
Improving Trajectory Constraints
Processing in some Optimal Control

Algorithms ?

J.B.Coulaud ∗ G.Campion

∗ CESAME, Euler, 4-6 Av. G.Lemâıtre, B1348 Louvain-La-Neuve,
Belgium, jean-baptiste.coulaud@uclouvain.be

Abstract: This paper shows how the treatment of trajectory constraints in some recent software
packages like the Nonlinear Trajectory Generation (NTG) can be improved by taking into
account some structural properties of the initial optimal control problem that are lost in the
transformation of the problem into an optimization one. The proposed method leads to a smaller
complexity and a better accuracy.

1. INTRODUCTION

With the increasing performances of computers, it is nat-
ural to expect that optimal and predictive control can be
used in real time with systems that are faster and faster.
Nevertheless, in its original expression, solving accurately
a nonlinear constrained optimal control problem remains
very consuming in computation ressources: indirect shoot-
ing methods are often impossible to use in a first step,
whereas direct methods based on the Hamilton-Jacobi
formulation of the problem require less but often too much
time and are less accurate (see Trélat [2005]).

Several software packages have been designed in the past
few years to bring the efficiency of constrained optimal con-
trol to nonlinear systems with fast dynamics, like robots.
One of the most efficient is NTG (for Nonlinear Trajectory
Generation, see Milam et al. [2000] and Petit et al. [2001]);
it uses a spline description of the trajectories and reduces
the optimal control problem to an optimization one, tak-
ing advantage of dynamics inversion based on differential
flatness (on this topic see Fliess [1995]). However in this
transformation, a part of the initial information about the
functions describing the trajectory constraints is lost: this
can affect the performances of the algorithm. This paper
aims at describing and analysing an alternative treatment
of trajectory constraints, which is suited to an optimal
control approach.

Section 2 briefly describes the basic principles of NTG
and stresses on the pros of this method but also show a
weakness in the constraints treatment. Section 3 proposes
an alternative to take advantage of the smoothness of
trajectory constraints, and gives two mathematical ar-
guments that justify this approach. Section 4 describes
how the complexity is reduced with this method even
with increased accuracy. Section 5 gives some simulation
experiments to confirm and precise the theoretical results.
Section 6 analyses briefly some difficulties that can arise
with the proposed algorithm and gives some ideas of solu-

? This paper presents research results of the Belgian Programme
on Interuniversity Attraction Poles, initiated by the Belgian Federal
Science Policy Office. The scientific responsability rests with its
authors.

tion. Finally, Section 7 summarizes these results and gives
directions for complementary work.

2. BRIEF OVERVIEW OF NTG

2.1 Description of the approach

For a nonlinear system
ẋ = h(x, u), x ∈ Rn, u ∈ Rm,

an optimal control problem is considered, with a nonlinear
cost function J(x, u) to minimize under constraints of the
form:

li ≤ ψi(x(t0), u(t0)) ≤ ui (initial)
lt ≤ ψt(x(t), u(t), t) ≤ ut (path)
lf ≤ ψf (x(tf), u(tf)) ≤ uf (final)

(1)

If the system is differentially flat, there exist a vector y of
m outputs, an integer q and a function φ s.t.:

(x(t), u(t)) = φ(y, ẏ, ..., y(q)). (2)
Then, it is possible to map the cost function J and the
constraints (1) to the output space. Consequently, if the
optimal control problem is parametrized in function of the
outputs, the number of unknowns significantly decreases
and it is not necessary to solve the ODE of the system.
This last fact reduces dramatically the complexity of the
problem.

As this new formulation of the optimal control induces the
use of the derivatives of the unknowns y, it is necessary
to describe them with smooth functions. In NTG, the
outputs y are parametrized in terms of B-splines curves,
that are piecewise polynomials (see Boor [1978]). After
this parametrization, the unknowns of the problem are the
coordinates Y in the spline basis, and every function of the
problem only depends on Y and t. A complete description
of NTG can be found in the Thesis of Milam (2003), but
the idea of the procedure is the following.

2.2 From optimal control to optimization

Let us consider an optimal control problem on the horizon
[0, T]. As the paper focuses on trajectory constraints, only
this type of constraints with upper bounds is considered in
the following. Hence the set of constraints (1) is described

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 14289 10.3182/20080706-5-KR-1001.1504

by: C(x, u, t) ≤ 0, ∀t ∈ [0, T], with a smooth function C.
In the NTG procedure, the cost J(x, u) and the constraint
C(x, u, t) are reformulated

• in a first step, in J ′(y, ẏ, ..., y(q)) and C ′(y, ẏ, ..., y(q), t)
by introducing equation (2) (where y are the flat
outputs),
• in a second step, in J̃(Y) and C̃(Y, t) where Y are the

parameters of the spline description of the outputs.
• in a third step, a finite set of collocation points

0 = t0 < t1 < ... < tk = T (3)
is defined and the constraint C is lastly reformulated
in a finite set of constraints

C̃i(Y) = C̃(Y, ti) ≤ 0, ∀i ∈ {0, ..., k}. (4)

The procedure has lead to an optimization problem:
min

Y
J̃(Y)

C̃i(Y) ≤ 0, ∀i ∈ {0, ..., k}
(5)

which only depends on the set of variables Y .

2.3 Few words about the nonlinear solver

NTG transmits problem (5) to the nonlinear solver
NPSOL, which is based on a SQP method. Basically, SQP
is divided in two levels of iterations:

• major iterations consist in a linesearch in a given
search direction p,
• minor iterations solve a QP problem to find the search

direction p involved in the major iterations.

The QP problem solved by NPSOL is the following:

min
p

1
2
pTH∗(Y)p+∇Y J̃(Y)T p

C̃i(Y) +∇Y C̃i(Y)T p ≤ 0, ∀i ∈ {0, ..., k}
(6)

where Y is the current iterate at the start of a major itera-
tion, H∗ is a positive-definite quasi-Newton approximation
to the Hessian,and ∇Y J̃ and ∇Y C̃i represent the gradients
of the functions J̃ and C̃i.

2.4 Main advantages

The spline parametrization of the trajectories is a very
appropriate description for an optimal control approach:

• first, most of real trajectories are piecewise smooth,
which is obviously a property of splines,
• second, as a consequence of the previous point, for

the same accuracy, one will need less parameters to
decribe a trajectory with splines than with a sampling
method, because some properties of the trajectory
are induced by definition in a spline parametrization,
whereas they need lots of points to appear in a
sampling description,
• third, in the case of differentially flat (even partially)

systems, it allows to avoid completely (or partially)
the resolution of ODEs, without any loss of accuracy,
and again with quite few parameters.

Another advantage of the NTG approach is practical:
transforming a nonlinear optimal control problem into an
optimization one allows the use of an existing software (like
NPSOL) to solve the problem instead of implementing the
whole procedure.

2.5 Some lost informations about constraints

However, the second advantage of NTG previously men-
tionned, induces a loss of informations about trajectory
constraints. Two types of informations are lost in formu-
lation (5):

• first, as the time is sampled, it is not sure in general
that the constraint C will be satisfied between two
sample times.
• second, what is transmitted to the nonlinear otpimiza-

tion software is the set of constraints C̃i. This means
that the algorithm handles every constraint indepen-
dently whereas they are computed from the same
analytical function C̃. As C̃ is very often smooth this
loss of information can result in a waste of time as it
will be shown in the following sections

3. ANOTHER ALGORITHMIC APPROACH

3.1 Description of the approach

The same framework is kept: trajectories are parametrized
by splines, and we also take advantage of differential flat-
ness properties as in NTG. But instead of considering, like
in NTG, k+1 independent constraints we take benefit from
the fact that all those constraints derive from a unique
analytical function and will only take into account the
maximum of that function, or several local maxima. From
a complexity point of view, this can reduce significantly
the number of computations for one minor iteration. Obvi-
ously, it must be shown that the efficiency of each iteration
is not deteriorated. This is done in Section 3.2 by some
smoothness considerations of the initial constraint function
C̃, that are experimentally confirmed in Section 5.

The idea of the approach is to keep the problem under the
following form:

min
Y

J̃(Y)

C̃(Y, t) ≤ 0
⇐⇒

min
Y

J̃(Y)

max
t
C̃(Y, t) ≤ 0

(7)

and adapt this formulation at each iteration. This last
problem involves only one constraint, but it can be difficult
to handle it. To do so, we propose to keep the main
concepts of SQP with major and minor iterations with a
change in the minor iteration.

Let Y the current iterate. For this iterate let
t∗ = tj = max

i∈{0,...,k}
C̃(Y, ti) = max

i∈{0,...,k}
C̃i(Y).

Then the minor iteration consists in finding a search
direction p by solving the following QP problem:

min
p

1
2
pTH∗(Y)p+∇Y J̃(Y)T p

C̃(Y, t∗) +∇Y C̃(Y, t∗)T p ≤ 0
(8)

As there is only 1 constraint instead of k+1, the complexity
of this QP-problem is much less than for problem (6).
The key point is here, in the reduction of the number of
constraints taken into account at each iteration.

3.2 Two justifications about this approach

First argument
One could argue that, even if the proposed method is a

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14290

possible way to solve the problem, it can be less efficient
than computing the gradient of the constraint at each collo-
cation point. Let tj a collocation point. A Taylor expansion
immediatly shows that the gradient ∇Y C̃(Y, tj) is repre-
sentative of the average gradient in the neighborhood of tj .
Consider for instance 2l + 1 collocation points uniformly
distributed (with time interval δτ), on a symmetric interval
around a given tj . It is easy to see, that the average of
the gradient ∇Y C̃(Y, t) evaluated at the 2l+ 1 collocation
points is approximated at first order in δτ by the gradient
∇Y C̃(Y, tj):

1
2l + 1

l∑
j=−l

∇Y C̃(Y, ti+j) =∇Y C̃(Y, ti) +O(l2δτ2)) (9)

This means that the directions of the gradient at tj and
of the average value differ only at the second order in δτ .
The evaluation of the gradient at tj reflects with a good
accuracy the values of the gradients in the neighborhood.
This holds also near a local maximum, at t∗. As the time
instants for which the constraint is the closest to its bound
are necessarily in the neighborhood of the maximum, this
property shows that taking C̃(Y, t∗) into account handles
also the “constraints” C̃i(Y) that are the most likely to be
violated.

Second argument
Let Y the current iterate and Y+ = Y + δY the iterate at
the end of the current iteration.

If one decided to decrease the value of the maximum
C̃(Y, t∗) at the current iteration, the best way to do it with
a first order Taylor expansion, is to modify the parameters
with a correction in the opposite direction of the gradient
of the constraint at t∗ = tj . This means that the correction
is of the form:

δY = −α∇Y C̃(Y, t∗) (10)
where α is a positive scalar that gives the length of the
step for the current iteration.

From an optimization point of view, decreasing one con-
straint does not necessarily interfere with another, because
the influence of one constraint on another is not supposed
to be predictible. For a trajectory constraint it is different:
decreasing C̃(Y, t∗) in this way decreases C̃ on a neighbor-
hood of t∗. It is obvious on the following Taylor expansion:

C̃(Y+, ti + δt) = C̃(Y, t) +∇Y C̃(Y, ti)δY

+
∂C̃

∂t
(Y, ti)δt+O(δY 2 + δt2)

= C̃(Y, ti) +∇Y C̃(Y, ti)δY
+O(δY 2 + δt2)

= C̃(Y, ti)− α
(
∇Y C̃(Y, ti)

)2

+O(α2 + δt2)

(11)

This equality takes into account the fact that C̃(Y, ti) is
a local maximum, which implies that ∂C̃

∂t (Y, t∗) vanishes.
Provided that ∇Y C̃(Y, t∗) 6= 0, which is true most of the
time, the consequence of this result is that, at first order in
δt, the value of C̃ decreases on a neighborhood of ti for an
adequate choice of α. Then, the local maximum of C̃ can

be slightly moved, but whatever, it is less than its value at
the previous iteration.

We do not say here that −α∇Y C̃(Y, t∗) is the correction
computed in practice, but it is one more clue to show that
handling the constraint near its maximum is reasonable
in the QP problem, because the constraints are linearly
approximated using their gradients.

4. COMPLEXITY COMPARISONS

This section gives two comparisons of complexity. A first
comparison between the NTG approach and the approach
of the paper in Section 4.1. As the main point of the paper
is not reduced to NTG, we have add a second comparison
using the same properties for a gradient descent algorithm
in Section 4.2.

In order to achieve a quantitative comparison between the
strategy proposed in the paper and the one that considers
independent constraints, it is necessary to make some
assumptions:

• the complexity of evalutating C̃ is denoted by K,
• the complexity of evalutating the derivative of C̃ w.r.t.

one variable is assumed to be equal to K also,
• the number of independent splines parameters used

to describe y, i.e. the size of Y , is denoted by n,
• the number of collocation points, which is also the

number of discrete constraints C̃i, is denoted by p.

4.1 First Comparison: complexity of a minor iteration

Here we compare the complexity of a minor iteration
in NTG using NPSOL and a minor iteration proposed
in the paper. The main difference is in the number of
constraints: NPSOL must deal with p constraints whereas
problem (8) has only 1 constraint. An adaptation of the
complexity analysis made in Boyd [2004] about convex QP
algorithms, considering that n and p are of the same orders
of magnitude, leads to a theoretical bound proportional to√
p(n + p)3 in the case of NTG and (n + 1)3 for problem

(8). As mentionned in Boyd [2004], the factor
√
p is not

very relevant in practice and can be eliminated. Even with
this better bound, the ratio between the two bounds is:(

n+ p

n+ 1

)3

If p ≈ n then the ratio is approximately 8.

This comparison shows very well the advantage of our
method for one iteration, but it does not take into account
the efficiency of every iteration, which can interfere with
the complexity of the whole procedure. That is why we
propose a second comparison on a simpler algorithm, but
with a more complete analysis.

4.2 Second comparison: complexity of a gradient descent

In this section, a basic gradient descent with constant step
is applied to both strategies (with p constraints or only 1
constraint). The algorithm is described in Fig.1.

The difference between the two strategies is only in the
choice of δY :

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14291

Data: constraint function C̃(·)
Result: Y s.t. C̃(Y, t) ≤ B
Initialization: first guess Y = Y0;
while ∃t, C̃(Y, t) > B do

find t∗, s.t. C̃(Y, t∗) = max
t

C̃(Y, t) ;
determine δY ;
Y ← Y − αδY ;

end

Fig. 1. Algorithm decreasing a constraint under a bound B.

• in the first one, denoted A1, δY = ∇Y C̃(Y,t∗)

‖∇Y C̃(Y,t∗)‖ ,

• in the second, denoted A2, δY =
∑

i∈I
∇Y C̃i(Y)

‖
∑

i∈I
∇Y C̃i(Y)‖

,

where I is the set of constraints that are not satisfied.

Let q the number of points for which the constraint C is
not satisfied in the current iteration.

• For algorithm A1, the smoothness of the constraint
is taken into account, and the number of operations
for one iteration is: N1 = K p + Kn. The term
Kp corresponds to the evaluation of C̃ at the p
collocation points, and the term Kn corresponds to
the evaluation of the gradient ∇Y C̃ (which has n
components) at t∗.
• For algorithm A2, the constraint is discretized in p

independent constraints, and the number of opera-
tions for one iteration is: N2 = Kp + Knq. The first
term is the same as in N1 and the second term nKq
corresponds to the evaluation of ∇Y C̃ at q collocation
points.

Let us assume that the first algorithm converges within r1
iterations, and the second within r2 iterations. Let q̄ the
mean value of q over all r2 iterations. Then the ratio of the
two numbers of computations is:

R=
r1(Kp+Kn)
r2(Kp+Knq)

=
r1(p+ n)
r2(p+ nq̄)

(12)

5. NUMERICAL EXPERIMENTS

5.1 Framework of the tests

All the simulations have been performed with Matlab
7.4. In every simulation, a single output y(t) ∈ R is
considered, and a constraint of the form C(y(t), ẏ(t)) ∈ R
is treated. To obtain statistics over the properties which
are examined, C is a random polynomial function of two
variables of degree 1 d. Such a polynomial has (d+1)(d+2)

2
coefficients, which are chosen smaller than 1 in absolute
value. Instead of using B-splines, the polynomials used in
the test are Bézier curves, that are known to have very
similar properties.

5.2 About the “first argument”

This paragraph refers to Section 3.2.1. A large number of
functions C(y, ẏ) are taken at random and for a given C,
1 The degree of a polynomial of two variables x and y is the
maximum sum i+ j of terms xiyj .

several Y are taken at random. Then the gradient ∇Y C̃
is computed at a local maximum of the function and on a
neighborhood. Then the direction of the vectors involved in
the two members of equation (9) are compared, using the
Euclidian distance with the computed unit vectors. The
algorithm used is reported in Fig.2.

Data: the degree d, the order s and a lag l
Result: δ average value of the distance δ between∑l

j=−l∇Y C̃(Y, ti+j)

‖
∑l

j=−l∇Y C̃(Y, ti+j)‖
and

∇Y C̃(Y, ti)
‖∇Y C̃(Y, ti)‖

near maxima
Initialization: D = ∅;
for k ← 1 : 1000 do

take C(y, ẏ) at random ;
for j ← 1 : 100 do

take Y at random;
find a local max of C̃(Y, t) for t ∈ (0, 1);
compute δ;
D ← D ∪ {δ};

end
end
δ ← mean(D);

Fig. 2. Algorithm to test statistically the argument of
Section 3.2.1.

As δ is a distance between two unit vectors, it is equivalent
to an angle α ∈ [0, π] = [0◦, 180◦] between those two
vectors. This other value, may be more meaningful than
δ, is also reported in the Table 1, in function of the degree
d of C, the order of the spline s and the lag l. The number
of collocation points taken here is p = 100. The ratio 2l+1

p ,
which represents the density - w.r.t. the horizon of the
control - of the range where ∇C̃ is evaluated, is significant,
and thus is also mentionned.

d s l 2l+1
p

ᾱ(◦) δ

5 4 4 0.09 2.49 0.042
5 4 7 0.15 3.88 0.065
5 4 10 0.21 5.92 0.098

5 6 4 0.09 11.0 0.17
5 6 7 0.15 13.6 0.22
5 6 10 0.21 15.5 0.25

5 8 4 0.09 18.2 0.28
5 8 7 0.15 20.1 0.31
5 8 10 0.21 21.3 0.34

10 4 4 0.09 3.03 0.050
10 4 7 0.15 4.85 0.079
10 4 10 0.21 6.57 0.11

10 6 4 0.09 14.5 0.22
10 6 7 0.15 15.7 0.24
10 6 10 0.21 15.8 0.25

10 8 4 0.09 23.0 0.33
10 8 7 0.15 23.5 0.36
10 8 10 0.21 23.1 0.37

Table 1. Statistics about “the 1st argument”
Several remarks can be made about the results reported in
Table 1. As expected:

•
∑l

j=−l
∇Y C̃(Y,ti+j)

‖
∑l

j=−l
∇Y C̃(Y,ti+j)‖

is not very far from ∇Y C̃(Y,ti)

‖∇Y C̃(Y,ti)‖
;

• the angle between the two vectors increases with the
lag l;

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14292

Moreover, this angle increases also with the order of the
spline n, and a bit with the order of the polynomial
constraint C: this is because polynomials with high order
have much more oscillations, which increases the curature
near extrema and then reduces the impact of the argument.

It is also important to note that in practice, conditions
are probably often better than the ones of the algorithm
presented here, because a random constraint with a ran-
dom guess of Y can be much oscillating than the “average”
situation of an algorithm after the first iterations.

5.3 About the “second argument”

This paragraph refers to Section 3.2.2. A large number of
functions C(y, ẏ) are taken at random and, for a given C, a
sequence of Y (the coordinates of y in the Bézier functions
basis) is computed such that the maximum decreases at
each iteration. This is done using equation (11). The
relevance of the invoked argument is tested by counting the
number of collocation points located in the neighborhood
of the maximum where the constraint function C decreases.
The algorithm is described in Fig. 3. The results of the

Data: the order of the splines s, the degree d
Result: c average value of the number of collocation

points where C decreases
Initialization: N = ∅;
for k ← 1 : 1000 do

take C(y, ẏ) at random ;
while max

t∈[0,T]

˜C(Y, t) > B do

Y+ ← Y − α∇Y C(Y, t∗) ;
count the number c of collocation points t near t∗
s.t. C(Y+, t) < C(Y, t∗);
N = N ∪ {c};
Y = Y+;

end
end
c← mean(N);

Fig. 3. Algorithm to test statistically the argument of
Section 3.2.2.

simulations are reported in Table 2.

d s c
p

5 4 0.28

5 6 0.21

5 8 0.17

10 4 0.21

10 6 0.16

10 8 0.12

Table 2. Statistics about “the 2nd argument”

The conclusion of this experiment is very straightforward:
it can be observed that the proportion c

p - of collocation
points influenced by the gradient of C at its maximum -
decreases with s and d, but remains non negligible in any
case.

5.4 Comparison of the two algorithms

This experiment refers to Section 4.2. Its aim is to evaluate
statistically the ratio R. Algorithm presented in Fig.1 is

n p r1
r2

q R

4 25 1.1 7.4 0.51
4 50 1.1 15.0 0.46
4 100 1.1 29.4 0.44

6 25 1.2 6.8 0.47
6 50 1.2 13.2 0.43
6 100 1.1 25.9 0.39

8 25 1.2 6.6 0.44
8 50 1.2 12.6 0.38
8 100 1.2 25.3 0.34

11 25 1.3 6.5 0.40
11 50 1.3 12.6 0.33
11 100 1.3 24.9 0.29

16 25 1.4 6.5 0.38
16 50 1.5 12.8 0.29
16 100 1.4 24.9 0.25

Table 3. Statistics to compare the complexity
of algorithms A1 and A2.

applied with algorithms A1 and A2 a lot of times as shown
in Fig.4. In this experiment, d = 5, because there is no
important influence of the degree of the polynomial C.

Data: order n, number of points p
Result: ratio R and r1, r2, q, average values of r1, r2, q
Initialization: R1 = R2 = Q = ∅;
for k ← 1 : 100 do

take C(y, ẏ) at random ;
for j ← 1 : 10 do

take a first guess Y0 at random;
run A1;
compute r1;
R1 ← R1 ∪ {r1};
run A2;
compute r2 and q;
R2 ← R2 ∪ {r2};
Q← Q ∪ {q};

end
end
r1 ← mean(R1);
r2 ← mean(R2);
q ← mean(Q);
compute R from R1, R2, and Q;

Fig. 4. Algorithm to test statistically the complexity of A1

and A2.

The advantage of the proposed strategy is obvious in Table
5.4: the maximum of the ratio R is 0.5 but it decreases
significantly with n and p till 0.25 for n = 16. This means
that this part of an optimization can be in average 4 times
faster. Actually, it can be much more, because 16 points
of control for a spline is not a maximum, and if there are
several outputs, the number of variables is also multiplied.

Fig. 5 shows an example comparing the evolution of a
function until it passes under its upper bound (equal to
one) represented by the blue horizontal line, for the two
algorithms. The evolution of the function is from red to
blue, and the green line represents the final situation of the
function. It can be notice that algorithm A1 gives results
very close to algorithm A2.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14293

Fig. 5. The evolution of a constrained function for algo-
rithms A1 (left) and A2 (right).

6. SOME DIFFICULTIES AND IDEAS OF SOLUTION

6.1 Competition between maxima

A first problem which can appear is a competition between
several local maxima. This can induce numerous switchings
of the localization of the global maximum during the
algorithm. A possible improvement is to detect several
or all the local maxima that do not satisfy a constraint
and take them into account. This would obviously increase
the complexity of each iteration of the algorithm, but
would remain more accurate and less expensive than the
“classical” optimization approach, because in average, this
should decrease the ratio r1

r2
.

A second inconvenience related to the previous, is due
to the nature of an optimal control problem: very often,
the optimal solution under constraints will presents ranges
where one constraint is constant. Then the algorithm will
be in the previous situation. A way to deal with that is
to detect when such a range appears, and use dynamic
breackpoints to match that range and use an adapted
parametrization of the outputs on that range (like a low
order spline).

6.2 Following the maxima

In order to improve the precision of the solution, one
would like to increase the number of collocation points,
but in the previous proposal of algorithm, it is necessary to
evaluate the constraint at each point, which slows down the
algorithm. To improve the efficiency of the algorithm, it is
possible not to do an accurate localization at each iteration
but only for few of them. Then, when a maximum is
localized, at t∗ for Y , it is possible to have an approximate
localization t∗+ = t∗+ δt of the maximum corresponding to
Y+ = Y + δY . As C̃(Y, t∗) is a maximum, ∂C̃

∂t (Y, t∗) = 0.
What is expected is that ∂C̃

∂t (Y+, t
∗
+) = 0. At first order,

the Taylor expansion of ∂C̃
∂t gives:

∂C̃

∂t
(Y+, t

∗
+) = 0 +

∂2C̃

∂t2
δt+∇Y C̃δY +O(δt2 + δY 2)

As this quantity should vanish to ensure being at a
maximum, it leads to:

δt ≈ −∇Y C̃(Y, t∗)δY /
∂2C̃(Y, t∗)

∂t2
.

In this perspective, it can become advantageous to detect
all local maxima and follow them approximately by this
way during several iterations before checking accurately
their positions again.

7. CONCLUDING REMARKS AND FUTURE WORK

In this paper it has been shown how it is possible to reduce
the complexity of some algorithms suited for real time
optimal control and thus to improve their performances.
Nevertheless, for instance in the case of NTG, it induces
probably a complete reimplementation of the optimization
routines, because the classical optimization formulation is
lost and the proposal of this paper cannot be treated by
an optimization software like NPSOL.

Furthermore, some side effects induced by the method
should be taken into account in order not to lose its
efficiency, as mentionned in Section 6. But, again, a good
treatment of these specificities should lead to an improve-
ment of the accuracy.

An important concluding remark is that the result pre-
sented in this paper should be much more significant for
systems governed by PDE like presented in Petit [2002]:
indeed, in that case, the number of collocation points can
increase dramatically with the dimension of the problem,
because it is a discretisation of a higher dimensional space
than a simple range of R. As shown by the statistics and
the theoretical results of this paper, increasing the number
of collocation points p - and thus q - decreases the ratio R
defined in equation (12).

REFERENCES

E.Trélat. Contrôle optimal : théorie & applications. Vuib-
ert, Collection ”Mathématiques Concrètes”, 2005.

M.B.Milam, K.Mushambi, and R.M.Murray. A New Com-
putational Approach to Real-Time Trajectory Genera-
tion for Constrained Mechanical Systems. IEEE Con-
ference on Decision and Control, 2000.

N.Petit, M.B.Milam, R.M.Murray. Inversion Based Con-
strained Trajectory Optimization. 5th IFAC Symposium
on Nonlinear Control Systems, 2001.

N.Petit, M.B.Milam, R.M.Murray. A new computational
method for optimal control of a class of constrained
systems governed by partial differential equations. in
Proc. of the 15th IFAC World Congress, 2002.

M.Fliess, J.Levine, P.Martin, and P.Rouchon. Flatness and
defect of non-linear systems: introductory theory and
examples. International Journal of Control, 61(6):1327–
1360, 1995.

S.Boyd, L.Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

C. de Boor. A Practical Guide to Splines. Springer-Verlag,
1978.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14294

