
Practical approaches to low-order anti-windup
compensator design: a flight control comparison

Murray L. Kerr ∗,1,2 Matthew C. Turner ∗,2 Ian Postlethwaite ∗,2

∗Control and Instrumentation Research Group, Dept. of Engineering,
Univ. of Leicester, Leicester, LE1 7RH, UK.
Email: {mlk9,mct6,ixp} @le.ac.uk

Abstract: This paper considers three different methods for low-order anti-windup (AW) compensator
design and compares their application to a realistic flight control problem, where the dominant actuator
nonlinearity is aileron rate saturation. The compensator design methods all rigorously enforce at least
local exponential stability via absolute stability results, but differ in both the construction of the
AW compensator itself and the performance requirements used in the design. In particular, the paper
compares a low order AW “optimal” design method in which the compensator poles and zeros are chosen
by the designer and the accompanying gains synthesised optimally; a new low order method in which
the optimisation procedure optimally chooses both the zeros and the gains; and a recently introduced
classical design method where loopshaping is used to completely determine the gains and dynamics of
the compensator. The methods are compared using a high-order nonlinear model of the lateral dynamics
of an experimental aircraft, on which similar compensators have recently been flight tested.
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1. INTRODUCTION

Modern anti-windup (AW) compensation techniques are nu-
merous and diverse, owing perhaps to the different branches
of control theory to which they can be linked, e.g. nonlinear
control, robust control, and PID control. Although the problem
of control system saturation (“windup”) was initially linked
to integral type controllers, it was soon evident that satura-
tion problems occurred in many types of control systems. The
subsequent “anti-windup” methods which were developed ini-
tially were somewhat ad hoc and were rarely accompanied
by meaningful performance or stability guarantees. However,
developments in the 1980s and 1990s saw the marriage of these
anti-saturation ideas with techniques from robust and nonlinear
control, thereby giving AW a solid theoretical foundation.

From this basis, many AW techniques which enforce global
or local stability, L2 performance, and similar design metrics
have been proposed (Mulder et al. (2001); Turner and Postleth-
waite (2004); Grimm et al. (2004)) over recent years. Despite
the attractive features of many of these “advanced” schemes,
few of them have found their way into application and none
are commonplace in practical control engineering. The reason
for this is that the apparent advantages of these theoretically
strong compensation techniques have to be tempered with the
practical drawbacks inherent in many of them. For instance,
many of these modern schemes produce compensators of high
order making them problematic to implement in systems where
computational resources are at a premium; many also do not
explicitly control pole magnitudes or locations which are a
vital consideration for discrete implementation. Moreover, the
proving ground of these modern AW techniques tends to be
the realm of low order linear plant models which are gross
simplifications of real physical systems. Although successful
application to these simple models is a necessary part of the
validation of such techniques, many important practical con-
siderations are not present in these simplified models.

Apart from the validation of individual design methods, the
literature discussing objective comparisons of various AW
techniques is scarce. Many papers (Turner and Postlethwaite
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Fig. 1. Standard anti-windup configuration

(2004); Grimm et al. (2004); Queinnec et al. (2006)) demon-
strate performance improvement using AW compensation over
using no AW compensation, providing some justification to the
proposed methods, but relatively few provide a fair and critical
comparison between different AW methods.

The aim of this paper, therefore, is to compare three tech-
niques for AW compensator design for a complex, realistic
flight control example. To ensure they are feasible for practical
implementation, the methods are chosen to produce low order
compensators (all compensators produced are 2nd order) and to
contain no direct-feedthrough terms which may impede imple-
mentation. The techniques we discuss are; (i) an “optimal” low
order synthesis method discussed in (Turner and Postlethwaite
(2004); Turner et al. (2007)) in which the designer chooses the
AW compensator dynamics and LMIs optimally construct the
AW compensator gains; (ii) a classical AWmethod proposed in
(Kerr et al. (2007)) where bounds in the Nichols chart (NC) are
used to guide the designer in the construction of the AW com-
pensator; and (iii) a new low order zero-optimisation method,
similar to (i) but where the LMI optimisation also has the
freedom to place optimally the zeros of the AW compensator
and the designer simply chooses the poles.

2. ANTI-WINDUP DESIGN

A reasonably generic illustration of the AW problem is shown
in Figure 1 where G(s) = [G1(s),G2(s)] is the nominal linear
plant, K(s) = [K1(s),K2(s)] is the nominal linear controller,
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Fig. 2. Equivalent AW problem

y∈R
p is the measured output and u∈R

m the control input. The

AW compensator, Θ(s) ∈ RH
(m+p)×m
∞

, is driven by the signal
ũ= u−Sat(u) =Dz(u). Upon activation, the AW compensator
Θ(s) injects two signals into the system, one at the controller
input and one at the controller output. Following (Turner and
Postlethwaite (2004); Turner et al. (2007)), the nominal plant
G(s) and the controller K(s) are assigned the following state-
space representations

G(s) ∼

[
Ap Bpd Bp
Cp Dpd Dp

]

, (1)

K(s) ∼
[
Ac Bcr Bc
Cc Dcr Dc

]

. (2)

There are several different ways to frame the goals of the AW
problem but, in essence, most procedures seek to establish
stability of the system in Figure 1 and also to ensure swift
return from saturated nonlinear to nominal linear behaviour.
The AW problem is thus frequently re-cast as that depicted
by the Figure 2 in which W (s) represents the overall linear
system, containing the dynamics of G(s), K(s) and Θ(s), and
φ(.) = Dz(·), the deadzone nonlinearity. The exogenous input
vector w(t) and output z(t) are used to capture, as discussed
later, the performance of the system. The AW problem is then
to chooseΘ(s) to ensure: (i) asymptotic stability of the origin of
the system when w(t) ≡ 0; and (ii) that the output z(t) remains
small, in some sense, when w(t) is present.

Figure 2 depicts a general AW problem in which w(t) and
z(t) are not specified. However, as argued in Teel and Kapoor
(1997); Weston and Postlethwaite (2000); Turner and Postleth-
waite (2004), it is desirable to design Θ(s) to ensure “optimal”
recovery of linear performance. In this case, Figure 2 can be
seen as a “mismatch” system representing the deviation of the
nonlinear (saturated) system’s behaviour from linear behaviour.
In this case w = ulin, the linear control signal from the ideal
system without saturation, and z= zd , the deviation of the per-
formance outputs from those of the ideal system without satu-
ration, which one would like to minimise (Weston and Postleth-
waite (2000); Grimm et al. (2004); Villota et al. (2006)). In
the subsequent work an objective of the design methods is to
minimise theL2 gain of the mismatch system in some way.

2.1 Local stability

When G(s) ∈ RH ∞ (i.e. G(s) is stable), it is well known
that there always exists an AW compensator, Θ(s) which can
guarantee global stability of the system in Figure 1 (Teel
and Kapoor (1997); Weston and Postlethwaite (2000)). When
G(s) /∈ RH ∞ (i.e. G(s) is not stable), establishing stability is
more difficult and it often suffices to guarantee stability locally
(Gomes da Silva Jr. et al. (2003); Hindi and Boyd (1998)).
In this case, it is assumed that φ(·) is no longer the standard
deadzone which inhabits the Sector[0, I], but is instead confined
to some narrower sector, i.e.

φ(·) ∈ Sector[0,εI] ε ∈ (0,1).

This is equivalent to assuming that |ui| ≤ ūi/(1− ε) ∀i, with
ūi the saturation level in the i’th channel. It then follows that,
regardless of the locations of the poles of G(s), there always

exists a sufficiently small ε such that local stability is guaran-
teed. As ε approaches unity, stability is closer to being provided
globally. Note that by choosing ε < 1, one can establish both
local stability for unstable systems and L2 performance prop-
erties in small regions of the signal space of u, making it easier
to obtain better local performance, typically at the expense
of large-signal stability. In the remainder of the paper, each
of the design methods treats this “local” stability/performance
objective.

3. LOW ORDER ANTI-WINDUP

It is well known in the AW literature that, given G(s) ∈ RH ∞

with state dimension np, a full order (np’th order) AW com-
pensator guaranteeing global exponential stability always exists
(Teel and Kapoor (1997); Weston and Postlethwaite (2000);
Grimm et al. (2003)). It is also well known that the lower
bound on theL2 gain, from either exogenous inputs to arbitrary
performance outputs, or of the so-called mismatch system, is
achieved by certain full order AW compensators (Grimm et al.
(2003, 2004)). These properties roughly carry over to unstable
systems, which can be handled by appropriately modifying the
sector condition used in AW synthesis.

These compelling arguments supporting the use of full order
(np’th order) compensators are usually offset by other consid-
erations. Perhaps the most obvious of these is that, in practice,
it is undesirable to implement a control law which requires
an extra np states just to handle saturation constraints; most
AW compensators favoured by practitioners are static or low
order (Rundquist and Stahl-Gunnarsson (1996); Hanus et al.
(1987)). Another possible disadvantage with full order com-
pensators is that the dynamics required to push the L2 gain
close to optimal may be unnecessary and may actually give
rise to behaviour which may hinder performance observed in
the time domain due to excessively slow poles or approximate
pole-zero cancellations. Thus there has been an understandable
interest in low order compensators (compensators with order
lower than np) that combine the theoretical advantages of full
order compensators (feasibility, performance) but also retain
the practical advantages of the low order compensators (ease
of implementation, predictable dynamic behaviour).

Unfortunately, the AW literature has seen relatively few sys-
tematic design procedures for low order AW compensators.
Perhaps the main reason is that the procedure for synthesising
low order compensators does not appear, in general, to be con-
vex. In order to circumvent this problem, a similar procedure to
that used in low-order H∞ control can be used (Galeani et al.
(2006)), where an alternating projection method is used to “con-
vexify” the nonconvex optimisation procedure; it is noted that
this is not guaranteed to work. Similarly, one could use model
reduction methods to obtain a low order compensator with sim-
ilar input-output characteristics to a good full-order design. An
alternative is to fix the dynamics of the AW compensator and
then to optimise the associated gains and/or zeros (Turner and
Postlethwaite (2004); Biannic et al. (2007)). Although again
no feasibility is guaranteed, a useful guide to the dynamics re-
quired can be found by examining the dominant modes of a full
order design. A third method, which can be particularly useful
in single-input-single-output (SISO) problems, is to design AW
compensators using classical loopshaping methods in which the
dynamics are chosen based on the frequency response of the
linear part of the system and exclusion regions in the NC (Kerr
et al. (2007)). It is these last two methods which we discuss and
compare.

The overall goal of all the AW design methods discussed herein
can therefore be stated as

Goal 1: To design Θ(s) ∈ RH ∞ such that

(1) The system in Figure 1 is globally asymptotically for all
φ(.) ∈ Sector[0,εI], ε ∈ (0,1).

(2) deg(Θ(s)) < np.
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(3) The “gain” of the mismatch system is sufficiently small,
i.e. ‖zd‖2 < γ‖ulin‖2 for some γ > 0.

3.1 Standard Low order design

The simple static/low-order method proposed in Turner and
Postlethwaite (2004) involves the partitioning of the AW into
two parts

Θ(s) =

[

Θ1(s)
Θ2(s)

]

=

[

F1(s)Θ̃1
F2(s)Θ̃2

]

(3)

where the F1(s) and F2(s) are two stable transfer function
matrices chosen by the designer and Θ̃1 and Θ̃2 are two gain
matrices produced by an LMI optimisation procedure. The
objective of the LMI optimisation is to minimise the L2 gain
of the nonlinear map from w to z in Figure 2, where the system
is the mismatch system and hence w= ulin and z= zd . For a full
discussion of this method, see Turner and Postlethwaite (2004);
Turner et al. (2007). A brief design procedure is as follows:

Procedure 1: Gain optimisation

(1) Choose ε ∈ (0,1). This dictates the size of sector for
which the system is stable.

(2) Choose F1(s) and F2(s), including the poles and zeros and
their directions.

(3) Choose weighting matrices Wp > 0,Wr > 0 to trade-off
performance and robustness.

(4) Minimise γ subject to the LMI in equation (4).
(5) Form Θ̃ = [Θ̃′

1
Θ̃

′

2
]′ = LU−1.

(6) Form Θ(s) according to equation (3).

Remark 1: This low order technique requires the designer
to specify fully the dynamics of the compensator and only
synthesises the gains in an optimal fashion. Although this may
seem restrictive, the dynamics of a full order compensator
can be a useful guide in choosing these dynamics and it is
often possible to synthesise a low-order compensator with very
similar performance to full-order compensators (Turner and
Postlethwaite (2004); Turner et al. (2007)). ◦

Using this design method, a compensator Θ(s) is synthe-
sised which guarantees (i) asymptotic stability for all φ(.) ∈
Sector[0,εI]; and (ii) the localL2 gain bound γ of the mismatch
system weighted by Wp is minimised, and some robustness to
additive plant perturbations is provided (Turner et al. (2007)).

3.2 Low order design with zero optimisation

Although the foregoing method represents a simple approach to
low order AW design, it suffers from several drawbacks. Firstly,
the optimisation may not be feasible due to fixed poles/zeros;
and, secondly, even if feasible, the optimisation is performed
over a restricted set of low order compensators. Consequently,
some sort of iteration in pole/zero choice is typically required
in order to achieve a satisfactory design. To alleviate some of
these problems, a new design approach is proposed below that
provides both gain and zero optimisation.

It is well known in the control literature that optimisation of
the residual gains of a transfer function, subject to quadratic
constraints and objectives, results in a convex optimal control
problem. Exploiting this fact, a design method is proposed
based on representing the filters in their dyadic partial fraction
expanded form. This idea has in fact already been used in AW
control in the recent independent work of Biannic et al. (2007),
although the problem solved in that work differs from that
presented here in terms of the performance objective, the lack
of explicit use of the mismatch system and in that the partial
fraction expansion used is not in dyadic form. The latter is
important, as it highlights some of the remaining limitations
of the method. Interestingly, when the filters are placed in the
dyadic partial fraction expansion form, they are actually in an

identical form to that considered in the previous section and
given in Turner and Postlethwaite (2004). Hence the existing
design theory in Turner and Postlethwaite (2004), and its later
development to basic robust AW control in Turner et al. (2007),
can be exploited and reused.

As in the method of Turner and Postlethwaite (2004), the gain
and zero optimization low-order method proposed here involves
the partitioning of the AW compensator into two parts. Here
Θ1(s) and Θ2(s) are given in dyadic partial fraction form:

Θi = Di+
ki

∑
j=1

y1i( j)u
H
1i( j)

s+ai( j)
+
li

∑
j=1

y2i( j)u
H
2i( j)s+ y3i( j)u

H
3i( j)

s2+bi( j)s+ c
2

i( j)

(5)

where ki and li indicate the number of first and second order
terms desired in the dynamics of Θi(s). Denoting the output
dimension (either m or p) of Θi(s) as qi, it is convenient to
define the following matrices:

y1i = [ y1i(1) y1i(2) . . . y1i(ki) ] ∈ R
qi×ki

y2i = [ y2i(1) y2i(2) . . . y2i(li) ] ∈ R
qi×li

y3i = [ y3i(1) y3i(2) . . . y3i(li) ] ∈ R
qi×li

y4i(j) = [ y2i( j) 0qi×1 ] ∈ R
qi×2

y4i = [ y4i(1) y4i(2) . . . y4i(li) ] ∈ R
qi×2li

u1i = [ u1i(1) u1i(2) . . . u1i(ki) ] ∈ R
m×ki

u2i = [ u2i(1) u2i(2) . . . u2i(li) ] ∈ R
m×li

u3i = [ u3i(1) u3i(2) . . . u3i(ki) ] ∈ R
m×li

u4i(j) = [ u2i( j) u3i( j) ] ∈ R
m×2

u4i = [ u4i(1) u4i(2) . . . u4i(li) ] ∈ R
m×2li

In this representation, u1i, u2i and u3i are the design parameters
chosen by the optimisation algorithm. Considering the degen-
erate case where y2i = y3i, this can be put in the following
equivalent form, where the design parameters are captured in

the gain matrices Θ̃i:

Θi(s) = Fi(s)Θ̃i (6)

where Fi(s) ∈ R
qi×qi+ki+2li and Θ̃i ∈ R

qi+ki+2li×m. Here Fi(s)
and Θ̃i(s) take the form:

Fi ∼









diag[−ai( j)]ki×ki 0ki×2li Iki×ki 0ki×2li 0ki×qi

02li×ki diag

[

−bi( j) 1

−c2i( j) 0

]

2li×2li

02li×ki I2li×2li 02li×qi

y1i y4i 0qi×ki 0qi×2li Iqi×qi









(7)

Θ̃i =
[

u1i u4i D
H
i

]H
. (8)

The AW compensator is parameterised in the same form as
that for the low order design method discussed in the previous
section (Turner et al. (2004, 2007)). Hence the optimisation
problem can be posed in exactly the same way, except for a
minor change in the dimensions of the state-space matrices in
the LMI (4). Due to the change in the structure of Fi(s) the
design procedure is slightly different and is given below.

Procedure 2: Gain and zero optimisation

(1) Choose ε ∈ (0,1).
(2) Choose the poles using

{
ai( j),bi( j),ci( j)

}
, and output pole

directions y1i, y2i = y3i of F1(s) and F2(s) .
(3) Choose weighting matricesWp > 0 andWr > 0.
(4) Minimise γ subject to the LMI in equation (4).
(5) Form Θ̃ = [Θ̃′

1
Θ̃

′

2
]′ = LU−1.

(6) Form Θ(s) according to equations (6)-(8).

Remark 2:While the gains and zeros of the AW compensator
can be chosen optimally, the method still has some limitations.
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In particular, the optimisation algorithm can only choose the
right singular value directions of the poles (input pole direc-
tions) and not the left singular value directions (output pole
directions), which are fixed by the choice of y1i and y2i. Optimi-
sation of the input and output directions is only possible when
the multiplicity of the pole is at least equal to the dimension of
the output spaces (ie max{m, p}). In this case, one can choose
the set of output directions for the repeated pole such that
they span the output space. Of course in SISO AW controller
design with m= p= 1, no directional limitations arise. Similar
arguments can be made in terms of the zero directions, although
the limitations are likely to be less, as the zeros are determined
by the choice of the poles, their output and input directions, and
the gain matrix, the latter two of which are chosen optimally. ◦

3.3 Classical design

A useful AW approach for SISO problems is to design the AW
compensator using classical loopshaping methods, in which
the AW dynamics are chosen based on the frequency response
of the linear part of the system and exclusion regions in the
Nichols chart (NC) (Kerr et al. (2007)). These exclusion regions
capture stability constraints (absolute stability, describing func-
tion) and linear performance constraints, and guide the shaping
of the AW compensator. This can also be done robustly, by
enforcing the constraints for a finite set of discrete plant cases
{G}, as is the case in Quantitative Feedback Theory (QFT).
Here we summarise the design approach in Kerr et al. (2007).

The problem considered is that of the design of only Θ1(s)
(alternative choices can be made). No structure on Θ1(s) is
a priori defined. The design procedure can enforce a number
of constraints and here we consider two. The first is absolute
stability via the Popov Criterion, which gives rise to standard
exclusion regions in the NC. The second is the enforcement of
a lower bound γl on theL2 gain of the nonlinear map from w to
z in Figure 2, where again this system represents the mismatch
system and consequently w= ulin and z= zd . The lower bound
is calculated by treating the nonlinearity φ(·) in Sector[0,εI] as
an uncertain linear gain in [0,εI]. While this does not ensure
that the true gain of the nonlinear map is bounded by some
specified level, enforcement of absolute stability does ensure
that all maps are bounded. Initial experience has also shown that
this optimistic lower bound is a useful indication of the relative
performance of AW compensators, which is known to be a
potential problem with the upper bound (Grimm et al. (2004)).
As the map is linear, it also gives a frequency dependent gain,
which aids loopshaping.

The design procedure is summarised below. The algorithms for
the calculation of the exclusion regions for absolute stability
and performance are slight variations on those standard to QFT
and are detailed in Kerr et al. (2007). The bounds in Figure 6
provide an indication of possible region topologies.

Procedure 3: Classical loopshaping

(1) Choose the finite discrete plant family {G} and a finite
discrete set of design frequencies Ω.

(2) Choose ε ∈ (0,1). This dictates the size of sector for
which stability and performance are enforced.

(3) Calculate exclusion regions at each ω ∈ Ω and for each
G ∈ {G} for absolute stability via the Popov Criterion.

(4) Calculate exclusion regions at each ω ∈ Ω and for each
G ∈ {G} for the map from w = ulin and z = zd , with φ(·)
replaced by [0,εI], to be less than γl .

(5) Find the union of all the exclusion regions at each ω ∈ Ω.

(6) Loopshape Θ1(s) to satisfy the exclusion regions at each
ω ∈ Ω while satisfying any practical design constraints.

Remark 3: This classical loopshaping method does not aim to
provide “optimal” AW compensators. Rather, the method aims
to provide compensators that balance the need for stability in
a reasonably large sector (large ε) and good recovery of linear
response (small γl), with the desire for low order compensators
with dynamics that are suitable for implementation. As there is
no constraint on the structure of the AW compensator, feasible
compensators of any order are readily designed and if one
cannot be found, the exclusion regions provide immediate
insight into any conflicting design properties; ie stability versus
performance, or the need for higher order compensation. ◦

4. THE AIRCRAFT MODEL AND RATE-SATURATION

An important saturation problem in flight control is that of rate-
saturation in an aircraft’s control surfaces. Over recent years,
these rate-saturation problems have become associated with
so-called pilot-induced-oscillations (PIOs) which are charac-
terised by undesirable oscillatory behaviour due to aircraft-
pilot-controller interactions (NRC (1997)). They have been re-
sponsible for several accidents, most notably the SAAB Grip-
pen crashes, and have become the subject of much research both
in the control and handling qualities communities.

4.1 The PIO problem

Figure 3 shows the nominal pilot vehicle system (PVS) under
consideration. Gi(s) denotes the aircraft dynamics and Ki(s)
denotes the nominal controller. Between these two elements
is the rate-limit nonlinearity which, as is often the case, has
been modelled as a set of first order systems interconnected
with a saturation nonlinearity, which models the limits on the
actuator rates. We assume no magnitude saturation nonlinearity
is present because the strict rate limits considered typically
prevent magnitude limits from being activated and rate limits
are the dominant nonlinearity in PIO occurrences. In Figure 3,
y denotes the vector of measurements, including those which
are observed by the pilot, Kp, who forms an outer control loop.
Although at first the configuration in Figure 3 seems somewhat
different than the AW problem discussed earlier, by making
suitable definitions as indicated in Figure 3, the problem can
be cast as a standard AW problem with magnitude saturation
by defining K(s) and G(s) as follows

d =H[Ki,1Kp Ki,2−Ki,1Kp − I]
︸ ︷︷ ︸

K(s)

[
r
y
xrm

]

, (9)

[
y
xrm

]

=

[

Gi,1 Gi,2/s
0 I/s

]

︸ ︷︷ ︸

G(s)

[
do
d̂

]

. (10)

In this configuration, the AW compensator, Θ(s) is driven by
the signal d̃ = Dz(d), which is the difference between the ideal
and actual control signal rates - a signal internal to the rate-
limit. Although this appears unrealistic, in fact this is quite
possible since software rate-limits are normally placed before
physical rate-limits to ensure that the latter are never exceeded.

In Figure 3, the pilot is modelled by a linear transfer function
Kp, which is normally taken as either a simple gain (Duda
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(1997)) or a gain plus time delay and with lead-lag character-
istics (Neale Smith). Although a gross approximation of real
human behaviour, such models do provide a useful indication
of approximate pilot behaviour during a closed-loop task.

4.2 The ATTAS aircraft

The three low-order AW design techniques are compared
against one another using a high fidelity nonlinear simulation
of the ATTAS aircraft. The ATTAS has been the subject of
previous PIO research and good summaries of this can be found
in Brieger et al. (2007); Sofrony et al. (2006). As in these
papers, here the rate-limits are reduced to 50 % (12.5 deg/s) of
their nominal value in order to induce higher levels of saturation
and hence more oscillatory behaviour; the actuator bandwidth
is set at H = 50 rad/s. The pilot is assumed to react mainly to
attitude errors between a “high-level” attitude demand, φd and
the real roll attitude, φ . Based on the OLOP criterion (Duda
(1997)), the pilot is modelled as a pure gain; Kp = 1.2. Only the
roll control loop is considered, partly because this reduces the
AW problem to essentially a SISO problem, and also because
the flight testing reported in Brieger et al. (2007) only consid-
ered roll manoeuvres for structural and safety reasons. The roll
control loop structure is shown in Figure 4. The nominal lin-
ear controller is effectively a static rate-command-attitude-hold
controller with roll rate (p) and yaw rate (r) used for feedback
and the controller output being aileron command ξ ∈R. Hence,
without loss of generality, Θ2(s) can be set to zero and design
of only Θ1(s) considered, i.e. Θ(s) = Θ1(s). In the designs to
follow, the ATTAS aircraft was trimmed at Mach 0.5, 20000
feet, which gives a statically and dynamically stable aircraft.
The corresponding linear model, including the engine dynamics
and rate limit model, is of order 27.

5. RESULTS

5.1 LMI-based designs

The low order LMI designs reported here were designed by
first performing a full order Riccati design as described in
Brieger et al. (2007); choosing poles close to those considered
“dominant” in the full order design; and then using these as
described in Procedures 1 or 2. All LMI-based designs used
ε = 0.97. Initially, no zeros were included in the design and
Procedure 1 produced the following compensator

Θ
(1)
1

(s) =
0.131

(s+3)(s+2.9)
, γ = 8.07. (11)

These same poles were then used in Procedure 2, in which the
zeros were optimally assigned (under the constraint of strict
properness) which produced the compensator

Θ
(2)
1

(s) =
−0.045(s−1.008)

(s+3)(s+2.9)
, γ = 3.54. (12)

As expected, the L2 gain bound for Θ
(2)
1

(s) is lower than that

of Θ
(1)
1

(s). Interestingly, the zero in the second compensator is
chosen by the LMI-optimisation to be nonminimum phase. This
agrees with arguments in Kerr et al. (2007).

Figure 5 shows the roll attitude response of the aircraft to a 3-
2-1-1 reference roll attitude demand. Four different cases are
shown: (i) when rate-limits are in place but no AW is used; (ii)

when rate-limits are in place and AW compensatorΘ
(1)
1
is used;

(iii) when rate-limits are in place and AW compensator Θ
(2)
1
is

used; and (iv) the artificial case when the system has no rate-
limits. Observe that the system with no AW becomes unstable

and enters a limit cycle. With Θ
(1)
1
(no zeros) behaviour is

greatly improved, but perhaps the best performance is obtained

by Θ
(2)
1
(optimised zeros) which tracks better the ideal no

constraint response and settles down faster than Θ
(1)
1
.
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Fig. 5. LMI-based compensator responses

5.2 Classical-based designs

The low order classical design reported here was designed
based on Procedure 3. The plant family was the single plant
case representing the trimmed aircraft and gain pilot model.
The design frequency set Ω contained 20 frequencies, ranging
from 1e− 5 to 50 rad/s. For stability enforcement (step (3))
ε = 0.999 was chosen, with the Popov multiplier chosen to be
(1+ 100s). For performance enforcement (step (4)) ε = 0.97
was chosen. The bounds dictating the exclusion regions in
the NC are shown at a selection of frequencies in Figure 6,
along with the frequency response of the classically designed

compensator Θ
(3)
1

(s), which has transfer function

Θ
(3)
1

(s) =
−0.180(s−1.2)

(s+18)(s+1)
, γl = 1.13. (13)

The poles of this compensator were then used to initialise a
design based on Procedure 2 to optimise the gain and zero
location for minimisation of γ . This produced a compensator
with transfer function

Θ
(4)
1

(s) =
−0.186(s−0.656)

(s+18)(s+1)
, γ = 2.76. (14)
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Note that the L2 gain upper bound for this 4th compensator is
the lowest obtained here (using the Circle multiplier) and the
transfer function of this compensator is remarkably similar to
the classical design; it appears that the gain and zero location
obtained through a logical classical procedure are, given the
same poles, mimicked by the zero optimisation procedure.

Figure 7 shows the roll attitude response of these two designs
for the same 3-2-1-1 reference demand. As expected, the two
AW compensators preserve the stability and performance of

the system. The responses obtained using Θ
(3)
1
and Θ

(4)
1
are

very similar, which is not surprising given their similar transfer
functions.
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Fig. 7. Classical-based compensator responses

6. CONCLUSIONS

Three low-order AW compensator designs were presented in
this work: one based on the optimisation of a given compen-
sator’s gains; one based on a classical loopshaping method;
and one based on a new method for optimisation of a given
compensator’s zeros and gains. All three were successfully
applied to a realistic flight control problem where aileron rate
saturation severely degrades the piloted aircraft system stability

and response. As expected, the AW compensator based on the
new method for optimisation of zeros and gains performed
favourably compared to that based on the existing gain optimi-
sation method, in terms of both the magnitude of theL2 bound
and the time domain response.

Somewhat unexpectedly, the classical loopshaping approach
led to the design of a compensator that performed similarly
to a compensator designed via the zero and gain optimisation
method for the same pole set. This is desirable, as the classical
method may provide an indication of good pole and/or zero
locations which can serve as a basis for further optimisation. As
was seen here, these pole and zero locations can be quite dif-
ferent to those indicated by the full order design and may lead
to superior designs. Although not conclusive, this suggests that
designs based on ideas from both the optimisation and classical
methods may result in the most beneficial AW compensators.
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