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R. Caballero-Águila ∗ A. Hermoso-Carazo ∗∗
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Abstrac t:
In this paper, the linear least-squares estimation problem of signals from correlated uncertain
observations coming from multiple sensors is addressed. It is assumed that, at each sensor,
the signal is measured in the presence of additive white noise and that the uncertainty in the
observations is characterized by a set of Bernoulli random variables which are only correlated
at consecutive time instants. Assuming that the probability and correlation of such variables
are not necessarily the same for all the sensors, a recursive filtering and fixed-point smoothing
algorithm is proposed. The derivation of such algorithm does not require the knowledge of the
signal state-space model, but only the covariance functions of the processes involved in the
observation equation of each sensor, as well as the probability and correlation of the Bernoulli
variables modeling the uncertainty. Recursive expressions for the estimation error covariance
matrices are also provided, and the performance of the estimators is illustrated by a numerical
simulation example wherein a signal is estimated from correlated uncertain observations coming
from two sensors with different uncertainty characteristics.

1. IN TRO D U C TIO N

There are many practical situations concerning the estima-
tion of signals from measurements coming from different
multiple sensors. F or example, in engineering applications
involving communication networks with a heavy network
traffi c, the measurements available may not be up-to-date
and so, the signal is estimated from delay observations
coming from multiple sensors (see e.g. M atveev and S avkin
[2003] and H ounkpevi and Y az [2007 ], among others).

There is also a large class of real-world problems where
the signal appears in the observation in a random manner,
such as problems where there are intermittent failures in
the observation mechanism, fading phenomena in propa-
gation channels, target tracking, accidental loss of some
measurements or data inaccessibility during certain times.
These situations are characterized by the fact that the
signal is not always present in the observations but there
exists a positive probability that the observations do not
contain the signal. This consideration is modeled including
in the observation equation not only an additive noise,
but also a multiplicative noise consisting of a sequence
of Bernoulli random variables taking the value one if the

? This work is partially supported through projects MTM2005-
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observation contains signal plus noise, or the value zero if it
is only noise (uncertain observations). Assuming that the
state-space model is completely known, the least-squares
(L S ) estimation problem in this kind of systems has been
studied by several authors under different hypotheses on
the processes involved in the state-space model (see H er-
moso and L inares [19 9 5] and N aN acara and Y az [19 9 7 ],
among others). O n the other hand, considering that the
state-space model of the signal is not available, but only
the covariance functions of the processes involved in the
observation equation and the probability that the signal
exists in the observations are known, the L S estimation
problem has been also addressed (see e.g. N akamori et al.
[2003] and N akamori et al. [2004 ]). In the above papers,
the variables modeling the uncertainty in the observations
are assumed to be independent, so the distribution of the
multiplicative noise is fully determined by the probability
that each particular observation contains the signal. M ore
general situations, in which such independence assumption
is not valid since the variables modeling the uncertainty
are correlated at consecutive instants, have been previ-
ously considered by J ackson and M urthy [19 7 6 ] who, using
also a state-space approach, derived a L S linear filtering
algorithm which provides the estimator at any time from
those in the two preceding instants. This situation has
been also treated in N akamori et al. [2005a] and N akamori
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et al. [2005b] under a covariance approach and filtering
and fixed-point smoothing algorithms have been derived
for this uncertain observation model.

Taking into account the model studied by H ounkpevi and
Y az [2007 ] about the estimation of signals considering
multiple delayed sensors with different delay characteris-
tics, the aim of this paper is to approach the estimation
problem of signals from correlated uncertain observations
coming from multiple sensors with different uncertainty
characteristics. Recursive algorithms for the filtering and
fixed-point smoothing estimators are proposed together
with recursive formulas to calculate the corresponding
estimation error covariance matrices (as a measure of the
estimation accuracy). To derive them, it is assumed that
the state-space model of the signal to be estimated is not
known, but only the covariance functions of the signal
and noise processes involved in the observation equations
of each sensor, as well as the probability and correlation
of the Bernoulli variables modeling the uncertainty are
available.

2. P RO BL E M S TATE M E N T

In this section, the least-squares (L S ) linear estimation
problem of an n-dimensional discrete-time random signal,
zk, which cannot be directly observed but only through
observations coming from m different sensors, is formu-
lated. S uppose that, at each sensor, there exist intermit-
tent failures in the measure mechanism which cause that,
at each sampling time, the signal may be present or not
in the observation in a random way. F irst, the observation
model for these measurements and the hypotheses about
the signal and noise processes are described.

2.1 Observation model

C onsider m sensors which at any time k ≥ 1 provide scalar
measurements of an n-dimensional signal, zk, perturbed
by additive noises and assume that each measurement can
be only noise with a known probability. S o, if yi

k, i =
1, . . . , m denote the available observations, vi

k is the noise
perturbing the signal transmitted by the i-th sensor, and
1−pi

k is the false alarm probability (that is, the probability
that only noise is observed or, equivalently, that yi

k does
not contain the transmitted signal), the observations are
specified as

yi
k =

{
Hi

kzk + vi
k, with probability pi

k

vi
k, with probability 1 − pi

k.

Therefore, if {γi
k; k ≥ 1}, i = 1, . . . , m denote sequences

of Bernoulli random variables (binary switching sequences
taking the values 0 or 1) with P [γi

k = 1] = pi
k, the

observations of the signal can be described by

yi
k = γi

kHi
kzk + vi

k, k ≥ 1, i = 1, . . . , m. (1)

Thus, at the i-th sensor, the observations
{
yi

k; k ≥ 1
}

are

perturbed by a multiplicative noise,
{
γi

k; k ≥ 1
}
, which

models the uncertainty about the signal being present
in each observation (this is called the uncertainty of the
observation).

The estimation problem will be carried out by assuming
that the signal to be estimated, {zk; k ≥ 1}, is a zero-
mean process with covariance function admitting a semi-
degenerate kernel form, E[zkzT

s ] = AkBT
s , s ≤ k, where

A and B are known n × M matrix functions, and the
additive noises, {vi

k; k ≥ 1}, i = 1, . . . , m, are zero-mean
white processes with known variances V ar[vi

k] = Ri
k, for

all k ≥ 1. M oreover, the signal process, {zk; k ≥ 1}, and
the noise processes, {vi

k; k ≥ 1} and {γi
k; k ≥ 1}, for

i = 1, . . . , m, are mutually independent.

It is also assumed that, at each sensor, the uncertainty
in the observation at time k depends on the uncertainty
at time k − 1, but it is independent of uncertainties at
times previous to k−1; this is formulated by imposing the
stochastic independence of the Bernoulli variables γi

k and
γi

s when |k − s| ≥ 2.

To simplify the notation, (1) is rewritten in a compact
form as follows:

Yk = D
γ
kHkzk + Vk, k ≥ 1, (2)

where Yk =
(
y1

k, . . . , ym
k

)T
, Hk =

(
(H1

k)T , . . . , (Hm
k )T

)T
,

D
γ
k = Diag

(
γ1

k, . . . , γm
k

)
, Vk =

(
v1

k, . . . , vm
k

)T
and, from

the model hypotheses, the following properties hold:

(i) The m-dimensional process {Vk; k ≥ 1} is a zero-
mean white sequence with covariance matrix function
E[VkV T

k ] = Rk = Diag
(
R1

k, . . . , Rm
k

)
.

(ii) The random matrices D
γ
k and Dγ

s are indepen-
dent for |k − s| ≥ 2. The mean of D

γ
k is D

p
k =

Diag
(
p1

k, . . . , pm
k

)
and the covariance of D

γ
k and

D
γ
k−1

, which can be a nonzero matrix, is K
γ
k,k−1

=

Diag
(
E[γ1

kγ1
k−1

]−p1
kp1

k−1
, . . . , E[γm

k γm
k−1

]−pm
k pm

k−1

)
.

(iii) {zk; k ≥ 1}, {Vk; k ≥ 1} and {Dγ
k ; k ≥ 1} are

mutually independent.

2.2 Linear LS estimation prob lem

G iven the uncertain observations {Y1, . . . , YL}, L ≥ k, the
aim is to find a recursive L S linear estimator, ẑk/L, of the
signal zk. As known, this estimator is the orthogonal pro-
jection of the vector zk onto L(Y1, . . . , YL), the linear space
spanned by {Y1, . . . , YL}. S ince the observations are gener-
ally nonorthogonal vectors, we use an innovation approach,
based on an orthogonalization procedure wherein we trans-
form the observation process {Yk; k ≥ 1} to an equivalent
one (innovation process) of orthogonal vectors {νk; k ≥ 1},
equivalent in the sense that each set {ν1, . . . , νL} spans the
same linear subspace as {Y1, . . . , YL}.

The vector νk, named innovation at time k, is defined as

νk = Yk − Ŷk/k−1 where Ŷ1/0 = 0 and, for k ≥ 2, Ŷk/k−1,
the one-stage linear predictor of Yk, is the projection of Yk

onto L(ν1, . . . , νk−1); the orthogonality property allows us
to find this projection by separately projecting onto each
of the previous orthogonal vectors; that is,

Ŷk/k−1 =
k−1∑

j=1

E[YkνT
j ](E[νjν

T
j ])−1νj , k ≥ 2. (3)

In a similar way, the replacement of the observation
process by the innovation one leads to the following
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expression for the L S linear estimator of the signal

ẑk/L =

L∑

j=1

Sk,jΠ
−1

j νj , (4 )

where Sk,j = E[zkνT
j ] and Πj = E[νjν

T
j ]. In view of

expression (4 ), we will start by obtaining an explicit
formula for the innovations. Afterwards, we will derive
recursive formulas for the filter, ẑk/k, and for the fixed-
point smoother, ẑk/L, L > k.

3. IN N O V ATIO N P RO C E S S

W hen, for each i = 1, . . . , m, the Bernoulli variables
{γi

k; k ≥ 1} modeling the uncertainty at the i-th sensor
are independent, all the information prior to time k which
is required to estimate yi

k is provided by the one-stage
predictor ẑk/k−1 (see N akamori et al. [2003] and N akamori
et al. [2004 ]). H owever, for the problem at hand, the
correlation between γi

k−1
and γi

k, which must be considered
for such estimation, is not contained in ẑk/k−1. Therefore,
to obtain the current innovation νk, it is necessary to find
the new expression for the one-stage predictors of yi

k, or
equivalently for the one-stage predictor (3).

Taking into account the model hypotheses,

E[YkνT
i ] = D

p
kHkE[zkνT

i ], i ≤ k − 2

and

E[YkνT
k−1] = E[Cγ

k C
γT
k−1

] ◦ (HkAkBT
k−1H

T
k−1)

−D
p
kHkE[zkŶ T

k−1/k−2], k ≥ 2,

where C
γ
k = Co l(γ1

k, . . . , γm
k ) and ◦ denotes the H adamard

product ([A ◦ B]ij = AijBij). S ubstituting these expres-
sions in (3), we obtain

Ŷk/k−1 = D
p
kHk

k−1∑

i=1

E[zkνT
i ]Π−1

i νi

+E[Cγ
k C

γT
k−1

] ◦ (HkAkBT
k−1H

T
k−1)Π

−1

k−1
νk−1

−D
p
kHkE[zkY T

k−1]Π
−1

k−1
νk−1, k ≥ 2.

S ince E[zkY T
k−1

] = AkBT
k−1

HT
k−1

D
p
k−1

, we have

D
p
kHkE[zkY T

k−1] = (E[Cγ
k ]E[CγT

k−1
]) ◦ (HkAkBT

k−1H
T
k−1)

and from E[Cγ
k C

γT
k−1

] − E[Cγ
k ]E[CγT

k−1
] = K

γ
k,k−1

it is
concluded that

Ŷk/k−1 = D
p
kHkẑk/k−1 + Ξk,k−1Π

−1

k−1
νk−1, k ≥ 2 (5)

where

Ξk,k−1 = K
γ
k,k−1

◦ (HkAkBT
k−1H

T
k−1). (6 )

F rom (5), the innovation is obtained as a linear combina-
tion of the new observation, the predictor of the signal and
the previous innovation; namely

νk = Yk − D
p
kHkẑk/k−1 − Ξk,k−1Π

−1

k−1
νk−1, k ≥ 2;

ν1 = Y1.
(7 )

N ext, a recursive expression is derived for the one-stage
predictor of the signal which, from (4 ), is given by

ẑk/k−1 =

k−1∑

i=1

Sk,iΠ
−1

i νi. (8 )

To calculate Sk,i = E[zkνT
i ], expression (7 ) for νi is

substituted in (8 ), obtaining

Sk,i = E[zkY T
i ]−E[zkẑT

i/i−1]H
T
i D

p
i −E[zkνT

i−1]Π
−1

i−1
ΞT

i,i−1

and then, taking into account the hypotheses on the model
for E

[
zkY T

i

]
and (8 ) for E[zkẑT

i/i−1
], we have that

Sk,i = AkBT
i HT

i D
p
i −

i−1∑

j=1

Sk,jΠ
−1

j ST
i,jH

T
i D

p
i

−Sk,i−1Π
−1

i−1
ΞT

i,i−1, 2 ≤ i ≤ k;

Sk,1 = AkBT
1 HT

1 D
p
1 .

This expression for Sk,i guarantees that

Sk,i = AkJi, i ≤ k (9 )

where J is a function satisfying

Ji = BT
i HT

i D
p
i −

i−1∑

j=1

JjΠ
−1

j ST
i,jH

T
i D

p
i

−Ji−1Π
−1

i−1
ΞT

i,i−1, 2 ≤ i ≤ k;

J1 = BT
1 HT

1 D
p
1 .

(10)

S o, if we denote

Ok =

k∑

i=1

JiΠ
−1

i νi, k ≥ 1; O0 = 0 (11)

it is clear, from (8 ) and (9 ), that the one-stage predictor
of the signal is given by

ẑk/k−1 = AkOk−1 (12)

where, from (11), the vector Ok−1 is obtained from the
recursive relation

Ok = Ok−1 + JkΠ−1

k νk, k ≥ 1; O0 = 0.

N ext, we proceed establishing an expression for Jk. By
putting i = k in (10) and taking into account (9 ), we
obtain

Jk = BT
k HT

k D
p
k −

k−1∑

i=1

JiΠ
−1

i JT
i AT

k HT
k D

p
k

−Jk−1Π
−1

k−1
ΞT

k,k−1.

Then, by denoting

rk = E
[
OkOT

k

]
=

k∑

i=1

JiΠ
−1

i JT
i , k ≥ 1; r0 = 0, (13)

we have

Jk =
[
BT

k − rk−1A
T
k

]
HT

k D
p
k − Jk−1Π

−1

k−1
ΞT

k,k−1

where, from (13), the matrix function r satisfy the follow-
ing recursive relation

rk = rk−1 + JkΠ−1

k JT
k , k ≥ 1; r0 = 0.

F inally, an expression is obtained for the covariance matrix
of the innovation νk,

Πk = E
[
YkY T

k

]
− E

[
Ŷk/k−1Ŷ

T
k/k−1

]
.

F rom expressions (5) and (12) for the predictors Ŷk/k−1

and ẑk/k−1, respectively, the hypotheses on the model
together with (13) lead to
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Πk = Pk ◦ (HkAkBT
k HT

k ) + Rk

−D
p
kHkAkrk−1A

T
k HT

k D
p
k − Ξk,k−1Π

−1

k−1
ΞT

k,k−1

−D
p
kHkAkE[Ok−1ν

T
k−1]Π

−1

k−1
ΞT

k,k−1

−Ξk,k−1Π
−1

k−1
E[νk−1O

T
k−1]A

T
k HT

k D
p
k, k ≥ 2,

where

Pk =




p1
k · · · p1

kpm
k

...
. . .

...
pm

k p1
k · · · pm

k


 . (14 )

The expression of Πk is then obtained by substituting
E[Ok−1ν

T
k−1

] = Jk−1, which follows from the recursive
relation for Ok−1, taking into account that the vector Ok−2

is orthogonal to νk−1.

All these results are summarized in the following theorem.

Theorem 1. The innovation process associated with the
observations given in (2) satisfies

νk = Yk − D
p
kHkAkOk−1 − Ξk,k−1Π

−1

k−1
νk−1, k ≥ 2;

ν1 = Y1

(15)
where Ξk,k−1 is given in (6 ), and the vectors Ok are
recursively calculated from

Ok = Ok−1 + JkΠ−1

k νk, k ≥ 1; O0 = 0 (16 )

with

Jk =
[
BT

k − rk−1A
T
k

]
HT

k D
p
k − Jk−1Π

−1

k−1
ΞT

k,k−1, k ≥ 2;

J1 = BT
1 HT

1 D
p
1

(17 )
and

Πk = Pk ◦ (HkAkBT
k HT

k ) + Rk

−D
p
kHkAkrk−1A

T
k HT

k D
p
k − Ξk,k−1Π

−1

k−1
ΞT

k,k−1

−D
p
kHkAkJk−1Π

−1

k−1
ΞT

k,k−1

−Ξk,k−1Π
−1

k−1
JT

k−1A
T
k HT

k D
p
k, k ≥ 2;

Π1 = P1 ◦ (H1A1B
T
1 HT

1 ) + R1,

(18 )
where Pk is given in (14 ) and rk verifies

rk = rk−1 + JkΠ−1

k JT
k , k ≥ 1; r0 = 0. (19 )

4 . F IX E D -P O IN T S M O O TH IN G AL G O RITH M

In the following theorem we present the recursive formulas
for the filter ẑk/k and the fixed-point smoother ẑk/L, for
L > k.

Theorem 2. The filtering and fixed-point smoothing esti-
mates of the signal zk verify

ẑk/L = ẑk/L−1 + Sk,LΠ−1

L νL, L > k;
ẑk/k = AkOk

(20)

where the innovation νL and the vector Ok are both given
in Theorem 1.

The matrices Sk,L are calculated from

Sk,L=[Bk−Ek,L−1] A
T
LHT

L D
p
L−Sk,L−1Π

−1

L−1
ΞT

L,L−1, L> k;
Sk,k = AkJk

(21)
where Ek,L satisfy

Ek,L = Ek,L−1 + Sk,LΠ−1

L JT
L , L > k;

Ek,k = Akrk.
(22)

Proof. The recursive relation for the fixed-point smoother,
ẑk/L, L > k, is immediate from the general expression
of the linear estimators (4 ). This expression for L = k,
together with (9 ) and (11), provides also the formula for
the filter, which constitutes the initial condition for the
smoothing algorithm. Then, we only need to prove (21)
for Sk,L = E[zkνT

L ] and (22) for Ek,L.

U sing (15) for νL, and since E[zkY T
L ] = BkAT

LHT
L D

p
L, we

obtain

Sk,L =
[
Bk − E[zkOT

L−1]
]
AT

LHT
L D

p
L

−E[zkνT
L−1]Π

−1

L−1
ΞT

L,L−1.

This expression leads to (21), just by denoting Ek,L =
E[zkOT

L ]. F rom (9 ), the initial condition in (21) is imme-
diate.

F inally, the recursive relation (22) is obtained from (16 ).
Its initial condition is derived taking into account that,
from the orthogonality, E[zkOT

k ] = E[ẑk/kOT
k ], and using

the expression of the filter and (13). ¤

The performance of the filtering and fixed-point smoothing
estimates can be measured by the estimation errors zk −
ẑk/L, L ≥ k and, more specifically, by the covariance
matrices of these errors,

Σk/L = E
[
(zk − ẑk/L)(zk − ẑk/L)T

]
.

N ext, a recursive formula to obtain Σk/L is derived from
the filtering and fixed-point smoothing algorithm proposed
in Theorem 2.

S ince the error zk − ẑk/L is orthogonal to the estimator
ẑk/L, it is easy to verify that

Σk/L = E[zkzT
k ] − E

[
ẑk/LẑT

k/L

]

and, taking into account that νL and ẑk,L−1 are orthogo-
nal, equation (20) for ẑk/L leads to

Σk/L = Σk/L−1 − Sk,LΠ−1

L ST
k,L, L > k. (23)

The initial condition for this equation is immediately
derived from the filter expression,

Σk/k = Ak

[
BT

k − rkAT
k

]
. (24 )

5. E X AM P L E : S C AL AR S IG N AL E S TIM ATIO N

This section shows a numerical simulation example to
illustrate the application of the recursive algorithm pro-
posed in the current paper. To show the effectiveness
of the proposed estimators, a program in M ATL AB has
been run, simulating at each iteration the signal and the
observed values and providing the filtering and fixed-point
smoothing estimates, as well as the corresponding error
covariance matrices.

C onsider a zero-mean scalar signal {zk; k ≥ 1} with auto-
covariance function given by

E[zkzT
s ] = 1.0256 4 1 × 0.9 5k−s, s ≤ k,

which is factorizable according to model hypothesis taking

Ak = 1.0256 4 1 × 0.9 5k, Bk = 0.9 5−k.
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F or the simulation, the signal is supposed to be generated
by the following first-order autoregressive model

zk+ 1 = 0.9 5zk + wk

where {wk; k ≥ 1} is a zero-mean white G aussian noise
with V ar [wk] = 0.1, for all k.

C onsider two sensors whose uncertain measurements,

ỹi
k = γi

kzk + vi
k, i = 1, 2

are perturbed by independent additive zero-mean white
G aussian noises,

{
vi

k; k ≥ 1
}
, with constant variances for

all k, V ar
[
v1

k

]
= 0.5 and V ar

[
v2

k

]
= 0.9 .

N ow, in accordance with our theoretical study, it is as-
sumed that, at any time instant k ≥ 1, the uncertainty
of each sensor at time k is correlated only with the uncer-
tainty at time k−1. To model this uncertainty we can con-
sider, for example, two independent sequences {θi

k; k ≥ 1},
i = 1, 2, of independent Bernoulli random variables with
constant probabilities, P

[
θi

k = 1
]

= θi, ∀k ≥ 1, and define

γi
k = θi

k+ 1(1 − θi
k), k ≥ 1.

S o, the variables γi
k are also Bernoulli random variables

and, since θi
k and θi

s are independent, γi
k and γi

s are also
independent for |k − s| ≥ 2. The common mean of these
variables is pi = θi(1 − θi) and its covariance function is
given by

E[(γi
k − pi)(γi

s − pi)] =

{
0, |k − s| ≥ 2
−(pi)2, |k − s| = 1.

S ince the mean and covariance functions of the variables
γi

k are the same if the value 1− θi is considered instead of
θi, only the case θi ≤ 0.5 is examined here. N ext, we show
and compare the results obtained, using different values of
the parameters θi.

F irst, to compare the effectiveness of the proposed filtering
and fixed-point smoothing estimators, one hundred itera-
tions of the respective algorithms have been performed
considering different values of θ1 and θ2, which lead to
different values of the false alarm probabilities 1−pi = 1−
θi(1 − θi), i = 1, 2; on the one hand, we consider θ1 =
0.1, θ2 = 0.3 and, on the other, θ1 = 0.3, θ2 = 0.5. Also,
for these values, the error variances of the filtering and
fixed-point smoothing estimators have been calculated.

F ig. 1 displays the filtering error variances, Σk/k, and
the fixed-point smoothing error variances, Σk/k+ 2 and
Σk/k+ 10. This figure shows, on the one hand, that the
error variances corresponding to the fixed-point smoothers
are less than the filtering ones and, on the other, that
as the values of θ1 and θ2 increase (and, hence the false
alarm probabilities decrease in both sensors) the error
variances are smaller and consequently, the performance of
the estimators is better. F rom this figure, it is also deduced
that the accuracy of the smoother at each fixed-point k is
better as the number of available observations increases.

N ext, we study the filtering error variances, Σk/k, and
the fixed-point smoothing error variances Σk/k+ 10 for a
constant value θ1 = 0.5 and θ2 varying from 0.1 to 0.5; the
results are given in F ig. 2. F rom this figure it is gathered
that, when the false alarm probability of one of the
sensors is fixed (θ1 fixed) and the false alarm probability
of the other increases (θ2 decreases), the error variances
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become greater and, consequently, the performance of the
estimators is worse.
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F inally, we study the filtering error variances, Σk/k, when
both θ1 and θ2 are varied from 0.1 to 0.5. It must be
noted that such error variances stabilize around a constant
value; for this reason, F ig. 3 displays the filtering error
variances Σ100/100 versus θ1 (for constant values of θ2)
and F ig. 4 shows these variances versus θ2 (for constant
values of θ1). F rom these figures it is gathered again that,
as the false alarm probability of both sensors increases, the
filtering error variances become greater and, consequently,
the performance of the estimators is worse.
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6 . C O N C L U S IO N

In this paper, a least-squares linear filtering and fixed-
point smoothing algorithm is proposed to estimate signals
from correlated uncertain observations coming from multi-
ple sensors with different uncertainty characteristics. This
is a realistic assumption in situations concerning sensor
data that are transmitted over communication networks
where, generally, multiple sensors with different properties
are involved.

The uncertainty in each sensor is modeled by a sequence of
Bernoulli random variables which are correlated at consec-
utive time instants. A real application of such observation
model arises for example in signal transmission problems
where the sensors may fail and, consequently, there is
no signal to transmit; however, at the transmitting end,
this failure is immediately detected and the old sensor is

replaced, so the signal cannot be missing in two successive
observations.

U sing an innovation approach, the estimation algorithms
are derived without requiring the knowledge of the signal
state-space model, but only the covariance functions of the
processes involved in the observation equation, as well as
the probability and correlation of the Bernoulli variables
modeling the uncertainty in each sensor. To measure the
performance of the estimators, the filtering and smoothing
error covariance matrices are also provided.

To illustrate the theoretical results established in this
paper, a simulation example is presented, in which the
proposed algorithm is applied to estimate a signal from
correlated uncertain observations coming from two sensors
with different uncertainty characteristics.

A natural extension of the observation model studied
in this paper is to consider that the uncertainty in the
observation at time k depends on the uncertainty at times
k − 1, . . . , k − r, where r is an arbitrary positive number,
but it is independent of the uncertainties at times previous
to k − r; this is modeled by assuming that the Bernoulli
random variables γi

k and γi
s are correlated when |k−s| ≤ r

and independent when |k − s| > r.
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