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S.Marta, 3-50139 Firenze, Italy {mosca, ptesi}@dsi.unifi.it.

∗∗ Department of Electrical and Computer Systems Engineering,
Monash University, Claydon, Vic 3800, Australia

Abstract:
This paper extends of the horizon-switching predictive control approach, so far restricted to
positional input saturation and the pure regulation problem, to the case of set-point tracking.
It is proved a basic feasibility property which makes it possible to extend this approach so as to
achieve offset-free asymptotic tracking under joint positional and incremental input saturations
and constant disturbances. It is also addressed the same problem in the presence of time-varying
disturbances. In such a case it is proved that, whenever the system is subject only to incremental
input saturations, the goal is achieved with the property of bounded-noise bounded-state l∞-
stability.

1. INTRODUCTION

Control of input-saturated dynamic systems, though a
fundamental issue in automatic control, has been given ex-
haustive and constructive systematic answers mainly only
during the last fifteen years. From one side it was charac-
terized the class of dynamical linear time-invariant (LTI)
systems whose state can be asymptotically driven to zero
with arbitrarily small controls (Sussmann et al. (1994)):
the so called ANCBI systems. In discrete time, they coin-
cide with all stabilizable LTI systems with eigenvalues in
the closed unit disk. Hence, they encompass stable systems
with integrator chains of arbitrary complexity, and are
representative of a great deal of processes of practical
interest. From another side, linear control structures were
shown to only provide semi-global stabilization of input-
saturated ANCBI systems (Lin (1995)). Non-linear state
feedback schemes for input-saturated ANCBI plants were
discussed in Sussmann and Yang (1991) and Sussmann
et al. (1994). However, such schemes amount to low-gain
control strategies which feature poor regulation perfor-
mance. In an attempt to provide enhanced performance,
gain-scheduling variants, akin to the approach adopted in
Mosca (2005) and the present paper, were proposed in
Alvarez-Ramı́rez and Suárez (1996) and Lin et al. (1996).

While positional input saturations have attracted a great
deal of interest, fewer results apply to incremental in-
put saturations or joint positional and incremental input
saturations. Incremental input saturations are a serious
challenge in many automatic control applications, e.g.
flight control (Lenorovitz (1990); Dornheim (1992)). In
particular, it is known that they can induce a considerable
destabilizing effect due to phase-lag. Joint constraints on
both input magnitude and increments were considered in
Trygve et al. (1997) for the particular case of a plant
consisting of a chain of cascade integrators. More generally,

Lin et al. (1997) showed that the whole class of ANCBI sys-
tems is semi-globally stabilizable through linear feedback
also in the presence of both constraints. For other contri-
butions to the topic, see also Feng et al. (1992) and Lin
et al. (1997). However, it is to be pointed out that all these
contributions deal mainly with the stabilization issue, and
put little attention on performance of the overall controlled
system. A recent paper (Mosca (2005)) has reconsidered
the problem from the viewpoint of both stability and
performance of systems subject to only positional input
saturations but also affected by persistent disturbances of
arbitrary unknown intensity.

The present paper aims at extending the results of Mosca
(2005) to the case of set-point tracking for LTI systems
subject to persistent disturbances. The paper is organized
as follows. Sect. 2 describes the so-called incremental
model of the system to be controlled, the specific type of
feedback-gain matrices that are adopted to realize possible
control actions, and motivates the study. Sect. 3 proves
that the algorithm proposed in Mosca (2005) can be used
for the set-point tracking problem also in the presence
of both incremental input saturation and persistent time-
varying disturbances. Sect. 4 shows that, in the presence
of only constant disturbances, with a simple modification
in the switching logic, the approach can handle the case of
joint positional and incremental input saturations.

2. PRELIMINARIES

Consider the following generic discrete-time LTI ANCBI
system

{
s(t + 1) = Φss(t) + Gsu(t) + ξ(t)
q(t + 1) = Φqq(t) + Gqu(t) + c(t)

y(t) = Hss(t) + Hqq(t) + ζ(t)
(1)

where Φs ∈ R
ns and Φq ∈ R

nq ; x(t) := [s′(t) q′(t)]′,
the prime denotes transpose; x(t) ∈ R

nx , nx := ns +
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nq is the plant state; |λi(Φs)| < 1, i ∈ ←−ns,
←−n :=

{1, 2, ..., n}, |λj(Φq)| = 1, j ∈ ←−nq, with arbitrary geometric
multiplicities; u(t) ∈ R

m is the control. Let

e(t) := y(t)− r(t) (2)

denote the tracking error, y(t) ∈ R
m being the perfor-

mance variable (output), and r(t) the set-point to be
tracked by the output. The vectors ξ(t), c(t) and ζ(t)
represent arbitrary bounded disturbances. The following
assumption is adopted:

(Φ, G) reachable (3)

where Φ := diag{Φs ,Φq}. The plant input u(t) and its
increments δu(t) := u(t) − u(t − 1),∀t ∈ Z+ := {0, 1, . . .}
are subject to the following saturation constraints

u(t)∈ U := {u ∈ Rm : |u|i < U}, (4)

δu(t)∈D := {δu ∈ Rm : |δu|i < ∆} (5)

where i ∈ ←−m, U , ∆ positive extended reals, and |u|i and
|δu|i denote the absolute value of the i-th component of u
and, respectively, δu. It is known that an ANCBI system
has the most general structure for which it makes sense to
consider stability and boundeness for any arbitrary initial
state of an input-saturated LTI system .

The aim is to find a subject to (4)-(5) stabilizing feedback
control for (1) with possibly offset-free tracking. The
design can be carried out by resorting to the so-called
incremental model (IMη) of (1)

{
χ(t + 1) = A χ(t) + B δu(t) + δv(t)

η(t) = C χ(t) + δw(t)
(6)

where χ(t) := [δx′(t) η′(t − 1)]′, δx(t) := x(t) − x(t − 1);
signals δv(t) := [δξ′(t) δc′(t) δw′(t)]′, δw(t) := δξ(t)−δr(t),
and

A =

[
Φ 0
H Im

]
B =

[
G
0m

]
C =

[
H Im

]
(7)

A necessary and sufficient condition for the existence
of such a stabilizing linear state-feedback is as follows
(Davison (1976))

det

[
In − Φ G

H 0m

]
6= 0 (8)

In connection with the incremental model (6), let χ be its
state at time 0, and Ωh(χ) the set of all control increments
ω of length h, ω = [δu′(0), . . . , δu′(h− 1)]

′
, which drive the

system state to the zero-state 0χ in h time-steps

Ωh(χ) :=
{

ω ∈ (Rm)
h

: χ(h) = 0χ

}
(9)

where χ(h) = Ahχ +
∑h−1

k=0 A
h−1−kBδu(k). Note that

Ωh(χ) 6= ∅,∀χ ∈ R
n, n := nx + m, if h ≥ ν, with ν,

ν ≤ n, the reachability index of (A,B). Let δuh(χ) the
element in Ωh(χ) of minimum energy

h−1∑

k=0

δu′(k)Ψuδu(k) = ω′Ψ̂uω (10)

where Ψu = Ψ′
u > 0 and Ψ̂u := Diag {Ψu, . . . ,Ψu}

-(h-times). For h ≥ ν, δuh(χ) is as follows

δuh(χ) := [δu′

h(0|χ), . . . , δu′

h(h− 1|χ)]
′

= [F ′

h(0) · · · F ′

h(h− 1)]′χ

= Fhχ (11)

Fh :=−Ψ̂−1
u R

′

hG
−1
h A

h (12)

where Rh is the h-order reachability matrix

Rh :=
[
Ah−1B| . . . |AB |B

]
(13)

and Gh the h-order reachability Gramian

Gh := RhR
′

h (14)

The integer h will be referred to as the control horizon.

In order to address the set-point tracking problem it is
necessary to give some interpretation about the structure
of (6). First, one has to note that the problem set-point
tracking is subject to the some intrinsic limitation, simi-
larly to the pure regulation problem. Indeed, time-varying
disturbances δc(t), entering the neutrally stable modes of
χ(t) in (6), are generally not allowed to assume arbitrary
values, e.g. c(t) cannot assume arbitrary incremental val-
ues. Consequently, in the following it will be assumed that
such a disturbance c(t) in (1) be constant, i.e. c(t) ≡ c.

2.1 Motivation of the study

The motivation for studing possibile extensions of the
approach proposed in Mosca (2005) hinges mainly upon
two considerations. The first one is related to the pos-
sibility of decoupling the effects of the disturbances on
the system. Consider the incremental model (6) and a
similarity transformation T : χ → χǫ := [δs′ δq′ ǫ′−] ′ (ǫ−

stands for ǫ(t− 1))

T :=




Is 0 0
0 Iq 0

Hs(Is − Φs)
−1 0 Im



 (15)

under which (6) diagonalizes w.r.t. δs. This transformation
exists as 1 /∈ sp(Φs) and leads to a novel incremental model
(IMǫ) algebraically equivalent to (6)

{
δs(t + 1) = Φsδs(t) + Gsδu(t) + δξ(t)
δq(t + 1) = Φqδq(t) + Gqδu(t)
ǫ(t) = ǫ(t− 1) + Hqδq(t) + Wsδu(t) + δn(t)

(16)

where Ws := Hs(Is−Φs)
−1Gs, δn(t) := Ŵsδξ(t)+ δζ(t)−

δr(t), and Ŵs := Hs(Is − Φs)
−1. Re-define

A :=

[
Φ 0

Ĥ Im

]
B :=

[
G
Ws

]
C :=

[
Ĥ Im

]
(17)

with Ĥ := [ 0 Hq ]. Because (11) is linear in χǫ,

δuh(χǫ) = δus
h(δs) + δuq

h(δq) + δuǫ
h(ǫ−) (18)

By (16) one has δus
h(k|δs) := −Ψ−1

u B
′(Ah−k−1)′G−1

h δŝ

where δŝ := [(Φh
s δs)′ 0′q 0′ǫ]

′, and similarly for δuq
h(δq).

Moreover δuǫ
h(k|ǫ−) := −Ψ−1

u B
′(Ah−k−1)′G−1

h Â
hχǫ, where

Âh :=





0s 0 0
0 0q 0

0 Hq

h−1∑

i=0

Φi
q Im




. Hence, (18) allows one to

consider separately the contribution in δuh(χǫ) given by
the disturbances δξ injected in the stable modes and the
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contribution caused by the disturbances δn affecting the
critically unstable ones.

The second one focuses on the relationship between the po-
sitional system (1) and the incremental model (6). Seem-
ingly, as δw(t) enters the neutrally stable modes of χ(t),
system (6) has not the structure of an input-saturated
LTI system for which it makes sense to consider stability
and boundedness under arbitrary l∞-disturbances. Conse-
quently, is not possible to ensure that the direct adoption
to the present case of the approach of Mosca (2005) can
achieve such goals. Indeed, even if δw(t) ≡ 0, ∀t ∈ Z+, the
neutrally stable modes of χ(t) would be indirectly affected,
via the stable ones, by δξ(t), which enters only the stable
modes of χ(t). However, one has to take account that (6)
is a representation for design of the real UPS (1). Hence,
not only the positional and the incremental instantaneous
values of the disturbances are bounded but also any partial
sum of the incremental ones, viz. ∀t, v ∈ [0,∞)





|ξ(t)| ≤ Ξ⇒

∣∣∣∣∣

v∑

t=0

δξ(t)

∣∣∣∣∣ ≤ 2 Ξ

|n(t)| ≤ N ⇒

∣∣∣∣∣

v∑

t=0

δn(t)

∣∣∣∣∣ ≤ 2 N

(19)

These properties allow one to prove the intuition mo-
tivated conjecture that, for h(t) sufficiently large, there
exists an interval of L consecutive steps, such that the con-

tribution to δu given by any sequence {δn(t)}lt=0, l ∈
←−
L ,

which enters the integrator modes, is of the same order

of
∑l

t=0 δn(t). Specifically, let p := [δq′ ǫ′−]′ denote the
neutrally stable substate of χǫ. Assume that the control
horizon h(·) grows unbounded. This implies that χ(·) is
unbounded. As Φs is a stability matrix, and δu(t) and δξ(t)
are bounded, there must be a time t large enough at which
‖χǫ(t)‖

2
= ‖δs(t)‖2 + ‖p(t)‖2 ≃ ‖p(t)‖2. As

∑t

j=0 δn(j) is
bounded, h is chosen after such a large t, according to the
restricted system with state p(t + l) = p̂(t + l) + p̃(t +
l) ∼= p̂(t + l), where p̂(t + l) is related to the noiseless
system while p̃(t + l) is the response to the bounded

term
∑t+l−1

j=t δn(j). Under these circumstances, at times

t + l subsequent to such a large t, h(t + l) = h(t) − l
until ‖p̂(t + l)‖ decreases so as to make ‖δs(t + l)‖ and/or
‖p̃(t + l)‖ comparable with ‖p̂(t + l)‖ and, hence, signifi-
cant again for the selection of the horizon. This means that
a “horizon resetting mechanism” is inherently enforced.

3. INCREMENTAL INPUT SATURATION

Let

Mh(χ) := max{
|[δuh (k|χ)]i|

∆
; k + 1 ∈

←−
h ; i ∈ ←−m} (20)

where [δu]i denotes the i-th component of the vector δu.
Note that the whole sequence δuh(χ) does not violate (5)
if and only if Mh(χ) < 1. As (6) is ANCBI, it is always
possible to find a large enough horizon h so as to satisfy
Mh(χ) < 1. In fact, it can be shown (Mosca (2005)) that
for an ANCBI system

Mh(χ) ≤M h−1‖χ‖ (21)

where M is a positive real depending on (A,B).

Let Fh be as follows

Fh =
[
Im 0m×m(h−1)

]
Fh = Fh(0) (22)

If only input-increment saturations are present, at a
generic time t, h(t) can be chosen, according to a suit-
able logic, such that Mh(t)(χ(t)) < 1 and the input in-
crement to (6) can be set as δu(t) = Fh(t)χ(t). Here,
Fh(t) = Fh(t)(0) is recognized to be the feedback-gain
matrix of the receding horizon regulation related to the
zero-terminal state minimum energy control problem of
horizon h(t). Let δu(t) = Fh(t)χ(t) with Fh as in (22) and
h(t) chosen according to the following hysteresis switching
logic (h ≥ n, n = nx + m)

h(t) =

{
h̃(t), if Mh̃(t)(χ(t)) ≤ 1

ĥ(t), otherwise.
(23)

h̃(t) := max{h, h(t− 1)− 1}

ĥ(t) := min {h ∈ Z+ : h ≥ h(t− 1);

Mh(χ(t)) ≤ 1− µ}

where t ∈ Z+; µ ∈ (0, 1) is the hysteresis constant ;

h(0) = ĥ(0) with h(−1) = h; and Mh(χ) as in (20).

3.1 Time-varying disturbances

The proof of Th. 1 hinges upon the following lemma,
proved in Mosca (2005), which the reader is referred to.

Lemma 1. Consider the system (6). Then, there exist large
enough integers h, N , h − N > 0, such that the two
following inequalities jointly hold

Mh(χ) ≤ γMh−N (χ) (24)

λh ≤ c/N (25)

for γ, c > 0, λ ∈ (0, 1) and ∀χ ∈ R
n.

The first result, pertinent to the case of incremental input
saturations, is summed up in the following theorem.

Theorem 1. Consider the reachable ANCBI system (1) un-
der the incremental input saturations (5). Let the control
increment be given by δu(t) = Fh(t)χ(t) with Fh(t) as in
(22) and h(t) chosen according to the hysteresis switch-
ing logic (23). Then, the resulting closed-loop hysteresis
switched system is bounded-noise bounded-state l∞-stable
irrespective of both the initial state x(0) ∈ R

nx and the
magnitude of ξ(·), ζ(·) and r(·).

Proof. For the sake of convenience, one can refer w.l.o.g.
to the system (16) with state χǫ. Let

|δuh(χǫ)| ≤ b

stand for |δuh (k|χǫ)|i ≤ b, ∀i ∈ ←−m e k + 1 ∈
←−
h , where

|δu|i denotes the absolute value of the i-th component of

δu. Let η := µ∆, with µ as in (23) and where ∆ follows
from (5). Let

δξ̂(t) := [δξ′(t) 0′q 0′m]′, δn̂(t) := [0′s 0′q δn′(t)]′ (26)

Notice that the latter equation, along with (18), implies

δuh(δξ̂(t) + δn̂(t)) = δus
h(δξ̂(t)) + δuǫ

h(δn̂(t)) (27)

According to Bellman’s principle of optimality, if Ah =
A+BFh(0) it follows that δuh−1(k|Ahχǫ) = δuh(k+1|χǫ).
Consequently, one can write, ∀i ∈ [0,∞)

δuh(t+i)(k|χǫ(t + i)) =

= δuh(t+i)+i(k + i|χǫ(t)) + δus
ξ(t + 1) + δuǫ

n(t + i)(28)
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where

δus
ξ(t + i) := δus

h(t+i)+i−1(k + i− 1|δξ̂(t)) +

+ . . . + δus
h(t+i)(k|δξ̂(t + i− 1)) (29)

denotes the contribution of the disturbance which enters
the stable modes of χǫ, while

δuǫ
n(t + i) := δuǫ

h(t+i)+i−1(k + i− 1|δn̂(t)) +

+ . . . + δuǫ
h(t+i)(k|δn̂(τ + i− 1)) (30)

is the contribution related to the critically unstable ones.
Let, by contradiction, h(·) be unbounded. Then, there
exists a subsequence {tj}∞j=1 such that limj→∞ h(tj) =∞
and h(t) ≤ h(tj), t ≤ tj . By virtue of Lemma 2, there exist
large enough regulation horizons h and integers L < h,
such that the following inequalities jointly hold

|δus
h−l(δξ̂)| ≤ 2∆̂ λ

h−L+1

Φs
Ξ ≤ η1/L (31)

|δuǫ
h−l(δn̂)| ≤ 2∆ M(h− L + 1)−1N ≤ η2 (32)

η1 + η2 = η, ∆̂ ∈ (0,∞), l ∈
←−
L and

Mh(χǫ) ≤ γMh−N (χǫ) (33)

for γ = 1 − 2η2/∆ − [(L + 1)/L](η1/∆), N ≥ L + 1 and
∀χǫ ∈ R

n. Notice, in the definition of γ, that 2η2 is the
L-counterpart of η1(L + 1)/L.

Choose an j so large that, with τ := tj , h = h(τ) satisfy
(31), (32) and (33). Because of switching criterion (23),

|δuh(τ)(χǫ(τ))| ≤ ∆− η (34)

as h(τ −1) ≤ h(τ). So, according to Bellman’s principle, if
χǫ(τ +l) = Ah(τ)−l+1χǫ(τ +l−1)+[δξ′(τ +l−1) 0′ δn′(τ +

l − 1)]′, l ∈
←−
L , one has

|δuh(τ)−l(χǫ(τ + l))| ≤ ∆− [(L− l)/L]η1 (35)

provided that, with h(τ + l) = h(τ) − l, we can write for
(30)

|δuǫ
n(τ + l)| ≤ η2 (36)

Put in other words this means that, for l ∈
←−
L , the control

horizon h is allowed to decrease of one unit at each time-
step, provided that (36) holds true. Let N ≥ L + 1 be the
smallest integer at which Mh(τ)−N+1(χǫ(τ + N − 1)) ≤ 1

and Mh(τ)−N (χǫ(τ + N)) > 1. By (33),∀k ∈
←−−
h(τ) and

∀i ∈ ←−m, one has

|δuh(τ)(k|χǫ(τ + N))|i ≤

|δuh(τ)(k|χǫ)|i + η1/L + η2 ≤

∆Mh(τ)(χǫ) + η1/L + η2 ≤

γ∆Mh(τ)−N (χǫ) + η1/L + η2 ≤

γ∆ + η1/L + η2 = ∆− η (37)

with χǫ := Ah(τ)−N+1χǫ(τ + N − 1); the first inequality
follows from (31) and (32), while the last one follows from
|δuh(τ)−N (k|χǫ)|i = |δuh(τ)−N+1(k+1|χǫ(τ+N−1)|i ≤ ∆,

∀k ∈
←−−−−−−
h(τ)−N . Therefore h(tj + N) ≤ h(tj).

Moreover, future regulation horizons will never exceed
h(tj). Let v := tj + N and consider |δuh(v)−1(k|χǫ(r +

1))|i = |δuh(v)−1(k|Ah(v)χǫ(v)) + δus
h(v)−1(k|δξ̂(v)) +

δuǫ
h(v)−1(k|δn̂(v))|i.

Recall |δuh(v)−1(k|Ah(v)χǫ(v))|i = |δuh(v)(k +1|χǫ(v))|i ≤

∆− η. Thus, h(v + 1) ≥ h(v) implies |δus
h(v)−1(k|δξ̂(v)) +

δuǫ
h(v)−1(k|δn̂(v))|i > η, for some k and i. The latter,

in turn, by (31) and (32), yields h(v) ≤ h(tj) − L.
Consequently,

|δuh(tj)(k|χǫ(v + 1))|i =

= |δuh(tj)(k|Ah(v)χǫ(v)) +

+δus
h(tj)

(k|δξ̂(v)) + δuǫ
h(tj)

(k|δn̂(v))|i

≤ γ∆Mh(tj)−L−1(Ah(v)χǫ(v)) + η1/L + η2

≤ γ∆Mh(v)−1(Ah(v)χǫ(v)) + η1/L + η2

≤ γ(∆− η) + η1/L + η2 < ∆− η

Hence, h(tj +N +1) ≤ h(tj). By arguing again in a similar
way, one proves by mathematical induction that

h(tj + k) ≤ h(tj), ∀k ∈ Z+ (38)

provided that (36) holds. To see this, rewrite (30) for

h(τ + l) = h(τ)− l, l ∈
←−
L ,

δuǫ
n(τ + l) := δuǫ

h(τ)−1(k + l − 1|δn̂(τ)) +

+ . . . + δuǫ
h(τ)−l(k|δn̂(τ + l − 1))

As Fh(k + 1) = Fh−1(k)Ah, Ah = A + BFh(0), one can
write ∀j ≥ 1

Fh+j(k + j)l = Fh+j−1(k + j − 1)Ah+j l =

= Fh+j−1(k + j − 1)l + Fh+j−1(k + j − 1)BFh+j(0))l

where the last equality holds because, as can be checked,
Al = l. Hence, the j-th component of δuǫ

n(τ + l) is given
by

δuh(τ)−l+j(k + j|δn̂(τ + l − j − 1)) =

=Fh(τ)−l+j(k + j)δn̂(τ + l − j − 1) =

= (S0 + S1 + . . .Sj)δn̂(τ + l − j − 1)

where S0 := Fh(τ)−l(k), Si = Fh(τ)−l+i−1(k + i −
1)BFh(τ)−l+i(0), ∀i ∈ [1, j] e ∀j ∈ [1, l). Consequently (30)
becomes

δuǫ
n(τ + l) = S0

l−1∑

j=0

δn̂(τ + j) +

+S1

l−2∑

j=0

δn̂(τ + j) + . . . + Sl−1δn̂(τ) (39)

Hence, (19) yields

|δuǫ
n(τ + l)| ≤ 2 (|S0|+ |S1|+ . . . + |Sl−1|)N

Notice that ∀i ∈ [1, j], ∃ S > 0 such that

|S0| ≤ S
∣∣Oh(τ)−L

∣∣
|Si| ≤ S

∣∣Oh(τ)−L

∣∣ ∣∣Oh(τ)−L+1

∣∣ (40)

where Oh stands for a quantity at least of the same order

of h−1 as h→∞. Finally, because l ∈
←−
L , and L→ µh as

h→∞ (see Mosca (2005), proof of Lemma 3, for technical
details), one finds
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|δuǫ
n(τ + l)| ≤

≤ 2 S
( ∣∣Oh(τ)−L

∣∣ + (L− 1)
∣∣Oh(τ)−L

∣∣ ∣∣Oh(τ)−L+1

∣∣ )
N =

= 2S

( ∣∣O(1−µ)h(τ)

∣∣ +
µ

1− µ

∣∣O(1−µ)h(τ)

∣∣
)
N =

= 2S
1

1− µ

∣∣O(1−µ)h(τ)

∣∣ N (41)

Hence (36) holds and this completes the proof.

4. JOINT POSITIONAL AND INCREMENTAL INPUT
SATURATION

In this section attention will be devoted to the possible
extension of the switching-horizon predictive control ap-
proach to handle joint positional and incremental input
saturation. For the sake of simplicity, the discussion on
such an issue will be restricted to the case constant dis-
turbances, the general case still being under development.
Consider system (6) with δv, δw ≡ 0. Let

Mh(χ) := max{α̃
|[δuh(k|χ)]i|

∆
, α
|[uh(k|χ)]i|

U
;

k + 1 ∈
←−
h ; i ∈ ←−m}

(42)

where (α̃ = 1, α = 0) corresponds to only incremental
saturations; (α̃ = 0, α = 1) pertains to only positional
saturations; (α̃ = 1, α = 1) to joint incremental and
positional saturations. E.g., if α̃ = 1 and α = 0, the
whole sequence δuh(χ) does not violate (5) if and only
if Mh(χ) < 1. The fundamental question for extending
Mosca (2005) to the present case is whether, given an
arbitrary χ, there exist h such that Mh(χ) < 1 for any
of the possible pair (α̃, α). If this is the case, one can
always find a (virtual) input increment sequence (11) of
large enough length h for which the saturation constraints
(4) and (5) are jointly satisfied.

Remark 1. Consider the orthogonal decomposition

R
N = R((AN )′)⊕N (AN ) (43)

where N (AN ) = N (Ah), ∀h ≥ N = dim(A), and R(·)
and N (·) denote range-space and, respectively, null-space.
Because, if χ⊥ ∈ N (AN ) , δuh(k|χ⊥) = 0 , ∀h ≥ N , we
can restrict the study to states in R((AN )′). This amounts
to assuming w.l.o.g. A non singular.

Under such an assumption, the following properties hold.

Lemma Consider the incremental model (6). Let it
be reachable and ANCBI, and Fh as in (11). Then, the

following properties hold, ∀ k + 1 ∈
←−
h ,

Fh+1(k) = Fh(k)
[
I + O(h−1)

]
(44)

If Ah := A+ BFh,

Fh(k + 1) = Fh(k)Ah

[
I + O(h−1)

]
(45)

Finally, if l = [0′ ǫ′]
′ ∈ R

N ,

Fh+1(k + 1)l = Fh(k)
[
I + O(h−1)

]
l (46)

Proof. From (11) one finds

Fh+1(k) = −Ψ−1
u B

′(Ah−k)′G−1
h+1A

h+1

= −Ψ−1
u B

′(Ah−1−k)′(A′G−1
h+1A)Ah (47)

Now

(A′G−1
h+1A)−1

=A−1Gh+1A
−T = Gh +A−1BB′A−T

= Gh(I + G−1
h A

−1BB′A−T ) (48)

Therefore

A′G−1
h+1A= (I + G−1

h A
−1BB′A−T )−1G−1

h

= G−1
h (I + O(h−1)) (49)

where, as shown in Mosca (2005), G−1
h = O(h−1). Hence,

(44) follows. The first equality in the next equation was
shown (Mosca (2005)) to hold for the feedback-gains in
(11), provided that Ah := A+ BFh,

Fh(k + 1) =Fh−1(k)Ah

=Fh(k)Ah

[
I + O(h−1)

]
(50)

where the last equality follows from (44). By (45), the first
equality in the following equation holds

Fh+1(k)l =Fh(k)Ah

[
I + O(h−1)

]
l

=Fh(k) [A+ BFh]
[
I + O(h−1)

]
l

=Fh(k)
[
I + O(h−1)

]
l (51)

where the last equality holds because, Al = l , and
Fh = O(h−1).

In order to compute δuh(k|χ) for large h, let χ = χ(0) :=
l + v where l := [0′ ǫ′(−1)]

′
, v := [δx′(0) 0′]

′
. Then, by

linearity of δuh(k|·)

δuh(k|χ) = δuh(k|l) + δuh(k|v) (52)

Further,

δuh(k|l) =Fh(k)l = Fh(k − 1)Ah

[
I + O(h−1)

]
l

=Fh(k − 1)
[
I + O(h−1)

]
l

= Fh

[
I + O(h−1)

]
l (53)

where the second equality follows from (45), and the third
from the fact that Ahl = l + O(h−1). Consequently,

uh(k|χ) = u(−1) +

k∑

i=0

δuh(i|χ) =

= u(−1) + (k + 1)Fhl + uh(k|v) + O(h−1)(54)

where O(h−1), the rightmost term in (54), arises by
taking into account that Fh = O(h−1), and consequently∑k

i=0 FhO(h−1)l = O(h−1), k + 1 ∈
←−
h .

Now, one must have

uh(h− 1|χ) = u∞ (55)

if u∞ denotes the input vector to (1) which in steady-state
yields the desired set-point r at the output of (1)

r = H(I − Φ)−1

(
Gu∞ +

[
ξ
c

])
+ ζ (56)

Using (55) in (54), one finds

Fhl = [u∞ − u(−1)] h−1−uh(h− 1|v)h−1 + O(h−2) (57)

Therefore, k + 1 ∈
←−
h ,
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uh(k|χ) = u(−1) +
k + 1

h
[u∞ − u(−1)] +

+uh(k|v)−
k + 1

h
uh(h− 1|v) + O(h−1) (58)

We now turn to show that δuh(k|v) = O(h−1) and,
similarly, uh(k|v) = O(h−1). In fact,

δuh(k|v) =Fh(k)v =

=Fh(k − 1)Ah

[
I + O(h−1)

]
v =

= FhA
k
h

[
I + O(h−1)

]
v (59)

where the second equality follows from (45). That δuh(k|v) =
O(h−1) follows from the fact that Fh = O(h−1) and that
Ah is a stability matrix.
Using these two properties, it is easy to see that also
uh(k|v) = O(h−1).

Summing up, k + 1 ∈
←−
h ,

δuh(k|χ) = FhA
k
hχ + O(h−2) (60)

uh(k|χ) = u(−1) +
k + 1

h
[u∞ − u(−1)] + O(h−1) (61)

Eq. (60) and (61) show that for any initial state χ ∈ R
N

it is always possible to find a large enough control horizon
h so as to make the virtual input increments δuh(·|χ) and
virtual inputs uh(·|χ) compatible with constrains (4) and
(5) provided that u(−1), u∞ ∈ U . Notice that the latter
property amounts to assuming that ξ, ζ and r are jointly
within the input control range. Properties (60) and (61)
are summed up in the following

Feasibility Property. Consider the reachable ANCBI
system (1) subject to joint input positional and incremental
saturation constrains (4) and (5). Then, for every χ ∈ Rn

and in the presence of constant disturbances ξ, c, ζ and set-
point r for which u∞ ∈ U , control horizons h can always
be found so that uh(χ) ∈ U and δuh(χ) ∈ D provided that
u(−1) ∈ U .

Thanks to the Feasibility Property and by exploiting
(42), one can set up a switching logic for chosing h
at each time t a natural extension of the one in (23),
so as to obtain a closed-loop switched system enjoying
offset-free asymptotic tracking under joint incremental
and positional input saturations. A conjecture in this
connection is that, similarly to Angeli et al. (1996), the use
of a reference governor for moderating the time-variations
of u∞ can enable one to extend the convergence analysis of
this paper to the general case of time-varying disturbances.

Remark - For aspects concerning memory and computa-
tional savings, the reader is referred to Mosca et al. (2008).

5. CONCLUSIONS

The paper provides a computationally affordable solution
to the set-point tracking problem of discrete-time LTI
systems subject to persistent disturbances and control
saturations. The proposed solution enjoys the following
features: It consists of a supervisory switching control logic
whereby a feedback-gain, selected at any time from a fam-
ily of pre-designed candidate feedback-gains, is switched-
on in feedback to the plant according to the information on
the current plant state. The controller selection is made in
accordance with a predictive control philosophy, and each

candidate feedback-gain is tuned on to a different horizon
in a receding-horizon control sense. It is proved that the
adopted switching logic ensures global asymptotic stability
in the case of constant disturbances and joint positional
and incremental input saturation, as well as bounded-noise
bounded-state l∞-stability in the presence of time-varying
disturbances, whenever only incremental input saturations
are present.
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