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Abstract: We consider the stability properties and stabilizing problem of sampled-data
networked controlled linear systems with Markovian packet losses. A binary Markov chain is
used to characterize the packet loss phenomenon of the network. Then with the Markovian
packet loss assumption, we obtain a discrete-time augmented Markov jump linear system which
describes the continuous-time linear system evolving in deterministic discrete time. Furthermore,
we show that the sampled-data system under consideration can also be considered as a randomly
sampled system with an i.i.d. random sampling period. A number of necessary and sufficient
conditions for the stochastic stability properties are established by using the known results of
Markov jump linear systems and randomly sampled systems. Those conditions are based on the
relationships of stability properties between the systems evolving in deterministic continuous
time, deterministic discrete time, and random discrete time. In addition, the asymptotic stability
of the system is also studied by using Lyapunov exponent method. Numerical examples are used
to illustrate the main results of the paper.

Keywords: Sampled-data linear systems, networked control, Markovian packet losses,
i.i.d. random sampling

1. INTRODUCTION

Networked control systems have been a very hot research
area over the past decade. Networked control systems
are feedback control systems using networked message to
achieve closed-loop stability and desired performance. In
networked control systems, there are wireless communica-
tion channels or networks between sensors, actuators, and
controllers, which make tele-control and sensor-network-
based control applicable. While we enjoy a lot of benefits
from networked control systems, we are also facing some
new interesting and challenging problems raised by net-
worked control systems. For example, due to congestion
and fading in communication channels, data losses may
occur. Then data packet losses may result in system per-
formance degradation or even instability.

A sampled-data system is a networked control system
if discrete-time signals of the sampled-data system are
transmitted to the discrete-time controller via a digital
communication channel, such as telerobot and distributed
sensor-network-based control system. Traditionally, the
communication link is assumed to be an ideal one which
has infinite bandwidth and data packet dropout does not
occur. In this paper, we address the packet loss issue for
the control problems of sampled-data networked linear
systems.
⋆ This work is supported by the Agency for Science, Technology and

Research of Singapore under the Grant SERC 052 101 0037.

Recent work has advanced the control research for net-
worked control systems with packet losses; see Part B
in Section III and Part B in Section IV of Hespanha
et al. [2007]. Most of existing papers are concerned with
the control problem of discrete-time networked control
systems with packet losses. For example, Sinopoli et al.
[2004], Schenato et al. [2007] considered Kalman filtering
and LQG control for discrete-time linear systems with
randomly intermittent observations, and the packet loss
process is assumed to be an i.i.d. Bernoulli binary random
sequence. Smith and Seiler [2003] considered estimation
with lossy measurements in which the random packet
loss is assumed to be governed by a two-state Markov
chain. More recently, Huang and Dey [2007] studied the
stability of Kalman filtering with Markovian packet losses
by introducing stopping times to describe the transmission
time or update time of measurements; see also Xie and Xie
[2007]. Imer et al. [2006] considered an optimal control
problem of LTI systems over unreliable communication
links in which the packet loss process is an i.i.d. Bernoulli
binary random sequence and may occur both from the
sensor to the controller and from the controller to the
actuator. Hu and Yan [2007] carried out a robust stability
analysis of discrete-time linear systems with static state
feedback controller with respect to the distribution of the
i.i.d. Bernoulli packet loss process.

For sampled-data networked linear systems, Yu et al.
[2004] considered the stabilizing problem with the assump-
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Fig. 2.1. Sampled-data linear systems via an unreliable
network

tions that the period during which the measurements are
lost is bounded and the successive update instant is known
to the controller. Compared with Smith and Seiler [2003]
for discrete-time systems with Markovian dropouts, Yu
et al. [2004] is referred to using a deterministic dropout
rate method by Hespanha et al. [2007]. Montestruque
and Antsaklis [2004] considered a stability problem of
model-based networked sampled-data systems, where up-
date time is defined as the time between two successful
consecutive transmissions and considered as a bounded
time-varying variable, an i.i.d., and a finite state Markov
chain, respectively.

The aim of the present paper is to consider the sta-
bility analysis and stabilizing problem of sampled-data
networked linear systems with Markovian packet losses in
stochastic framework. We will show that the i.i.d. assump-
tion of the update time in Montestruque and Antsaklis
[2004] is reasonable if we assume that the packet loss pro-
cess has the Markov property. Traditionally, the i.i.d. as-
sumption for random sampling period (i.e., update time)
was also made for randomly sampled linear or nonlinear
systems; see Bergen [1960], Bharucha [1961], Kushner and
Tobias [1969], Agniel and Jury [1971]. The assumption of
the boundedness of the packet loss period may not be rea-
sonable since the packet loss may occur randomly, which
implies that the update time may assume any values.

Notation: We use ‖x‖ to denote the Euclidean norm of x
and ‖A‖ the induced matrix norm of matrix A. A′ denotes
the transpose of real matrix A. Let the spectral radius
of the matrix An×n be ρ(A) � max{|λi| , i = 1, . . . , n},
where λi is the i-th eigenvalue of A and the symbol | · |
denotes the magnitude of a (complex) number. Let the
triple (Ω,F ,P) be the underlying probability space. Also
we let E denote the mathematical expectation with respect
to the probability measure P and N = {0, 1, 2, 3, . . .}.
The symbol ⊗ is the Kronecker product and vec the
vector valued function of matrices. Let T denote the
sample period and I the identity matrix with a compatible
dimension.

2. LINEAR SYSTEMS WITH MARKOVIAN PACKET
LOSSES

Consider a networked sampled-data control system:

ẋ(t) = Ax(t) + Bu(kT ), t ∈ [kT, (k + 1)T ) (2.1)

u(kT ) = γkKx(kT ) + (1 − γk)u(kT − T ); (2.2)

see Figure 2.1. Here and in the sequel, we assume that all
real matrices have compatible dimensions. In Figure 2.1,
the continuous-time plant is described by a continuous-
time linear time-invariant differential equation (2.1) driven

by a discrete-time static feedback controller. Meanwhile
the state x(t) is fully measured by sensors and then
sampled, quantized, encoded, and further transmitted by
an unreliable network or communication channel. The
controller receives the discrete-time state x(kT ) after
decoded and generates the control signal u(kT ) based on
the control law Kx(kT ). Before the discrete-time control
signal u(kT ) is fed to the plant, u(kT ) is first passed
through a zero-order hold and converted into a continuous-
time signal. That is, the system under consideration is a
sampled-data linear time-invariant control system. Also,
we consider that u(kT ) is a static state feedback with a
constant gain K for simplicity.

We describe data losses in unreliable channels by using
a discrete-time binary Markov model. More specifically,
in (2.2), if γk = 1, then the state x(t) is successfully
transmitted to the controller without any error; otherwise
we consider the transmission fails and in this situation the
controller (actually, the hold) holds the previous control
value as its current output. Here we assume u(−T ) = 0.
In this paper, we do not address other issues such as the
effects of quantization error and time delays.

We assume that the packet loss process {γk, k ≥ 0} is
a time-homogeneous Markov chain under the probability
measure P with the range set S = {0, 1}. That is, we
assume that {γk, k ≥ 0} satisfies the Markov property:

P(γk+1 = i|γ0, γ1, . . . , γk) = P(γk+1 = i|γk), i ∈ S
(2.3)

and the transition probability is independent of the time
step k. We now make an assumption for the transition
probability of the Markov chain {γk, k ≥ 0}.

Assumption 2.1. Let the transition probability matrix
of γk be

(pij)i,j∈S = (P(γk+1 = j|γk = i))i,j∈S :=

[

1 − q q
p 1 − p

]

.

(2.4)

We assume that the failure and recovery rates p and q
are such that the transition probability matrix (pij)i,j∈S

is irreducible. Also we assume that the initial state x0 is
independent of the Markov chain {γk, k ≥ 0}.

The irreducible assumption excludes two trivial cases, i.e.,
p = 0 or/and q = 0. By using the Markov property (2.3)
and (2.4), we have the finite dimensional distribution of
{γk, k ≥ 0}:

P(γ0 = s0,γ1 = s1, . . . , γk = sk)

= psk−1kn
psk−2sk−1

. . . ps0s1
ps0

(2.5)

where psk−1sk
= P(γk = sk|γk−1 = sk−1) and sk ∈ {0, 1}

for k ≥ 1; for example, p10 = P(γk = 0|γk−1 = 1). Here
ps0

= P(γ0 = s0) is the initial distribution of {γk, k ≥ 0}.

3. A DISCRETE-TIME MARKOVIAN JUMP LINEAR
SYSTEM

Let the initial time t0 = 0, the initial state x0 = x(0),
and k ∈ N. It follows from (2.1) that we have for any
t ∈ [kT, (k + 1)T ),

x(t) = eA(t−kT )x(kT ) +

∫ t

kT

eA(t−τ)dτBu(kT ). (3.1)
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Furthermore, for t = (k + 1)T , (3.1) and (2.2) yield that

x((k + 1)T ) = eAT x(kT ) +

∫ T

0

eA(T−τ)dτBu(kT ) (3.2)

u((k + 1)T ) = γk+1KeAT x(kT ) +
(

(1 − γk+1)I

+ γk+1K

∫ T

0

eA(T−τ)dτB
)

u(kT ). (3.3)

We can write (3.2)–(3.3) in a more compact form:

y((k + 1)T ) : =

[

x((k + 1)T )
u((k + 1)T )

]

:= Mc(γk+1)

[

x(kT )
u(kT )

]

= Mc(γk+1)y(kT ). (3.4)

where

M0 :=





eAT

∫ T

0

eA(T−τ)dτB

0 I



 (3.5)

M1 : =









eAT

∫ T

0

eA(T−τ)dτB

KeAT K

∫ T

0

eA(T−τ)dτB









(3.6)

Then the system (3.4) is a Markov jump linear system with
two operation modes. Obviously, the mode M0 is unstable
since 1 is its eigenvalue. The stability of the mode M1

depends on the controller gain K.

3.1 Stability properties via the Markovian jump linear
system

In this section, we study the relationship between the
stability properties at deterministic continuous time and
deterministic discrete time. Then the stability properties
of the system (2.1)–(2.2) can be established via the Marko-
vian jump linear system (3.4).

Definition 3.1. The system (2.1)–(2.2) is (almost surely)
asymptotically stable, mean square stable, and stochastic
stable (at continuous time) if for any initiate state x0 and
γ0,

lim
t→∞

‖x(t)‖ = 0, lim
t→∞

E[‖x(t)‖2] = 0,

and E[
∫ ∞

0
‖x(t)‖2dt] < ∞, respectively.

Definition 3.2. The system (3.2)–(3.3) is (almost surely)
asymptotically stable, mean square stable, and stochastic
stable if for any initiate state x0 and γ0,

lim
k→∞

‖y(kT )‖ = 0, lim
k→∞

E[‖y(kT )‖2] = 0

and E[
∑∞

k=1 ‖y(kT )‖2] < ∞, respectively.

We first investigate the stochastic stability properties
which are referred to the stochastic stability property
and the mean square stability property. Here, we call the
stability properties of the system (3.2)–(3.3) in discrete
time and the stability properties of the system (2.1)–(2.2)
in continuous time, for simplicity, the stability properties
in discrete time and the stability properties in continuous
time.

Theorem 3.1. With the above definitions, we have

(S1) The mean square stability in continuous time is
equivalent to the mean square stability in discrete
time.

(S2) The stochastic stability in discrete time implies the
stochastic stability in continuous time.

For the converse statement of (S2), we refer to Theorem
5.1. We now consider asymptotic stability properties. It is
obvious that the asymptotic stability in continuous time
implies that the discrete-time state x(kT ) is asymptoti-
cally stable since the later is an infinite sub-sequence of
the continuous-time state x(t).

Corollary 3.1. The asymptotic stability of the system
(3.2)–(3.3) implies the asymptotic stability in continuous
time.

3.2 Stability properties and stabilization in discrete time

Since the system (3.2)–(3.3) is actually a discrete time
Markovian jump linear system with two operation modes,
we know that the mean square stability is equivalent to the
stochastic stability for the system (3.2)–(3.3); see Theorem
1 in Ji and Chizeck [1990]. By directly using the results of
Markov jump linear systems, we next give a necessary and
sufficient condition for the mean square stability. Then
it follows from Theorem 3.1 and Corollary 3.1 that these
results can be used to check the stability properties of the
system (2.1)–(2.2).

Theorem 3.2. The system (3.2)–(3.3) is mean square
stable if and only if there exists two positive definite
matrices P0 and P1 such that

1
∑

j=0

pijM
′
iPjMi − Pi < 0 (3.7)

holds for all i ∈ S. Furthermore, there exists a state-
feedback controller (2.2) such that the system (3.2)–(3.3)
is mean square stable if there exist matrices P0 > 0, P1 >
0, K̄, Y satisfying the coupled LMIs:

M′
0

(

(1 − q)P0 + qP1

)

M0 − P0 < 0 (3.8)
[

P1 Ā′K̄ ′

K̄Ā Y + Y ′ −
(

pP0 + (1 − p)P1

)

]

> 0 (3.9)

where K̄ = Y diag(In×n, Km×n) and Ā is defined by

Ā =









eAT

∫ T

0

eA(T−τ)dτB

eAT

∫ T

0

eA(T−τ)dτB









.

Then the controller gain K exists if the following matrix
equations are congruent:

Y12K = K̄12, Y22K = K̄22 (3.10)

where

Y =

[

Y11 Y12

Y21 Y22

]

(n+m)×(n+m)

, K̄ =

[

K̄11 K̄12

K̄21 K̄22

]

(n+m)×2n

.

By (3.7), we next obtain necessary conditions for the mean
square stability by following Ji and Chizeck [1991].

Corollary 3.2. The necessary conditions for the mean
square stability of the system (3.2)–(3.3) are

(1 − q)ρ2(eAT ) < 1

(1 − p)ρ2(eAT +

∫ T

0

eA(T−τ)dτBK) < 1. (3.11)

It can be easily observed that if the feedback control
u(kT ) = Kx(kT ) stabilizes the systems under no packet

losses, i.e. ρ(eAT +
∫ T

0
eA(T−τ)dτBK) < 1, the second
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inequality of (3.11) is trivially satisfied. The first inequality
(3.11) says that for a less stable plant, the recovery rate
q needs to be higher. The next corollary follows from
Theorem 2.2 in Fang et al. [1994].

Corollary 3.3. Let µ = [µ0 µ1]
′ be the stationary distri-

bution of the Markov chain {γk, k ≥ 0}. Then the system
(3.2)–(3.3) is asymptotically stable in discrete time if there
exists a matrix norm ‖ · ‖ such that

1
∑

i=0

µi log ‖Mi‖ < 0. (3.12)

4. AN EQUIVALENT LINEAR SYSTEM WITH
RANDOM SAMPLING

Consider the system (2.1)–(2.2) again. We now introduce
the following random time for the Markov chain {γk, k ∈
N}:

t1 = inf{k : k ≥ 1, γk = 1}

t2 = inf{k : k > t1, γk = 1},

...

tk = inf{k : k > tk−1, γk = 1}. (4.1)

Hence these time instants tk ≥ 1 are random variables and
also stopping times of the Markov chain {γ1, . . . , γk}. In
particular, tk is called the k-th passage time to state 1.
The random time {tk, k ∈ N} is a strictly monotonously
increasing time sequence and tk → ∞ as k → ∞. Here
as before, we let the initial time t0 = 0 and the initial
state x0 = x(0). Note that by the definition, the stoping
times {tk, k ∈ N} are different from the stoping times
{αk, βk, k ≥ 1} considered first in Huang and Dey [2007]
and then in Xie and Xie [2007].

We now define a continuous time system with randomly
sampled states (observations):

ẋ(t) = Ax(t) + Bu(t)

x(t) = x(tkT ), t = tkT, k = 0, 1, . . . , (4.2)

where u(t) = Kx(tkT ), ∀t ∈ [tkT, tk+1T ), and the gain
K is a constant design parameter. For the systems (4.2)
under consideration, the state x(t) is only observed at
the random time instants {tkT, k ≥ 0}. Also the control
u(t) is a static state feedback with a constant gain and
equals Kx(tkT ) at the random sampling time instant
tkT . Moreover, u(t) is held during the random interval
(tkT, tk+1T ) during which no state signal x(t) is available.
Then the closed-loop system becomes

ẋ(t) = Ax(t) + BKx(tkT ), ∀t ∈ [tkT, tk+1T ). (4.3)

The system (4.2) is shown in Figure 4.1. It is obvious that

Hold ẋ(t) = Ax(t) + Bu(t)

�

�

tk

Random sampling

y(t) = x(t)

u(t) = Kx(tkT ), t ∈ [tkT, tk+1T )

Plant

−

Fig. 4.1. An equivalent system: randomly sampled system

the system (2.1)–(2.2) is equivalent to the system (4.2). It
follows from (4.3) that we have for t ∈ [tkT, tk+1T ),

x(t) = eA(t−tkT )x(tkT ) +

∫ t

tkT

eA(t−τ)BKx(tkT )dτ

=
[

eA(t−tkT ) +

∫ t−tkT

0

eA(t−tkT−τ)dτBK
]

x(tkT )

(4.4)

and for t = tk+1T ,

x(tk+1T ) =
[

eA(tk+1−tk)T

+

∫ (tk+1−tk)T

0

eA((tk+1−tk)T−τ)dτBK
]

x(tkT )

:= Ms(tk+1 − tk)x(tkT ). (4.5)

The system (4.5) is a random recursion system evolving
in the random sampling time instants {tk, k ∈ N}. We
next study the stability properties of the system (4.5).
By establishing the relationship between the stability
properties in discrete time and random time, in Section 5,
we will show that the stability conditions of the system
(2.1)–(2.2) can be obtained via the random recursion
system (4.5).

4.1 Statistical properties of the random sampling period.

By using the Markov property of the packet loss process
{γk, k ∈ N}, we now characterize the statistical properties
of the random sampling period. The following lemma
follows from the irreducibility of {γk, k ∈ N} since an
irreducible Markov chain having a finite state space is
positive recurrent. For its proof, we refer to Lemma 1 of
Huang and Dey [2007].

Lemma 4.1. Under Assumption 2.1, the stopping times
{tk, k ≥ 1} are finite with probability one (almost surely).

Hence we can define the following sojourn times:

t∗k := tk − tk−1 (4.6)

with k ∈ N − {0}. Then the increment process t∗k takes
values in the set N − {0}. In Montestruque and Antsaklis
[2004], t∗k is defined as the time between the (k − 1)-th
and k-th successful transmissions and called update time.
Without loss of generality, we next let γ0 = 1. That is,
the initial state x0 is known by both of the continuous-
time plant and the discrete-time networked controller. If
γ0 is random, the following distribution has a complicated
analytical expression.

Lemma 4.2. Under Assumption 2.1, the sojourn times
{t∗k, k ≥ 1} are i.i.d. Furthermore the distribution of t∗k is
given by

P(t∗k = i) =

{

1 − p, if i = 1;
pq(1 − q)i−2, otherwise.

(4.7)

4.2 Mean square stability in random sampling time

In this section, we consider the mean square stability
properties of the random recursive system (4.5). The
system (4.5) is also called the system (4.2) in the random
sampling time {tk, k ≥ 0}.

Definition 4.1. The system (4.2) is mean square stable
in random sampling time, that is, the random recursive
system (4.5) is mean square stable, if for any x0 and γ0,

lim
t→∞

E[‖x(tkT )‖2] = 0 (4.8)
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where tk is defined by (4.1).

The following necessary and sufficient condition for the
mean square stability of the system (4.5) directly follows
from Theorem 2 in Kushner and Tobias [1969].

Theorem 4.1. The system (4.5) is mean square stable if
and only if there exists a matrix P > 0 such that

E[M′
s(t

∗
k)PMs(t

∗
k)] − P < 0. (4.9)

In the next theorem, we suppose that A is non-singular.
Then an explicit expression for the inequality (4.9) can be
obtained. For arbitrary state matrices A, we can use the
Jordan form of A to obtain an expression for the inequality
(4.9).

Theorem 4.2. The system (4.5) is mean square stable if
and only if the following conditions hold:

(i) (1 − q)ρ2(eAT ) < 1,
(ii) there exists a matrix S > 0 satisfying the inequalities:

1. S − (1 − q)eA′T SeAT > 0; (4.10)

2. (1 − p)C′PC + qpD′SD − qpD′F ′PE

− qpE′PFD + pE′PE − P < 0 (4.11)

where P = S − (1 − q)eA′T SeAT and

E = A−1BK, C = eAT (I + A−1BK) − A−1BK,

F = [I − (1 − q)eAT ]−1, D = e2AT (I + A−1BK).

5. STABILITY PROPERTIES VIA THE RANDOMLY
SAMPLED SYSTEM

Definition 5.1. The system (2.1)–(2.2) is stochastically
stable in random sampling time if for any initiate state x0

and γ0,

E[

∞
∑

k=0

‖x(tkT )‖2] < ∞ (5.1)

where tk is defined by (4.1).

The next theorem establishes the equivalence of stochas-
tic stability properties for random sampling time. When
{t∗k, k ≥ 1} is a finite state Markov chain, the similar
results have been obtained for Markov jump linear systems
evolving in deterministic discrete time in Ji and Chizeck
[1990], Feng et al. [1992]. Here we consider {t∗k, k ≥ 1} is
an i.i.d. with the countable range set {1, . . . , n, . . . }.

Theorem 5.1. The mean square stability of the system
(4.5) with the random sampling time {tkT, k ≥ 1} is
equivalent to the stochastic stability, i.e., the equality (4.8)
and the inequality (5.1) are equivalent.

Remark 5.1. A necessary and sufficient condition for
the mean square stability of the system (4.5) has been
obtained by extending the results of Bergen [1960], as
pointed out in Agniel and Jury [1971], for randomly time-
varying systems with zero input in Bharucha [1961]. That
is, the system (4.5) is mean stable if and only if

lim
k→∞

(E[(M ′
s(t

∗
k) ⊗ M ′

s(t
∗
k))])k = 0.

This condition is equivalent to

ρ(E[(Ms(t
∗
k) ⊗ Ms(t

∗
k))]) < 1. (5.2)

The condition (5.2) is also equivalent to (4.9); see Theorem
2 in Kushner and Tobias [1969] and Appendix B in Agniel
and Jury [1971].

We now establish the equivalence of the mean square
stabilities in random sampling time and discrete time.

Theorem 5.2. The mean square stability of the system
(4.5) in random time is equivalent to the mean square
stability of the system (3.4) in discrete time.

The next proposition is concerned with the converse state-
ment of (S2) in Theorem 3.1 which is true providing that
an extra condition holds.

Proposition 5.1. Let A(t) = eAt +
∫ t

0 eA(t−τ)dτBK. If
the system (2.1)–(2.2) in continuous time is stochastic

stable and the matrix E[
∫ t∗1T

0 A(t) ⊗ A(t)dt] has not any
zero column, then the system (4.5) in random sampling
time is mean square stable.

By using the statement (S1) of Theorem 3.1, Theorem 5.2,
and (5.2) in Remark 5.1, we give a sufficient and necessary
condition to guarantee the mean square stability of the
system (2.1)–(2.2) as well as stochastic and asymptotic
stability.

Theorem 5.3. The necessary and sufficient condition for
the mean square stability of the system (2.1)–(2.2) is

ρ(E[(Ms(t
∗
k) ⊗ Ms(t

∗
k))]) < 1. (5.3)

Meanwhile, the mean square stability of the system (2.1)–
(2.2) also implies the stochastic stability of the system
(2.1)–(2.2). Furthermore, the system (2.1)–(2.2) is asymp-
totically stable as well.

We are now in the position to establish a sufficient con-
dition for the asymptotic stability in continuous time. We
first make an assumption on the system parameters.

Assumption 5.1. The recovery rate q, the sample period
T , and the state matrix A satisfy

(1 − q)ρ(eAT ) < 1. (5.4)

Assumption 5.1 ensures a related function of the i.i.d. pro-
cess {t∗k, k ≥ 1} has a finite expectation such that we
can use the strong law of large numbers to study the
asymptotic stability.

Theorem 5.4. Under Assumption 5.1, the system (2.1)
and (2.2) is asymptotically stable if there exists a matrix
norm ‖ · ‖ such that

E[log ‖Ms(t
∗
1)‖] < 0 (5.5)

where t∗1 and Ms(t
∗
1) are defined by (4.6) and (4.5).

Corollary 5.1. Consider scalar systems (2.1)–(2.2). If
(1 − q)ρ2(AT ) < 1, then

E[log ‖Ms(t
∗
1)‖] < 0 (5.6)

is also a necessary condition for the asymptotic stability
of the system (2.1) and (2.2).

6. ILLUSTRATIVE EXAMPLES

Example 6.1. Consider an unstable scalar plant with
A = 0.4, B = 1. Let the failure rate p = 0.3 and
the recovery rate q = 0.6. In Figure 6.1, we give the
admissible range of the gain K for the mean square
stability and the asymptotic stability, respectively, by
solving the inequalities (5.3) or (4.9) and (5.6). That is, if
K ∈ (−1.641,−0.4), the system is asymptotically stable,
and if K ∈ (−0.5257,−0.4), the system is mean square
stable. Here T = 1, x0 = 0.8, 1 ≤ k ≤ 50. In order to
guarantee those stabilities, K must be less than −0.4.
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Fig. 6.1. Control gain vs. expectation values

7. CONCLUSION

In this paper, we have considered the stability properties
and stabilizing problem of sampled-data networked con-
trolled linear systems with Markovian packet losses. With
the Markovian packet loss assumption, we first obtain
a discrete-time augmented Markov jump linear system
which describes the continuous-time linear system evolving
in deterministic discrete time. Furthermore, we show that
the sampled-data system under consideration can also
be considered as a randomly sampled system with an
i.i.d. random sampling period.

It is noted that for the sampled-data systems under consid-
eration, there are three associated time instant sequences,
i.e., deterministic continuous time sequence, determinis-
tic discrete time sequence, and random sampling time
sequence. We have established the relationships of the
stability properties for the systems evolving in continu-
ous time, discrete time, and random time. The involved
systems in discrete time and random time are a Markov
jump linear system and a randomly sampled linear system.
By using the known results of Markov jump linear sys-
tems and randomly sampled systems, we obtain a number
of necessary and sufficient conditions for the stochastic
stability properties of the systems in discrete time and
random time. Then based on the relationships of stability
properties between the systems evolving in deterministic
continuous time, deterministic discrete time, and random
time, which are established here, we have shown that
those conditions are valid for the sampled-data system.
In addition, the asymptotic stability of the system is also
studied by using Lyapunov exponent method. Numerical
examples are used to illustrate the main results of the
paper. In order to design stabilizing controllers, we found
that numerical tools including LMIs need to be developed
in future for solving related inequalities.
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