
Structure exploitation in Semi-Definite

Programs for Systems Analysis ⋆

Janne Harju Johansson ∗ Anders Hansson ∗∗

∗ Department of Electrical Engineering, Linköping University, 581 83
Linköping, Sweden (e-mail: harju@isy.liu.se).

∗∗ Department of Electrical Engineering, Linköping University, 581 83
Linköping, Sweden (e-mail: hansson@isy.liu.se).

Abstract: A wide variety of problems involving analysis of systems can be rewritten as a
semidefinite program. When solving these problems optimization algorithms are used. Large
size makes the problems unsolvable in practice and computationally more effective solvers are
needed. This paper investigates how to exploit structure and problem knowledge in some control
applications. It is shown that inexact search directions are useful to reduce the computational
burden and that operator formalism can be utilized to derive tailored calculations.

Keywords: Optimization; Linear Matrix Inequalities; Semidefinite programming; Interior-point
methods; Iterative methods.

1. INTRODUCTION

In this paper semidefinite programming (SDP) for analysis
of dynamical systems are discussed and solved. The prob-
lem formulation in the following section can be applied to
analysis of polytopic linear differential inclusions (LDIs),
see Boyd et al. [1994] and Gahinet et al. [1996] for details
of the analysis methods.

There are many software packages for semidefinite pro-
gramming that can be applied to the optimization problem
described in this paper. Some examples are SDPT3, Toh
et al. [2006] and SeDuMi, Sturm [2001] and Pólik [2005].
However, these solvers formulate the optimization problem
on a general form. When the size of the problem increases,
the solution time will be too large. Then the structural
properties of a problem can be utilized to speed up the
performance. In this paper knowledge of the optimiza-
tion problem is taken into account and integrated in the
algorithm. The suggested algorithm works with inexact
search directions, which enables the use of an iterative
solver for the linear equations that is terminated prior to
convergence.

Using an iterative solver to find the search directions and
the topic of preconditioning have been investigated in
Vandenberghe and Boyd [1995], Keller et al. [2000], Berga-
maschi et al. [2004], Rozloznik and Simoncini [2003] and
Bonettini and Ruggiero [2007]. Inexact search directions
have been applied for a potential reduction method in
Vandenberghe and Boyd [1995] and Gillberg and Hansson
[2003], and for quadratic problems using a potential reduc-
tion algorithm in Cafieri et al. [2007]. In the work of Gill-
berg and Hansson [2003] a feasible interior-point method
was used, and the search directions were computed from
the normal equations. Every iteration in the algorithm
required a feasible point and hence an expensive projection
was needed since the iterative equation solver does not
guarantee a feasible search direction. In Vandenberghe and
Boyd [1995] this was circumvented by solving one linear

⋆ This work was supported by CENIIT.

system of equations for the primal search direction and an-
other linear system of equations for the dual search direc-
tion, however also at a high computational cost. Addition-
ally, solving the normal equations in Gillberg and Hansson
[2003] resulted in an increasing number of iterations in the
iterative solver when tending towards the optimum. In this
paper the augmented equations are solved, which results
in an indefinite linear system of equations, and no increase
in the number of iterations close to the optimum has been
observed. Similar behavior has been observed in Hansson
[2000] and Cafieri et al. [2007]. Since an infeasible interior-
point method is used, no projection is needed in order to
preserve feasibility.

The remaining part of the paper is organized as follows.
First the optimization problem is formulated and some
mathematical preliminaries are presented. Then a discus-
sion of interior-point methods is presented which results
in a detailed description of an algorithm that uses inexact
search directions obtained from an iterative solver. In such
a solver a preconditioner is needed for fast convergence
and hence a tailored preconditioner is presented in detail.
Finally, some computational results and conclusions are
presented.

2. PROBLEM FORMULATION

The optimization problem in the variables P ∈ S
n and

x ∈ R
nx that is to be solved is

min cT x + 〈C,P 〉 (1)

s.t. Fi(P) + Gi(x) + Mi,0 = Si, i = 1, . . . , ni

Si � 0

where

Fi(P) =

[

Li(P) PBi

BT
i P 0

]

=

[

AT
i P + PAi PBi

BT
i P 0

]

(2)

and

Gi(x) =

nx
∑

k=1

xkMi,k, (3)

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 10045 10.3182/20080706-5-KR-1001.1496

with Ai ∈ R
n×n, Bi ∈ R

n×m, C ∈ S
n and Mi,k ∈ S

n+m.
The inner product 〈C,P 〉 is Trace(CP), and Li : S

n → S
n

is the Lyapunov operator with adjoint L∗

i .

Furthermore the adjoint operators of F and G are

F∗

i (Zi) = [Ai Bi]Zi

[

In

0

]

+ [In 0]Zi

[

AT
i

BT
i

]

(4)

and
G∗

i (Zi)k = 〈Mi,k, Zi〉, k = 1, . . . , nx (5)

respectively, where Zi ∈ S
n+m.

When it is possible to study (1) on a higher level
of abstraction the operator A(P, x) = ⊕ni

i=1(Fi(P) +
Gi(x)) is used. Its adjoint is A∗(Z) = (F∗(Z),G∗(Z)) =
∑ni

i=1
(F∗

i (Zi),G∗

i (Zi)) where Z = ⊕ni

i=1Zi. Also define
S = ⊕ni

i=1Si and M0 = ⊕ni

i=1Mi,0.

For later use we define z = (x, P, S, Z) and the correspond-
ing finite-dimensional vector space Z = R

nx × S
n+m ×

S
n+m × S

n+m with its inner product 〈·, ·〉Z .

Throughout the paper it is assumed that the mapping A
has full rank. We remark that the optimization problem
considered is not within the class of problems considered in
e.g. Wallin and Hansson [2004] and Gillberg and Hansson
[2003].

3. INEXACT INTERIOR-POINT METHOD

3.1 Introduction

For a thorough description of algorithms and theory within
the area of interior-point methods see Wright [1997] for
linear programming, while Wolkowicz et al. [2000] gives an
extensive overview of semidefinite programming. In Boyd
and Vandenberghe [2004] a thorough presentation of the
main ideas in interior-point methods is given. Here follows
a brief discussion on what optimality conditions that are
to be fulfilled and how these are relaxed for use in an in-
feasible interior-point method. Then an inexact infeasible
method for semidefinite programming is presented.

3.2 Optimality conditions

In this work a primal-dual interior-point method is imple-
mented. For such algorithms the primal and dual problems
are solved simultaneously. The primal and dual for (1) with
the higher level of notation are

min cT x + 〈C,P 〉 (6)

s.t A(P, x) + M0 = S

S � 0

max − 〈M0, Z〉 (7)

s.t A∗(Z) = (C, c)

Z � 0

If strong duality holds then the Karush-Kuhn-Tucker
conditions defines the solution to the primal and dual
optimization problems, Boyd and Vandenberghe [2004].
The Karush-Kuhn-Tucker conditions for the optimization
problems in (6) and (7) are

A(P, x) + M0 = S (8)

A∗(Z) = (C, c) (9)

ZS = 0 (10)

S � 0, Z � 0 (11)

Definition The complementary slackness ν is defined as

ν =
〈Z, S〉

n
(12)

Definition Define the central-path as the solution points
for

A(P, x) + M0 = S (13)

A∗(Z) = (C, c) (14)

ZS = νI (15)

S � 0, Z � 0 (16)

where ν ≥ 0. Note that the central-path converges to a
solution of the Karush-Kuhn-Tucker conditions when ν
tends to zero.

3.3 Infeasible interior-point method

In this section an infeasible interior-point method is dis-
cussed. Such a method is initiated with an infeasible or a
feasible point z ∈ Z and then its iterates tend toward
feasibility and optimality by computing a sequence of
search directions and taking steps in these directions. To
derive equations for the search directions the next iterate
z+ = z + ∆z is introduced and inserted into (13)-(16).
This gives a nonlinear system of equations for ∆z. Even
after linearization the variables ∆S and ∆Z of the solution
∆z to these equations are not guaranteed to be symmet-
ric since this requirement is only implicit. A solution to
this remedy is to introduce the symmetry transformation
H : R

n×n → S
n that is defined by

H(X) =
1

2

(

R−1XR + (R−1XR)T
)

(17)

where R ∈ R
n×n is the so called scaling matrix. For a

thorough description of scaling matrices, see Wolkowicz
et al. [2000] and Zhang [1998]. In Zhang [1998] it is
shown that the relaxed complementary slackness condition
ZS = νI is equivalent with

H(ZS) = νI (18)

for any nonsingular matrix R. Hence we may replace (15)
with (18). Replacing z with the next iterate z+∆z in (13),
(14), (16) and (18) results in

A(∆P,∆x) − ∆S = −(A(P, x) + M0 − S) (19)

A∗(∆Z) = (C, c) −A∗(Z) (20)

H(∆ZS + Z∆S) = νI −H(ZS) −H(∆Z∆S) (21)

S + ∆S � 0, Z + ∆Z � 0 (22)

If the nonlinear term in (21) is ignored, ∆S and ∆Z
will be symmetric. Several approaches to handling the
nonlinear term in the complementary slackness equation
have been presented in the literature. A direct solution is
to ignore the higher order term which gives a linear system
of equations. Another approach is presented in Mehrotra
[1992].

3.4 Inexact predictor-corrector method

Here an inexact infeasible predictor-corrector method is
presented. The idea of using inexact search directions has
been applied to monotone variational inequality problems
in Ralph and Wright [1997] and to model predictive control
applications in Hansson [2000].

In a predictor-corrector method alternating steps are
taken. There are two separate objectives in the strategy.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10046

The predictor step decreases the duality gap while the
corrector step moves the iterate towards the central-path.
To this end the parameter ν in (21) is replaced with σν.
Then for small values of σ a step is taken to reduce the
complementary slackness ν, and for values of σ close to 1
a step to find an iterate close to the central path is taken.
Then the linear system of equations to be solved for the
search directions is

A(∆P,∆x) − ∆S = −(A(P, x) + M0 − S) (23)

A∗(∆Z) = (C, c) −A∗(Z) (24)

H(∆ZS + Z∆S) = σνI −H(ZS) (25)

Lemma 1. If the operator A has full rank, i.e. A(x) = 0
implies that x = 0, and if Z ≻ 0 and S ≻ 0, then the linear
system of equations in (23)-(25) has a unique solution.

Proof See Theorem 10.2.2 in Wolkowicz et al. [2000].

For later use and to obtain an easier notation define
K : Z → S

n × S
n as

K(z) =

[Kp(z)
Kd(z)
Kc(z)

]

=

[A(P, x) + M0 − S
A∗(Z) − (C, c)

H(ZS)

]

(26)

Now define the set Ω as

Ω = {z = (x, S, Z) | S � 0, Z � 0, (27)

‖Kp(z)‖2 ≤ βν, ‖Kd(z)‖2 ≤ βν,

γνI � Kc(z) � ηνI}
where the scalars β, γ and η will be defined later on. Then
define the set Ω+ as

Ω+ = {z ∈ Ω | S ≻ 0, Z ≻ 0} (28)

Finally define the set S for which the Karush-Kuhn-Tucker
conditions (8)-(11) are fulfilled.

S = {z | Kp(z) = 0, Kd(z) = 0, Kc(z) = 0, S � 0, Z � 0}
(29)

Below the overall algorithm is summarized, which is taken
from Ralph and Wright [1997], and adapted to semidefinite
programming.

Algorithm: Inexact primal-dual method

0. Initialize the counter j = 1 and choose 0 < η <
ηmax < 1, γ ≥ n, β > 0, κ ∈ (0, 1), 0 < σmin <
σmax < 1/2, ǫ > 0, 0 < χ < 1 and z0 ∈ Ω.

1. Evaluate stopping criteria. If fulfilled, terminate the
algorithm.

2. Choose σ ∈ (σmin, σmax).
3. Compute the scaling matrix R.
4. Solve (23)-(25) for search direction ∆zj with a resid-

ual tolerance ǫσβν/2.
5. Choose a step length αj as the first element in the

sequence {1, χ, χ2, . . .} such that zj+1 = zj+αj∆zj ∈
Ω and such that
νj+1 ≤

(

1 − ακ(1 − σ)
)

νj .

6. Update the variables, zj+1 = zj + αj∆zj and the
counter j := j + 1.

7. Return to step 1.

Note that any iterate generated by the algorithm is in Ω,
which is a closed set, since it is defined as an intersection
of closed sets, see Harju and Hansson [2007].

3.5 Convergence

For a detailed description and a convergence proof, see
Harju and Hansson [2007].

4. SEARCH DIRECTIONS

Solving (23)-(25) is in practice done by either one of two
approaches. The first eliminates both the slack variables
Si and the dual variables Zi resulting in a positive definite
linear system of equations called the normal equations. In
the second approach the slack variables Si are eliminated
which results in an indefinite linear system of equations
called the augmented equations. In this paper the aug-
mented equations are solved. For a thorough discussion of
general saddle point problems, see Benzi et al. [2005].

To eliminate the S variable, (25) is solved for S and
inserted into (23). The details in these calculations are
presented on page 34 in Vandenberghe et al. [2005]. Now
study each constraint separately and define the resulting
linear system of equations as

Wi∆ZiWi + Fi(∆P) + Gi(∆x) = D1,i, ∀i (30)
ni
∑

i=1

F∗

i (∆Zi) = D2 (31)

ni
∑

i=1

G∗

i (∆Zi) = D3 (32)

where Wi = RiR
T
i ∈ S

n denotes the scaling matrices for
the interior point method. Note that the linear system of
equations in (30)-(32) is indefinite.

4.1 Iterative solver

When solving linear equations with an iterative solver
there is a large number of algorithms to choose from. The
choice of an applicable iterative method is based on the
properties of the linear system of equations and possibly
also on the choice of preconditioner. Definite/indefinite
coefficient matrix or hermitian/non-hermitian coefficient
matrix are the two main properties to consider.

Available solvers are for example the minimal residual
(MINRES) method and the widely used conjugate gra-
dient (CG) method. Here an indefinite system with an
indefinite preconditioner is studied and hence algorithms
for indefinite systems are the main focus. Examples of
iterative solvers that handle indefinite matrices are conju-
gate gradient stabilized (CGS) method, the bi-conjugate
gradient method and its stabilized version (BiCG and
BiCGstab), the quasi minimal residual (QMR) method,
and various versions of the generalized minimal residual
(GMRES) method. In Greenbaum [1997] the algorithms
are explained and studied in detail and in Barrett et al.
[1994] the implementational details are discussed.

In this work the symmetric quasi-minimal residual method
(SQMR) is chosen. The algorithm utilizes the fact that a
symmetric coefficient matrix is available and an indefinite
preconditioner can be used. It does not require as much
storage as in GMRES which is a desired property since
the intention is to solve large systems of equations. One
undesired property is that the residual is not included
in the algorithm and hence it must be calculated if a
guaranteed residual is required.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10047

In order to simplify the description rewrite (30)-(32) as

B(∆z) = b (33)

The described algorithm is SQMR without look-ahead for
the linear system of equations on operator formalism. De-
note the invertible preconditioner P(∆z) = p. In Freund
and Nachtigal [1991] and Freund and Nachtigal [1994] the
original algorithm description is presented.

Algorithm: SQMR

0.) Choose ∆z0 ∈ Z. Then set r0 = b − B(z0), t = r0,

τ0 = ‖t‖2 =
√

〈r0, r0〉, q0 = P−1(r0), ϑ0 = 0,
ρ0 = 〈r0, q0〉, and d0 = 0.

For j = 1, 2, . . .
1.) Compute t = B(qj−1), vj−1 = 〈qj−1, t〉.

if vj−1 = 0, then Terminate
else
αj−1 =

ρj−1

vj−1

and rj = rj−1 − αj−1t

end

2.) Set t = rj , ϑj = ‖t‖2/τj−1, cj = 1/
√

1 + ϑ2
j ,

τj = τj−1ϑjcj , dj = c2
jϑ

2
j−1dj−1 + c2

jαj−1qj−1 and
∆zj = ∆zj−1 + dj .
if ∆zj has converged, then Terminate
end

3.) if ρj−1 = 0, then Terminate
else
uj = P−1(t), ρj = 〈rj , uj〉, βj =

ρj

ρj−1

, and qj = uj +

βjqj−1.

Here b, p, r, t, q, d ∈ Z and τ , ϑ, ρ, v, α, c ∈ R.

4.2 Preconditioner

The convergence of iterative algorithms is closely related
to the condition number of the linear system of equa-
tions. Unfortunately, it is very unlikely that the condition
number is small. Then a preconditioner that decreases
the condition number is desirable. Good properties for a
preconditioner is that it is an approximation of the linear
system of equations (33) that is to be solved, and that
the solution time for a preconditioner is preferably much
lower than for the original system of equations, since it
is called once in every iteration in the iterative solver. In
Greenbaum [1997], Barrett et al. [1994] and Benzi et al.
[2005] general preconditioners are described and discussed.
In general preconditioners the vectorized form of the equa-
tions are used. To exploit structure, operator formalism is
used, when possible, in this work. This was used also in
Vandenberghe and Boyd [1995] for applications to systems
analysis.

In Oliveira and Sorensen [2005] it is shown that every
preconditioner for the normal equations system has an
equivalent for the augmented system. It is also shown that
the opposite is not true and hence it may be beneficial to
search for preconditioners for the augmented equations.

To derive a preconditioner, assume that the constraints are
closely related and therefore an approximation assuming
Ai = Ā, Bi = B̄ and Mi,k = M̄k is applicable. Inserting
the average system matrices Ā , B̄ and M̄k into (30)-(32)
results in the following equations

Wi∆ZiWi + F̄(∆P) + Ḡ(∆x) = D1,i, ∀i (34)

F̄∗(

ni
∑

i=1

∆Zi) = D2 (35)

Ḡ∗(

ni
∑

i=1

∆Zi) = D3 (36)

Approximate Wi with wi · I and denote wΣ =
∑ni

i=1
1/w2

i .
Now rescale the equations and define the new variables
∆Ztot =

∑

i ∆Zi, ∆PΣ = ∆P · wΣ and ∆xΣ = ∆x · wΣ.
The simplified linear system of equations that is to be
solved by the preconditioner is

∆Ztot + F̄(∆PΣ) + Ḡ(∆xΣ) =

ni
∑

i=1

D1,i

w2
i

(37)

F̄∗(∆Ztot) = D2 (38)

Ḡ∗(∆Ztot) = D3 (39)

Now define the block structure

∆Ztot =

(

∆Z11 ∆Z12

∆ZT
12 ∆Z22

)

(40)

To derive a method for solving (37)-(39) we use the
following change of variables

∆Z̃11 = ∆Z11 + L−∗
(

B̄∆ZT
12 + ∆Z12B̄

T
)

(41)

∆Z̃12 = ∆Z12 (42)

∆Z̃22 = ∆Z22 (43)

∆P̃ = ∆P + L−1
(

nx
∑

k=1

∆xkM̄k,11

)

(44)

∆x̃ = ∆x (45)

where M̄k,11 denotes the (1,1) block of the M̄j matrices
and L is the Lyapunov operator using Ā.

Now apply L−1(·)B̄ to the (1,1) block of (37) and sub-
tract it from the (1,2) block in (37). Additionally apply
〈L−∗(·),Mk,11〉 to (38) and subtract it from the k:th ele-
ment in (39). Using the variable change defined in (41)-(45)
results in the following linear system of equations

∆Z̃11 − L−∗(B̄∆Z̃T
12 + ∆Z̃12B̄

T) + L
(

∆P̃
)

=

ni
∑

i=1

Di
1,11

w2
i

(46)

∆Z̃12 + L−1(L−∗(B̄∆Z̃T
12 + ∆Z̃12B̄

T))B̄−

−L−1(∆Z̃11)B̄ +

nx
∑

k=1

xk

(

M̄k,12 − L−1(M̄k,11)B̄
)

=

=

ni
∑

i=1

Di
1,12

w2
i

− L−1
(

ni
∑

i=1

Di
1,11

w2
i

)

B̄

(47)

∆Z̃22 +

nx
∑

k=1

∆xjM̄k,22 =

ni
∑

i=1

D1,22

w2
i

(48)

L∗
(

∆Z̃11

)

= D2

(49)
〈 [

−L−∗
(

B̄∆Z̃T
12 + ∆Z̃12B̄

T
)

∆Z̃12

∆Z̃T
12 ∆Z̃22

]

,

[

M̄11
k M̄12

k

M̄12
T

k M̄22
k

]〉

=

= D3,k − 〈L−∗
(

D2

)

, M̄k,11〉
(50)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10048

The resulting linear system of equations can be solved in
a five step procedure.

Algorithm: Preconditioner

1. Solve (49) for ∆Z̃11 using a Lyapunov solver.
2. Vectorize and solve (47), (48) and (50) to retrieve

∆Z̃12, ∆Z̃22 and ∆x. The vectorized linear system of
equations has (nm+m2)+(m(m+1)/2)+nx variables
and can thus be solved in O(n3) flops (assuming
n ≫ m and n ≫ nx).

3. Solve (46) using a Lyapunov solver to obtain ∆P̃ .
4. Find the untransformed variables ∆Ztot, ∆P and ∆x.
5. Distribute the solution such that

∆Zi = (D1,i −Fi(∆P) − Gi(∆x))/w2
i .

Note that the coefficient matrix for the vectorized system
of equations in step 2 in the algorithm needs only to
be constructed once. The main cost is the solution of
symmetric Lyapunov equations. This can be done at a cost
of O(n3).

It is noted that the assumptions made to derive the
preconditioner is not guaranteed to be fulfilled for a
general problem. However for stability analysis described
in the introduction the system matrices are often closely
related. It is obvious that if these assumptions are violated
the convergence speed will deteriorate for the iterative
solver.

4.3 Initialization

For comparable results the initialization scheme given in
Toh et al. [2006] is used for the dual variables,

Zi = max
(

10,
√

n + m, max
k=1,...,nx

(n + m)(1 + |ck|)
1 + ‖Mi,k‖F

)

· In+m

(51)

where ‖ · ‖F denotes the Frobenius norm of a matrix. The
slack variables are chosen as Si = Zi while the primal
variables are initialized as P = In and x = 0̄.

5. COMPUTATIONAL RESULTS

The computer used for numerical evaluation is a Dell
Optiplex GX620 with 2GB RAM, Intel P4 640 (3,2GHz)
CPU with Linux running under CentOS 4.1. SDPT3
version 3.1 is used as underlying solver and it is interfaced
via YALMIP version 3 (R20070810), Löfberg [2004]. Since
the intention is to solve large optimization problems the
tolerance for termination is set to 10−3 for the relative and
absolute residual. Matlab version 7.4 (R2007a) is used.

Note that the implemented inexact primal-dual interior-
point method is written in Matlab while the equations
solver in SDPT3 is written in C which gives faster function
executions for SDPT3.

The parameters in the algorithm are set to κ = 10−7,
σmax = 0.0035, σmin = 0.001, η = 10−6, χ = 0.9,
ǫ = 5 · 10−7 and β = 108 · βlim where βlim =
max(‖Kp(z0)‖2, ‖Kd(z0)‖2). The choice of parameter val-
ues are based on knowledge obtained during the develop-
ment of the algorithm.

In order to avoid expensive calculations in the iterative
solver, it is terminated after 100 iterations. This can be
interpreted as a temporary choice of ǫ in that iteration.

5.1 Examples

To evaluate the suggested algorithm, randomly generated
optimization problems are solved. This is done as follows.
First Ā, B̄ and M̄k are generated by gallery.m. This
Matlab function generates random matrices with a desired
condition number. For the examples in this section every
system matrix has a condition number of 10. The number
of constraints ni is chosen to two and nx is one. Every
constraint has separate system matrices Ai, Bi and Mi,k

that are generated as Ai = Ā±0.01 ·δA, Bi = B̄±0.01 ·δB

and Mi,k = M̄i,k±0.01 ·δMi,k
. The matrix δA is a diagonal

matrix where the diagonal is generated by rand.m while
δB and δMi,k

are generated by gallery.m. c, and C are
chosen to give a feasible optimization problem.

In the preconditioner the mean system matrices Ā, B̄
and M̄k are available as an approximation of the system
matrices Ai, Bi, and Mi,k.

To get the solution times the Matlab command cputime

is used. Input to the solvers are the system matrices so
any existing preprocessing of the problem is included in
the total solution time.

The residual for the search directions is calculated in
each iteration in the iterative solver. To further improve
the solution times, the in SQMR available Biconjugate
Gradient (BCG) residual should be used instead. Note that
the BCG residual rj is given in the algorithm for SQMR
described in Section 4.1.

5.2 Results

For each system order, ten randomly generated problems
were solved and the mean times are presented in Figure 1.
It is clear that the in Matlab written solver using inexact
search directions calculated by an iterative solver based
on operator formalism is faster in absolute time for large
values of the system order n.

10 16 25 50 75 100
10

−1

10
0

10
1

10
2

10
3

n = size of A

S
o

lu
ti
o

n
 T

im
e

 [
s
]

Inexact + SQMR

Primal YALMIP

Fig. 1. Solution times for randomly generated optimization
problems vs system order. Used solvers are the primal
problem solved by SDPT3 and a solver based on the
algorithm described in this paper.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10049

6. CONCLUSION

An inexact primal-dual interior-point method has been
presented and evaluated against a state of the art solver for
semidefinite programming. The results show that solution
times for optimization problems can be reduced by solving
the linear system of equations for the search directions
inexact. Structure exploitation was made by using opera-
tor formalism in a tailored preconditioner for the iterative
solver.

REFERENCES

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M.
Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,
and H. V. der Vorst. Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods.
Philadalphia: Society for Industrial and Applied Math-
ematics., 1994.

M. Benzi, G. H. Golub, and J. Liesen. Numerical solution
of saddle point problems. Acta numerica, 14:1 – 137,
2005.

L. Bergamaschi, J. Gondzio, and G. Zilli. Preconditioning
indefinite systems in interior point methods for opti-
mization. Computational Optimization and Applica-
tions, 28(2):149 – 171, 2004.

S. Bonettini and V. Ruggiero. Some iterative methods
for the solution of a symmetric indefinite KKT system.
Computational Optimization and Applications, 38(1):3
– 25, 2007.

S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge University Press, 2004.

S. Boyd, E. G. Laurent, E. Feron, and V. Balakrishnan.
Linear Matrix inequalities in System and Control The-
ory. SIAM, 1994.

S. Cafieri, M. D’Apuzzo, V. De Simone, and D. di Serafino.
On the iterative solution of KKT systems in potential
reduction software for large-scale quadratic problems.
Computational Optimization and Applications, 38(1):27
– 45, 2007.

R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal
residual method for non-hermitian linear systems. Nu-
merische Mathematik, 60(3):315 – 339, 1991.

R. W. Freund and N. M. Nachtigal. A new Krylov-
subspace method for symmetric indefinite linear sys-
tems. In Proceedings of the 14th IMACS World
Congress on Computational and Applied Mathematics,
pages 1253–1256. IMACS, 1994.

P. Gahinet, P. Apkarian, and M. Chilali. Parameter-
dependent Lyapunov functions for real parametric un-
certainty. IEEE Transactions on Automatic Control, 41
(3):436 – 442, 1996.

J. Gillberg and A. Hansson. Polynomial complexity for a
Nesterov-Todd potential-reduction method with inexact
search directions. In Proceedings of thet 42nd IEEE
Conference on Decision and Control, page 6, Maui,
Hawaii, USA, December 2003.

A Greenbaum. Iterative methods for solving linear sys-
tems. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1997.

A. Hansson. A primal-dual interior-point method for
robust optimal control of linear discrete-time systems.
Automatic Control, IEEE Transactions on, 45(9):1639–
1655, 2000.

J. Harju and A. Hansson. An inexact interior-point
method, a description and convergence proof. Technical
Report LiTH-ISY-R-2819, Department of Electrical En-
gineering, Linköping University, SE-581 83 Linköping,
Sweden, September 2007.

C. Keller, N. I. M. Gould, and A. J. Wathen. Constraint
preconditioning for indefinite linear systems. SIAM
Journal on Matrix Analysis and Applications, 21(4):
1300 – 1317, 2000.

J. Löfberg. YALMIP : A toolbox for modeling and
optimization in Matlab. In Proceedings of the CACSD
Conference, Taipei, Taiwan, 2004.

S. Mehrotra. On the implementation of a primal-dual
interior point method. SIAM Journal on Optimization,
2(4):575–601, 1992.

A. R. L. Oliveira and D. C. Sorensen. A new class
of preconditioners for large-scale linear systems from
interior point methods for linear programming. Linear
algebra and its applications, 394:1 – 24, 2005.

I. Pólik. Addendum to the SeDuMi user guide, version 1.1,
2005.

D. Ralph and S. J. Wright. Superlinear convergence of an
interior-point method for monotone variational inequal-
ities. Complementarity and Variational Problems: State
of the Art, 1997.

M. Rozloznik and V. Simoncini. Krylov subspace methods
for saddle point problems with indefinite precondition-
ing. SIAM journal on matrix analysis and applications,
24(2):368 – 391, 2003.

J. F. Sturm. Using SeDuMi 1.02, a matlab toolbox for
optimization over symmetric cones, 2001.

K. C. Toh, M. J. Todd, and R. Tütüncü. On the imple-
mentation and usage of SDPT3 — a Matlab software
package for semidefinite-quadratic-linear programming,
version 4.0. 2006.

L Vandenberghe and S. Boyd. A primal-dual potential
reduction method for problems involving matrix in-
equalities. Mathematical Programming, 69:205 – 236,
1995.

L. Vandenberghe, V. R. Balakrishnan, R. Wallin, A. Hans-
son, and T. Roh. Interior-point algorithms for semidef-
inite programming problems derived from the KYP
lemma, volume 312 of Lecture notes in control and in-
formation sciences. Springer, Feb 2005.

R. Wallin and A. Hansson. KYPD: A solver for semidef-
inite programs derived from the Kalman-Yakubovich-
Popov lemma. In IEEE Conference on Computer Aided
Control Systems Design, Taipei, Taiwan, September
2004. IEEE.

H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors.
Handbook of Semidefinite Programming: Theory, Algo-
rithms, and Applications, volume 27 of International
series in operations research & management science.
KLUWER, 2000.

S. J. Wright. Primal-Dual Interior-Point Methods. SIAM,
2 edition, 1997.

Y. Zhang. On extending some primal–dual interior-point
algorithms from linear programming to semidefinite
programming. SIAM Journal on Optimization, 8(2):
365–386, 1998.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10050

