ =

∫ T

T1

(

γ − γ̂ +
∂J1

∂u

∣

∣

∣

∣

ue

(β − β̂)

)

dcorr

+
∂2J1

∂u2

∣

∣

∣

∣

ūe

(β − β̂)(β − β̂ + 2(u − ue))dcorr

+
∂2J1

∂u2

∣

∣

∣

∣

ūe

2a(β − β̂)d2

corrdt = 0 (18)

Looking at the dcorr signal, it can be seen that the its
integral in the interval [T1, T ] is zero and that the integral
of d2

corr is T2. So,

Iβ = T2

∂2J1

∂u2

∣

∣

∣

∣

ūe

2a(β − β̂) (19)

Through a similar reasoning, it can be shown that

Iγ = T2

(

γ − γ̂ +
∂J1

∂u

∣

∣

∣

∣

ue

(β − β̂) (20)

+
∂2J1

∂u2

∣

∣

∣

∣

ūe

(β − β̂)(β − β̂ + 2(u − ue))

)

In the interval [0, T1], (u2 + β − u1) = β − β̂ + ∆ and

(u1 + u2 +β − 2ue) = β − β̂ + 2(u−ue). So, Iu is given by

Iu = T1

(

γ − γ̂ +
∂J1

∂u

∣

∣

∣

∣

ue

(β − β̂ + ∆) (21)

+
∂2J1

∂u2

∣

∣

∣

∣

ūe

(β − β̂ + 2(u − ue))(β − β̂ + ∆)

)
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4.2 Equilibrium with Correctors

It is shown next that the desired optimum points, i.e
ue

1 = uopt
1

± ∆ and ue
2 = uopt

2
± ∆ are indeed achieved.

Theorem 4.1. The equilibrium of scheme (9)-(13) on the

average, i.e. the equilibrium of (14)-(16), (β̂e, γ̂e, ue) is

given by β̂e = β, γ̂e = γ and ue = uopt
1

, where uopt
1

is
the real optimal point of operation of unit 1.

Proof:

The average equilibrium point (β̂e, γ̂e, ue) will satisfy Iβ =
Iγ = Iu = 0. Since the second derivative is positive by
convexity, from (19), Iβ = 0 leads to,

• β̂e = β

Using this in (20), Iγ = 0 leads to

• γ̂e = γ

Using the above two and noting that the term u − ue = 0
at the equilibrium in (21), Iu = 0 gives ∂J1

∂u

∣

∣

ue ∆ = 0,
which leads to

• ue = uopt
1

, the optimum of J1

2

4.3 Stability of the Scheme with Correctors

Next, the local stability of the averaged dynamics of the
adaptation scheme is analyzed.

Theorem 4.2. The average of the scheme (9)-(13), i.e. (14)-
(16), is locally asymptotically stable.

Proof:

The Jacobian of (14)-(16) evaluated at (β̂e, γ̂e, ue) is given
by:

J =
1

T





−2kβT2K 0 0
0 −kγT2 0

−kmuT1K −kmu

∆
T1 −2T1kmuK





(22)

where K ≡ ∂2J1

∂u2

∣

∣

∣

ūe
. The eigenvalues of (22) are the

three diagonal elements since it is lower triangular. As
kmu, kβ , kγ > 0 by choice and K > 0 by convexity, the
Jacobian matrix of (22) will be Hurtwitz. 2

5. ILLUSTRATIVE EXAMPLE

5.1 Process Description

The system under study is the production of green flu-
orescent protein (GFP) by E. coli cells. The following
kinetic model, based on glucose as growth-limiting sub-
strate, presented in (Aucoin et al., 2006), was used for the
simulations:

Ẋ = µX −

(

F

V

)

X (23)

Ṗ = (YP/Sµ + β)X −
F

V
P (24)

Ṡ =

(

F

V

)

(Sf − S) −
µX

YX/S
−

(YP/Xµ + β)X

YP/S

−ms

(

S

Ksm
+ S

)

X (25)

where X is the biomass concentration, F the feed rate of
the substrate into the bioreactor, µ the specific growth
rate of the biomass, V the volume of the bioreactor,
S the substrate concentration, Sf the concentration of
the substrate inlet, P the concentration of GFP, YP/S

is the product yield on substrate coefficient, YP/X the
production yield on biomass coefficient, YX/S the biomass
yield on substrate coefficient, β the non-growth associated
product formation constant, and mS the maintenance
coefficient. The Monod model is used for the expression
of µ:

µ =
µmaxS

Ks + S
(26)

where µmax is the maximum growth rate constant and Ks

a saturation constant.

The optimization problem is to maximize the quantity
of GFP in the post-induction period by adjusting the
substrate flow into the bioreactor:

max
F

FP (27)

s.t. (23), (24), (25) ≡ 0 (28)

All the simulations results presented in this section have
been done using the post-induction numerical values given
in (Aucoin et al., 2006) and presented in Table 1.

Table 1. Constant parameter values of the
Bioreactor

ms 0.0025 g S/(g X h) KS 0.4 g/L
YP/X 66.92 mg P/g X Sf 60 g/L

YP/S 50 mg P/g S KSm
0.04 g/L

β 0.1 mg P/(g X h) V 20 L

The difference between the two units has been simulated
by using different values for µmax and YX/S . The initial
values have been adjusted to simulate a steady-state for
an averaged flow of 1 L/h for the overall process as shown
in Table 2.

Table 2. Different parameter values and initial
conditions of the two Bioreactors

Unit 1 Unit 2

µmax 0.2 0.18 h−1

YX/S 0.4 0.25 g X/g S

S0 0.13 0.15 g/L
X0 15.28 11.46 g/L
P0 1053.4 761.27 mg/L
F0 0.95 1.05 L/h

The static characteristic of the two units are shown in
Fig. 3. The real optimal operation points of the units are
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shown by stars on the graph. The optimal flow for unit
1 is 3.68 L/h while for unit 2 it is 3.32 L/h. Also, the
optimal GFP production is 3561 mg/h for unit 1 and 2309
mg/h for unit 2. Note that β = u1

opt − u2
opt = (3.68 −

3.32) = 0.36L/h and γ = J2(u
2
opt) − J1(u

1
opt) = −(3561 −

2309) = −1252mg/h.
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Fig. 3. Static characteristics of the two units

5.2 Convergence of the multi-unit optimization algorithm
without correctors

The multi-unit optimization algorithm without any cor-
rectors for β and γ was first applied. It can be seen in
Fig. 4 that the scheme converges quite rapidly but to
a fairly suboptimal point. This simulation thus motivates
the necessity of using correctors in the multi-unit scheme.
A high value of ∆ = 0.4 L/h is used here, since lower values
nearly push the inputs to zero.
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Fig. 4. Evolution of the two units under the multi-unit
optimization algorithm with correctors – ∆ = 0.4 L/h

5.3 Convergence of the multi-unit optimization algorithm
with correctors

The multi-unit algorithm with correctors has been applied
to the system using (9)-(13) and the tuning parameters
presented in Table 3. Note that the signs of kmu and kγ

have been inverted since we want to maximize FP .

Table 3. Tuning parameters of the multi-unit
method with correctors

∆ 0.1 L/h kβ 2.15 × 10−5 L2

h2mg

kmu −1 × 10−2 L2

h2mg
kγ -1 ×10−1 1

h

T1 20 h T2 40 h
a 0.05 L/h
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Fig. 5. Evolution of the two units under the multi-unit
optimization algorithm with correctors
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Fig. 6. Evolution of the corrections β̂ and γ̂

Fig. 5 shows the performance obtained by the bioreactors.
The two units converge toward their respective optimum
in about 800 hours. Comparing with the multi-unit scheme
without correction it can be seen that the correctors slow
down the adaptation by a factor of 10. However as will
be seen next, the multi-unit scheme with correctors is still
faster that the perturbation method.
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5.4 Convergence of the perturbation method

As point of comparison, the perturbation method pre-
sented in (Krstic and Wang, 2000) has been applied to
the same system with the parameters presented in Table
4. The schematic of the perturbation method is shown on
Fig. 7.
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Fig. 7. Schematic for extremum-seeking using perturba-
tions

Table 4. Tuning parameters of the perturba-
tion method

a 0.1 L/h ωl 0.006 rad/h
ω 0.06 rad/h ωh 0.006 rad/h
k 1.9 × 10−4

As shown on Fig. 8, the perturbation method brings the
process to it’s optimal point in 4000 hours, 5 times slower
than the multi-unit optimization method with correctors
does.
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Fig. 8. Evolution of the two units under the perturbation
optimization algorithm

Table 5. Performance of the perturbation and
multi-unit methods

Unit 1 Unit2

Perturbation J 3546 2297 mg/h
F 3.68 3.31 L/h

J 3545 2295 mg/h
Multi-unit F 3.61 3.35 L/h

β̂ 0.3 L/h
γ̂ -1252 mg/h

Table 5 gives the final operational values for both methods.
This table along with Fig. 5 and Fig. 8 show that the
values of the inputs are quite similar even if the variations
in the performance index signals are slightly larger for
the multi-unit method than the ones for the perturbation
method. This is due to step changes imposed at t = T1

and t = T2 + T2 as shown in Fig. 2). Since the system was
non-minimum phase, these step changes introduced some
oscillations at the output.

6. CONCLUSION

In this paper, an improved multi-unit scheme was pre-
sented introducing two correctors, in order to handle non-
identical units. One corrector attenuates the effect of the
difference in the optimal points of operation and the sec-
ond one reduces the effect of the difference in the optimal
values of the performance criteria. Local stability and
that the scheme converges to the respective optima were
demonstrated.

The ideas were illustrated with two bioreactors with dif-
ferences both in static and dynamic characteristics. Both
bioreactors converge to a neighborhood of their real opti-
mum point. A comparison with the perturbation method
demonstrates the rapidity of the multi-unit method. Fu-
ture work will focus on issues such as multi-input systems,
measurement noise, systems with inequality constraints,
and differences in the dynamics.
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