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Abstract: This paper addresses virtual reference adaptive switching control whereby a data-
driven supervisor aims at stabilizing an unknown time-invariant dynamic system by switching
at any time in feedback with system one element from a finite family of candidate controllers.
Under the only assumption of problem feasibility, viz. the controller family contains a stabilizing
controller, the resulting switched system is shown to be stable against arbitrary exogenous
persistent bounded disturbances.

1. INTRODUCTION

In many practical control applications, despite only a par-
tial knowledge of the plant, it is asked to design a feedback
controller which can ensure stability to the controlled sys-
tem. This paper considers the unfalsified virtual reference
adaptive switching control (VRASC) approach, whereby a
data-driven “high-level” unit, called the supervisor, aims
at stabilizing an unknown time-invariant dynamic system
by switching at any time in feedback with system to be
controlled one element from a set of candidate controllers.
A VRASC system is depicted in Fig.1. There, Π is the
unknown plant to be controlled, and Kσ(·) is the time-
varying controller whose selection is carried out by the
supervisor S based on the plant input δu and output y.

+ ΠKσ(·)

S

r

σ

−
yδu

Fig. 1. Basic VRASC scheme.

The supervisor performs in real-time the scheduling task
(when to switch) and the routing task (which controller
select) (Morse (1995)), by monitoring a purely data-
driven cost function. When the current performance is
not satisfactory, viz. the switched-on controller is falsified
by measured data (Safonov and Tsao (1997); Mosca and
Agnoloni (2003)), another candidate controller is selected
so as to replace the previous one. Thanks to the use
of the virtual reference tool (Safonov and Tsao (1997)),
such a selection is carried out without directly checking
the performance of all candidate controllers via their

effective use in the feedback loop. Using past plant input-
output records, the supervisor infers the performance of
the potential loop made up by a candidate controller and
selects the one corresponding to the minimal value of the
inferred performance.

In the noiseless case, stability properties of the adaptive
switched system can be ensured. In fact it can be proved
that the switching mechanism stops in a finite time (Sa-
fonov et al. (2007); Manuelli et al. (2007))). However,
apart from few exceptions, little attention has been so
far devoted on how to deal with persistent disturbances:
the issue considered in this paper. For other contributions
to the topic, see e.g. also Morse (1997), Jun and Safonov
(1999), Zhivoglyadov et al. (2000), Hespanha et al. (2003),
Freidovich and Khalil (2005) and Fekri et al. (2006).

Sect.2 recalls some preliminary concepts and known stabil-
ity results pertinent to the noiseless case. Sect.3 analyses,
from the stability viewpoint, the problems which may arise
in the presence of disturbances. Finally, Sect.4 shows how
suitable choises of the cost functionals ensure that the
switched system be stable in the face of arbitrary bounded
disturbances.

2. PRELIMINARIES AND PROBLEM
FORMULATION

The study is intentionally focused on the simplest non-
trivial case of a strictly causal SISO plant consisting of
a discrete-time time-invariant dynamic system Π with
input-increment δu(t) := u(t) − u(t − 1) and output y(t),
t ∈ Z+ = {0, 1, . . .}. The only assumption on Π is that it
belongs to a plant uncertainty set P, which need not be
known. Along with the uncertain plant Π, a finite family
K of one-degree-of-freedom causal and causally invertible

(CCI) controllers Ki is available, K = {Ki, i ∈
←−
N },←−

N := {1, 2, . . . , N}. At any time t, the plant Π is fed
by the control-increment δu(t) coinciding with the output
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of one, say Kσ(t), σ(t) ∈ ←−N , among the N candidate
controllers, viz., Kσ(t) is switched-on in feedback to the
plant. Consequently,

{

y(t) = Π(δu)(t)
δu(t) = −Kσ(t)(y − r)(t)

(1)

where r denotes the reference to be tracked by the plant
output y. Here, Kσ(t)(y − r)(t) has to be introduced as
a shorthand notation for Ki(y − r)|i=σ(t)(t). The latter
means that the N candidate controllers are fed at all times
by the tracking error ǫ := r − y, and the output of the
σ(t)-th controller is used as the input-increment to the
plant at time t. In (1) Π and all Ki’s are allowed to have
arbitrary states at time zero. The switching mechanism is
implemented by possibly bumpless control transfer tech-
niques (Goodwin et al. (2001)) or common state multi-
controller schemes (Morse (1995)) so as to reduce as much
as possible the transients caused by switching from one
controller to a different one. Plant input increments are
customarily adopted for control design so as to ensure con-
stant disturbance rejection and zero-offset. As anticipated,
the high-level device responsible for orchestrating σ(t) is
the switching supervisor, and (1), combined with such a
device, is referred to as an ASC system denoted (Π/Kσ(·)).

2.1 Unfalsified control

The problem of controlling the unknown plant Π is dealt
within a framework commonly referred to as unfalsified
control (Safonov and Tsao (1997)). To this end, we recall
some useful definitions available in literature (Safonov
et al. (2007)).

Definition 1. A signal v is said to belong to l2e if it
is square summable over any bounded interval of time
{1, 2, . . . , t}, t ∈ Z+.

Definition 2. Assuming r ∈ l2e as (temporarily) the only
exogenous variable, (Π/Kσ(·)) is said to be l2e-gain stable
relatively to r if there exist finite nonnegative constants α
and, β such that:

‖Dt‖ ≤ β · ‖rt‖+ α (2)

∀t ∈ Z+, ∀rt, where vt := {v(k)}tk=0 is the time trun-
cation of v(·) over the interval {0, 1, . . . , t}, D(k) :=
[δu(k) y(k)]′ the plant I/O vector at time k, the prime

denotes transpose, ‖Dt‖2 :=
∑t

k=0 |D(k)|2, | − | and ‖− ‖
denote Euclidean and, respectively, l2-norm.

It should be emphasized that stability of the system (1) is
unfalsified by an input-output pair (r,D), during a specific
infinite-length experiment, if (2) holds. On the opposite,
with “stability” we mean that (2) holds true for every
possible input, viz. stability of (1) is unfalsified by any
possible pair (r,D).

In a VRASC system, for each i ∈ ←−N , the variable

vi(t) = y(t) + K−1
i (δu)(t) (3)

t ∈ Z+, is uniquely computed in real-time provided that
Ki is causal and causally stably invertible (CCSI). Note
that if K−1

i and Ki have the same initial condition, then

−Ki(y − vi)(t) = −Ki(y − y −K−1
i (δu))(t) = δu(t)

In words, vi equals the fictitious or virtual reference that, if
injected into the feedback system (Π/Ki), would reproduce

D(t), t ∈ Z+, the I/O pairs of the uncertain plant Π in
(1). In other terms, if (Π/Kσ(·)) is intended as the (time-
varying) transformation (1) mapping r into D, we find:

D = (Π/Kσ(·))r = (Π/Ki)vi

where (Π/Ki) is the (time-invariant) transformation con-
sisting of the plant Π fed-back by the i-th candidate
controller Ki.

The introduction of the vi’s makes it possible to causally
compute from D (virtual) nonnegative causal loss func-

tionals Vi(·), i ∈ ←−N . Given Dt−1, the supervisor compares
the N performance indices V (t) := {Vi(t)}Ni=1 and selects,
at every t ∈ Z+, the controller index σ(t) via the following
hysteresis switching logic:

σ(t) = l(σ(t− 1), V (t)) σ(−1) = i−1 (4)

l(i, V ) =

{

i if Vi < Vγ(V ) + h
γ(V ) otherwise

(5)

where γ(V ) denotes the least integer i ∈ ←−N for which

Vi ≤ Vj , ∀j ∈
←−
N , and h, a (typically small) positive real,

is the so-called hysteresis constant.

2.2 Results in the noiseless case

In VRASC system analysis, a fundamental role is played
by the next Hysteresis Switching Lemma which establishes
the limiting behavior of (Π/Kσ(·)).
Let S denote the class of all possible switching functions

s : Z+ →
←−
N giving rise to the switched system (Π/Ks(·)).

Consider the assumptions:

A1. For each s ∈ S and i ∈ ←−N , the performance index
Vi(t) admits a limit (even infinite) as t→∞;

A2. There is at least one integer m ∈ ←−N such that Vm(·)
is bounded on Z+ for each s ∈ S.

Hysteresis Switching Logic (HSL) Lemma (Morse et al.
(1992)): For any initial condition and reference r, let D
denote the I/O plant data to the supervisor, and σ the
switching function resulting from (1), (4) and (5). Then, if
A1 and A2 hold, there is a finite time tf beyond which σ is
constant as no more switching occurs. Moreover, Vσ(tf )(·)
is bounded.

In order to simplify the notation, from now on, the final
controller index σ(tf ) will be denoted by f , viz., Kσ(tf ) =
Kf . A pre-requisite for a VRASC system to yield stable
and well-behaved final feedback loops (Π/Kf ), ∀Π ∈ P
is that the set K of candidate controllers be adequately
chosen relatively to P. In this connection, the minimal
requirement on K is the so called:
Problem Feasibility : For every Π ∈ P, there are indices i,

i ∈ ←−N , such that (Π/Ki) is l2e
-gain stable.

Key properties which enable cost functions to reliably
detect any instability exhibited by the adaptive system
are as follows (Safonov et al. (2007))

Definition 3. The pair (V,K) is said to be cost-detectable
if for every Kσ(·) ∈ K with finitely many switching times,
the following statements are equivalent: 1) Vf is bounded
as t → ∞, 2) l2e-gain stability of the system (Π/Kσ(·)) is
unfalsified by (r,D).
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Definition 4. Given the pair (V,K), V is said to be l2e-

gain-related if for each D ∈ l2e and Ki, i ∈ ←−N : 1) Vi(t)
is monotone in t, 2) the virtual reference signal vi exists,

and 3) for every Ki, i ∈ ←−N , and D ∈ l2e, Vi(t) is bounded
as t → ∞ if and only if l2e-gain stability of the system
(Π/Ki) is unfalsified by (vi,D).

If each Ki, i ∈ ←−N , is CCSI, the virtual reference vi

in (3) is well-defined. In such a case, cost detectability
is equivalent to l2e-gain-relatedness (see Safonov et al.
(2007)). Therefore, one can focus on the latter in order to
study the stability properties of the VRASC system. With
this respect the following lemma holds that summarizes
some of the results of Safonov et al. (2007).

Lemma 1. Let all the candidate controllers be CCSI, and
the hysteresis switching logic (4)-(5) used. Then, provided
that

B1. V is l2e-gain-related and
B2. problem feasibility holds,

the HSL holds and the resulting VRASC system (Π/Kσ(·)),
Π ∈ P, is l2e-gain stable relatively to r.

Remark 1. For every index s corresponding to an inter-
nally stabilizing controller, l2e-gain stability of the system
(Π/Ks) is always unfalsified by the I/O pair (vs,D) re-
gardless of the switching sequence σ(t), t ∈ Z+ . As a
consequence, under problem feasibility, there always are

indices i, i ∈ −→N, for which l2e-gain stability of the system
(Π/Ki) is unfalsified by (vi,D). This together with the
third property in Def. 4 ensures that there always exist
indices i for which the cost Vi(t) remains bounded as t
increases to infinity, thus allowing for the application of
the HSL.

Existing related literature proves the existence of l2e-gain-
related performance indices Vi. In the light of Lemma 1,
under problem feasibility, such performance indices satisfy
the HSL and yield stability (2) relatively to r to the
adaptive system (Π/Kσ(·)) resulting from (1), (4) and (5).
For instance, a simple form for l2e-gain-related Vi’s is as
follows

Vi(t) = max
τ≤t

‖ǫτ
i ‖2 + ρ‖δuτ‖2
m2 + ‖vτ

i ‖2
(6)

where t ∈ Z+, ρ > 0, and ǫi(k) := vi(k) − y(k) denotes
the tracking error in the feedback loop (Π/Ki) driven
by the virtual reference vi. The positive scalar m2 > 0
appears so as to prevent the denominator from assuming
values too close to zero. The form of (6) is a natural one
in that it is an estimate of the performance of (Π/Ki)
expressed in terms of the l2 − l2 induced gain of the map
embodied by (Π/Ki) from vi to D. Further, its evaluation
requires, once data Dt are collected, only computation of
vt

i . The adoption of performance indices Vi computed via
the maximum operator is a way for ensuring A1.

The following stability result descends directly from
Lemma 1 and from the fact that the Vi ’s defined in (6)
are l2e-gain-related.

Theorem 1. (Safonov et al. (2007)) Let all the candidate
controllers be CCSI, and the hysteresis switching logic (4)-
(5) used along with the Vi’s as in (6). Under the only
assumption of problem feasibility, for any initial condition

and reference r, the HSL holds and the resulting VRASC
system (Π/Kσ(·)), Π ∈ P, is l2e-gain-stable relatively to r.

Remark 2. Theorem 1 indicates that the simple loss func-
tional (6) enables one to adaptively select a final controller
Kf yielding a feedback system (Π/Kf ) stable relatively
to r, provided that only problem feasibility hold. The
extension of VRASC systems to cover the case where not
all the CCI controllers Ki are stably invertible, can be
achieved in many ways (e.g. Manuelli et al. (2007)). For
instance, in linear case, defining Ci(d) = Si(d)/Ri(d) as
the transfer function of Ki, one can compute v̂i(t) :=
(Si(d)/Si(1))vi(t), where Si(1) acts so as to obtain a
steady-state offset-free response of v̂i to a step input.
In this scenario, a simple way to cover the general CCI
controllers case is to use

Vi(t) = max
τ≤t

‖ǫ̂τ
i ‖2 + ρ‖δuτ‖2
m2 + ‖v̂τ

i ‖2
(7)

with ǫ̂i(t) := v̂i(t)−y(t). No controller inversion is required
here and only input output data collected from the acting
loop are requested. It is no difficult to prove that loss
functionals (7), along with hysteresis switching logic (4)-
(5), yield the same results as in Theorem 1.

Hereafter, d will denote the unit backward shift operator.
The streamlined notation M(d)v(t) = N(d)u(t), M(d) =
∑∂M

k=0 mkdk, N(d) =
∑∂N

k=0 nkdk, will be adopted as a
representation of the difference equation m0v(t)+m1v(t−
1) + · · · + m∂Mv(t − ∂M) = n0u(t) + n1u(t − 1) + · · · +
n∂Nu(t− ∂N).

3. EFFECTS OF PERSISTENT DISTURBANCES

For the sake of convenience, the subsequent developments
are carried out by assuming that all candidate controllers
in K are CCSI. In Sect.4, it is shown how simple variants
can be adopted so as to cover the general CCI controllers
case.

So far, only stability of (Π/Kσ(·)) relatively to the output
reference r has been considered. However, it is essential to
check whether a finite-gain property similar to (2) holds
true for every bounded exogenous sequence injected at any
possible position in the feedback loop (Π/Kσ(·)). Because
of the presence of the supervisor, in a VRASC system
the situation is more complex than in a classical time-
invariant feedback loop. The disturbances have in fact a
different effect relatively to the way they affect the data
D to the supervisor. Specifically, the disturbances might
downgrade the information available to the supervisor,
thus deteriorating the performance of the loop to an
unacceptable level. To see this, consider the case where
the disturbances enter the system as follows

{

y(t) = Π(δν + nu)(t) + ny(t)
δu(t) = −Kσ(t)(y − r)(t)

(8)

As shown in Fig.2, the supervisor has now a noisy infor-
mation y on the output of Π. Similarly, the input to Π
equals δu+nu, while the supervisor has access only to δu.

This case looks realistic for applications wherein the
VRASC controller is regarded as a single block (Kσ(·),S)
having input y and output δu. In this way, the adaptive
system consists of two block, the plant Π and the VRASC
controller, while the inputs nu, ny appear at the interface
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between such blocks, so as to describe the standard for-
mulation of the problem of input-output stability. In this
scenario, for the supervisor, nu and ny play the role of
process disturbances acting “inside” Π.

The performance index (6) is not proper to reflect correctly
the I/O configuration in the noisy case and, consequently,
it may cause a lack of information to the supervisor.
In particular, the switching mechanism need not stop.
In order to focus on how this case can arise, let (D,σ)

+ + +ΠKσ(·)

S

r
δu

σ

y

nu ny

−

Fig. 2. Noisy scheme.

denote the unique solution of (8), subject to the hysteresis
switching logic (4)-(5), for any initial state and bounded
sequences nu, ny, where the performance indices Vi(t),

i ∈ ←−N , are given by (6). As a matter of fact, one cannot
conclude that such functionals Vi’s remain bounded even
for the indices related to the stabilizing controllers. For
example, this happens in case r ∈ l2. Indeed, suppose that
both the plant and controllers are linear. Further, suppose
that at the generic time instant t a certain controller
Ki is switched on in the loop. Let P (d) = B(d)/A(d)
and Ci(d) = Si(d)/Ri(d) be the transfer function of Π,
respectively, Ki. As shown in Fig.3, according to (3), the
data given by the i-th virtual loop are obtained as

ǫi(t) =
A(d)Ri(d)

χ∗/i(d)
(vi(t)− ny(t))− B(d)Ri(d)

χ∗/i(d)
nu(t)

δu(t) = Ci(d) ǫi(t) (9)

with χ∗/i(d) := A(d)Ri(d) + B(d)Si(d) the characteristic
polynomial of (Π/Ki). Consequently, omitting the argu-
ment, one can write

∥

∥

∥

∥

[

ρ1/2δu
ǫi

]∥

∥

∥

∥

2

≥ min
ω∈[0,2π]

(

|Ri|2 + ρ|Si|2
∣

∣χ∗/i

∣

∣

)

· l2 · ‖pt
i‖2 =

= N2 · ‖pt
i‖2 (10)

with pi(t) := A(d)(vi(t)− ny(t))−B(d)nu(t), ∀i ∈ ←−N ; l2,
0 < l ≤ 1, accounts for the truncation effects on the l2
norm. Further, N2 > 0 because Ri and Si are coprime
polynomials. Roughly, since ǫi and δu are obtained by
filtering the disturbances, provided that such disturbances
are persintently exciting sequences of sufficiently high
order, the numerator of Vi(t) grows at least linearly with
t− t. On the opposite, since for the switched-on controller
the virtual reference converges exponentially to the true
reference r ∈ l2, the denominator of Vi(t) turns out to be
bounded as long as Ki is kept in the loop. Consequently, it
cannot be argued that assumption A2 in the HSL lemma
holds, and, hence, that the switching mechanism stops.

+ ++ ΠKi

vi δuǫi y

nu ny

−

Fig. 3. The i-th virtual closed loop.

3.1 A novel notion of stability

This state of affairs can be understood by noting that
the convergence of the virtual reference to the true one,
for the switched-on controller, yields no account of the
disturbances. In fact the supervisor cannot distinguish be-
tween disturbances and some process dynamics, as nu and
ny do not affect the virtual reference of the switched-on
controller. Consequently, even if the supervisor preserves
the capability of detecting any trend to unboundedness
due to instability, its capability of holding in the loop for
ever a (final) stabilizing controller is lost.

For this reason, the minimal requirement on the function-
als Vi’s is their boundedness for the indices i ≡ s related

to the stabilizing controllers Ks, s ∈ ←−N ,

lim
t→∞

Vs(t) <∞ for any possible σ(·) (11)

It is important to remark that the performance indices
(6) do not satisfy (11) because they were chosen to be
l2e-gain-related. However, the notion of l2e-gain stability
introduced in Def. 2 is inconsistent with the noisy system
(8): in the presence of disturbances, even for indices s
corresponding to internally stabilizing controllers, the l2e-
gain stability of the system (Π/Ks) can be falsified by
the I/O pair (vs,D). Consequently, for system (8) the
considerations of Remark 1 do not hold.

Therefore, a different notion of stability has to be consid-
ered that takes into account the presence of bounded but
possibly persistent disturbances affecting the plant.

Definition 5. System (8) is said to be weakly l2e-gain-
stable relatively to r if, for every reference r ∈ l2e

, every
initial condition, and every bounded disturbances nu and
ny, there exist finite nonnegative constants α, β, and γ
such that

‖Dt‖ ≤ β · ‖rt‖+ γ ·
√

t + 1 + α (12)

for any t ∈ Z+.

The parameter γ stands from the contribution of nu and
ny to the data D, while α allows for consideration of
systems with non-zero initial state.

4. CHOICE OF PERFORMANCE INDICES

On the basis of the novel stability notion introduced in
Def. 5, one can consider novel key properties that the cost
functions have to satisfy in order to reliably detect losses
of stability of the adaptive system (Π/Kσ(·)).

Definition 6. Given the pair (V,K), V is said to be weakly

l2e-gain-related if for each D ∈ l2e and Ki, i ∈ ←−N : 1) Vi(t)
is monotone in t, 2) the virtual reference vi exists, and 3)

for every Ki, i ∈ ←−N , and D ∈ l2e, Vi(t) is bounded as
t→∞ if and only if weak l2e-gain stability of the system
(Π/Ki) is unfalsified by (vi,D).
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Def. 6 and the theorem that follows indicate some guide-
lines on how to choose a performance index so as to achieve
weak l2e-gain stability.

4.1 Performance indices

Theorem 2. Let all the LTI candidate controllers be CCSI,
and the hysteresis switching logic (4)-(5) used. Then,
provided that

C1. V is weakly l2e-gain-related and
C2. problem feasibility holds,

the HSL lemma holds and the resulting VRASC system
(Π/Kσ(·)), Π ∈ P, is weakly l2e-gain stable relatively to r.

Proof. Suppose that bounded disturbances nu and ny

enter the system as in (8). Thus, for any index s cor-
responding to an internally stabilizing controller, weak
l2e-gain stability of the system (Π/Ks) is always unfal-
sified by the I/O pair (vs,D) regardless of the switch-
ing sequence σ(t), t ∈ Z+ . As a consequence, by virtue
of the third property in Def. 6, one may conclude that
Vs(·) remains bounded as t increases to infinity for every

s ∈ −→N such that (Π/Ks) is internally stable. Therefore,
under problem feasibility, the HSL holds. Further, the cost
function Vf related to the final switched-on controller Kf

is bounded. This, along with the assumption C1, implies
that the weak l2e-gain stability of (Π/Kf ) is unfalsified by
(vf ,D), i.e. there exist finite nonnegative constants α, β
and γ such that

‖Dt‖ ≤ β · ‖vt
f‖+ γ ·

√
t + 1 + α (13)

As the virtual reference vf converges exponentially to the
true reference r, there exists a finite nonnegative α̂ such
that ‖vt

f‖ ≤ ‖rt‖ + α̂, ∀t ∈ Z+. Consequently, one can
conclude that

‖Dt‖ ≤ β · ‖rt‖+ γ ·
√

t + 1 + α̃ (14)

where α̃ := β · α̂+α. As (14) holds for the data from every
possible input, the adaptive system (Π/Kσ(·)) is weakly
l2e-gain stable, relatively to r. 2

A possible choice, amongst many alternatives, for a weakly
l2e-gain-related performance index Vi(t) consists of modi-
fying the denominator of the Vi’s in (6) so as to account
for the effects of the additional noise inputs nu, ny. This
may be achieved by considering

wi(t) :=
(

v2
i (t) + m2

)1/2
, i ∈ ←−N (15)

where m2 > 0 is a positive real, which might be chosen as
an a priori estimate of the RMS value of the disturbances.

The following theorem holds.

Lemma 2. Let ǫi(t) := vi(t) − y(t), i ∈ ←−N , with vi as in
(3). The performance index

Vi(t) := max
τ≤t

‖ǫτ
i ‖2 + ρ‖δuτ‖2
‖wτ

i ‖2
, i ∈ ←−N (16)

with wi(t) as in (15), is weakly l2e-gain-related.

Proof. The first two properties in Def. 6 are trivially ver-
ified. With regard to the third property, notice that Vi(t)

bounded implies that, ∀t ∈ Z+, there exist indices i, i ∈ ←−N ,

such that ‖Dt
ρ,i‖ ≤M ·‖wt

i‖, being Dρ,i :=

[

ρ1/2δu
ǫi

]

, and

M a nonnegative constant. By triangle inequality it follows

that ‖Dt‖ ≤ ‖vt
i‖+ M̂ ·

(

‖vt
i‖2 + m2 · (t + 1)

)1/2
, for some

bounded positive real M̂ . Hence, ∀t ∈ Z+

‖Dt‖ ≤ (1 + M̂) · ‖vt
i‖+ m · M̂ ·

√
t + 1 (17)

On the opposite, suppose that the weak l2e-gain stability of
(Π/Ki) is unfalsified by (vi,D), i.e. ‖Dt‖ ≤ β ·‖vt

i‖+α+γ ·√
t + 1, for some nonnegative reals α, β and γ and ∀t ∈ Z+.

Consequently, by triangular inequality, ‖Dt
ρ,i‖2 ≤ ‖vt

i‖2 +

‖yt‖2 + ρ‖δut‖2 ≤ ‖vt
i‖2 + (1 + ρ)‖Dt‖2. Finally,

‖Dt
ρ,i‖ ≤ ‖vt

i‖+
√

1 + ρ · ‖Dt‖ (18)

Hence, boundedness of Vi(t) follows directly from the
definition of wi(t). In fact,

Vi(t) ≤
(

(1 + µ · β) · ‖vt
i‖+ µ · γ ·

√
t + 1 + µ · α

)2

‖vt
i‖2 + m(t + 1)

(19)

where µ :=
√

1 + ρ. 2

Remark 3. Similar results can be achieved in order to ex-
tend Def. 6 to the general CCI controller case. In particu-
lar, a simple weakly l2e-gain-related performance index can
be obtained re-defining v̂i(t) := (Si(d)/Si(1))vi(t) as the
i-th virtual reference. A simple choice for the performance
indices is given by

Vi(t) = max
τ≤t

‖ǫ̂τ
i ‖2 + ρ‖δuτ‖2
‖ŵτ

i ‖2
, i ∈ ←−N (20)

with ŵi(t) :=
(

v̂2
i (t) + m2

)1/2
, and ǫ̂i(t) := v̂i(t)− y(t).

4.2 Interpretation

In order to understand the meaning of (12) w.r.t. the
adaptive system (1), it is interesting to give a detailed
analysis of the switching mechanism generated by (4)-(5)
along with (15)-(16).

Let problem feasibility be satisfied. Let Ks, s ∈ ←−N , be
a stabilizing controller. For the index related to such a
stabiling controller, one has

‖ǫt
s‖2 + ρ‖δut‖2 ≤ (21)

M2
1 + M2

2 (‖wt
s‖2 + ‖nt

y‖2) + M2
3 ‖nt

u‖2 (22)

for some finite nonnegative constants Mi, i = 1, 2, 3, being
‖wt

i‖ ≥ ‖vt
i‖, ∀t ∈ Z+. Consequently,

Vs(t) ≤ max
τ≤t

(

M̂2 +
M2

2 ‖nτ
y‖2 + M2

3 ‖nτ
u‖2

‖wτ
s ‖2

)

(23)

for some finite nonnegative constant M̂ . From (15), as
‖wt

s‖2 ≥ t ·m2, one gets

m2 · Vs(t) ≤ m2 · M̂2 +
(

M2
2 ‖ny‖2∞ + M2

3 ‖nu‖2∞
)

(24)

where ‖−‖∞ denotes the l∞-norm. Therefore, (24) ensures
that the second assumption stated by the HSL Lemma is
satisfied, viz. for any switching sequences σ(·) ∈ S, there
is a finite time, tf , beyond which σ is constant. Being Vf

bounded, it follows by triangle inequality that

‖Dt‖ ≤ ‖vt
f‖+ L · ‖wt

f‖ ≤
≤ ‖rt‖+ α + L · ‖wf‖∞ ·

√
t + 1 (25)

for some bounded positive real L. Notice that the second
inequality in (25) takes into account the possible different
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initial condition between the controller Kf switched on in

the loop and the controller K−1
f used for the calculation

of (3). Hence, as vf (t) converges exponentially to the
reference r(t), ∀t ≥ tf , there exists a finite nonnegative
constant c such that ‖vf‖∞,t≥tf

= ‖r‖∞,t≥tf
+ c, where

‖−‖∞,t≥τ denotes the l∞-norm over t ≥ τ . Therefore, one

can conclude that ‖wf‖∞ =
(

‖vf‖2∞ + m2
)1/2

equals

‖wf‖∞ = max

{

k,
(

(

‖r‖∞,t≥tf
+ c
)2

+ m2
)1/2

}

(26)

where k := maxτ≤tf
{wf (τ)}. Clearly, k and c depend on

the particular switching sequence σ(·) ∈ S, i.e they con-
cern the initial state of the adaptive system and the process
disturbances. Hence, we can now give an interpretation to

‖Dt‖ ≤ ‖rt‖+ γ ·
√

t + 1 + α (27)

where γ := L · ‖wf‖∞. In the concept of weak l2e-
gain stability given by (27), the term α accounts for the
nonzero adaptive system state before the last switching
time-instant, while the term γ takes into account the
vector of the inputs to the adaptive system. In fact, ‖wf‖∞
correctly depends on the disturbances only for t < tf .
It also depends on the initial conditions of the adaptive
system and the reference r(t), ∀t ∈ Z+. On the opposite,
by (24)-(25), L explicitly depends on the bounds ‖nu‖∞
and ‖ny‖∞ on the disturbances over t ∈ Z+.

4.3 Loss of l2e-gain relatedness in the noiseless case

It is advisable to analyze the effects of the performance
index (16) in the absence of disturbances. Using (16)
instead of (6), we can no longer deduce the properties as
in Th. 1, even if there are no disturbances. This is caused
by the fact that the inferring mechanism is equipped
with a cost function which turns out to be no longer
l2e-gain related. In fact, in this connection, the weak l2e-
gain stability of the adaptive system (Π/Kσ(·)) becomes
a sufficient condition for boundedness of the performance
index V (Ki,D, t). For instance, consider the case where
the initial state of Π is x0 6= 0, while all exogenous inputs
to the loop equals zero. Let Kj be the controller which is
switched on in feedback to the plant at the initial time t0,
i.e. σ(t0) = j. Consequently, Vj(t) < h, ∀t ≥ t0, implies
σ(t) ≡ j, i.e. such a controller will never be switched
off of the loop. More specifically, any initial controller
Kj is kept in the loop, provided that it generates data

Dρ :=

[

ρ1/2δu
y

]

such that

‖Dt
ρ‖2 ≤ (t + 1) ·m2 · h (28)

Consequently, every controller which stabilizes the system
in the weak sense is a potential final controller. Notice
that such a selection is carried out by the supervisor based
only on experimental data, viz. with no prior knowledge
of a plant model. In other words, within the unfalsified
control framework, with a specific single infinite-duration
experiment one cannot distinguish the effect of internal
noise on data from an unknown offset or bias in some
internal parameter of the plant.

5. CONCLUSION

The unfalsified VRASC approach has been extended to
handle the case of persistent plant disturbances (akin

the noise configuration considered for internal stability
of feedback-systems). It has been pointed out that the
presence of persistent disturbances which corrupt the data
to the switching supervisor can have the effect of making
invalid the nice conclusions of convergence analysis of
noiseless VRASC systems based on the HSL lemma. In
order to recover the relevant convergence properties of
VRASC systems in the persistent disturbance case, viz.
finite switching stopping time and boundedness, a novel
notion of stability has been introduced and constructively
used so as to select new schemes which are shown to
achieve the desired goals.
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