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Abstract: Recursive parameter estimation in linear regression models by means of the
Stenlund-Gustafsson algorithm is considered. The manifold of stationary solutions to the
parameter update equation is parameterized in terms of excitation properties. It is shown
that the parameter estimation error vector does not diverge under lack of excitation, therefore
achieving the purpose of anti-windup. Furthermore, an elementwise form of the parameter
vector estimate is suggested revealing the effect of individual matrix entries in the Riccati
equation on the parameter estimation updates. Simulations are performed to illustrate the loss
of convergence rate in the estimates versus the decrease of computational power needed for two
specific approximations of the Riccati equation in the elementwise form.
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1. INTRODUCTION

The task of a recursive parameter estimation algorithm is
to track dynamical properties of signals and systems. A
number of methods have been suggested in the past and
the most common ones are the recursive least squares with
forgetting factor (RLS) and normalized least mean squares
(N-LMS). These are shown in Ljung and Gunnarsson
[1990] to be ad hoc variants of the optimal Kalman filter
algorithm.

A significant complication in the practical use of the
Kalman filter in parameter estimation is its sensitivity
to the system input excitation. If the input does not
provide sufficient information for parameter identification,
a phenomenon called covariance windup occurs. Ad hoc
solutions to this issue have been proposed e.g. in Bittanti
et al. [1990], Hägglund [1983]. An interesting specialization
of the Riccati equation with anti-windup properties, in
the sequel referred to as the Stenlund-Gustafsson (SG)
algorithm, had been suggested in Stenlund and Gustafsson
[2002]. Later, a variation of this idea was presented in Cao
and Schwartz [2004].

The special form of the Riccati equation in the SG-
algorithm has made it possible to show its non-divergence
under lack of excitation in Medvedev [2004], completely
parameterize its stationary behaviour in Evestedt and
Medvedev [2006a] and also enabled elementwise decou-
pling and convergence analysis in Medvedev and Evestedt
[2008]. However, the properties of the parameter estima-
tion equation of the SG-algorithm have not been addressed
so far. Now, the fact that both the Riccati equation and the
parameter estimate of the SG algorithm are governed by
a certain matrix operator (elementary matrix transforma-
tion), facilitates the analysis since some of the results from
the Riccati equation analysis carry over to the parameter
estimation equation.

The advantageous anti-windup properties of the SG-
algorithm make it a good candidate for engineering ap-
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plications such as active vibration control Olsson [2005],
acoustic echo cancellation Evestedt et al. [2005] and
change detection Evestedt and Medvedev [2006b].

In this paper, the close relationship between the recursive
parameter estimation and the Riccati equation of the
SG-algorithm is exploited to formulate new results con-
cerning stationary solutions, convergence properties and
elementwise decoupling of the parameter estimate. The
elementwise decoupling property described in Medvedev
and Evestedt [2008] is utilized to lower the computational
power demands of the SG-algorithm for the case of peri-
odic regressor and is illustrated by simulation.

2. PRELIMINARIES

The focus of this paper is on linear regression models of
the following type

y(t) = ϕT (t)θ + e(t) (1)

where y(t) is the scalar output measured at discrete time
instances t = [0,∞), ϕ ∈ Rn is the regressor vector, θ ∈ Rn

is the parameter vector to be estimated and the scalar e
is the disturbance.

If e(t) is white and the parameter vector is subject to the
random walk model driven by a zero-mean white sequence
w(t)

θ(t) = θ(t − 1) + w(t)

then the optimal, in the sense of minimum of the a
posteriori parameter error covariance matrix, estimate is
yielded by

θ̂(t) = θ̂(t − 1) + K(t)
(

y(t) − ϕT (t)θ̂(t − 1)
)

=
(

I − K(t)ϕT (t)
)

θ̂(t − 1) + K(t)y(t) (2)

with the Kalman gain

K(t) =
P (t − 1)ϕ(t)

r(t) + ϕT (t)P (t − 1)ϕ(t)
(3)

and P (t), t = [1,∞), the solution to the Riccati equation
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P (t)=P (t − 1)−
P (t − 1)ϕ(t)ϕT (t)P (t − 1)

r(t) + ϕT (t)P (t − 1)ϕ(t)
+Q(t) (4)

for some P (0) = PT (0), P (0) ≥ 0 describing the covari-

ance of the initial guess of θ̂(t), t = 0. Optimality of
the estimate is guaranteed only when Q is the covariance
matrix of w and r(t) = var e(t), Ljung and Gunnarsson
[1990].

Introducing the matrix-valued matrix function

At(X) = I + r−1(t)Xϕ(t)ϕT (t)

(2) can be rewritten as

θ̂(t) = A−1
t (P (t − 1))θ̂(t − 1) + K(t)y(t) (5)

Apparently, the geometrical properties of the function
At(·) are of fundamental importance for the dynamics of
the recursive identification algorithm.

The regressor vector sequence is called persistently excit-
ing Söderström and Stoica [1989], if there exists a c ∈ R+

and integer m > 0 such that for all t

cI ≤
t+m
∑

k=t

ϕ(k)ϕT (k) (6)

This condition is important for the dynamic behavior of
(4) as when it is not satisfied, some eigenvalues of P (·)
increase linearly. This is usually referred to as covariance
windup.

2.1 The SG-algorithm

In the approach taken in Stenlund and Gustafsson [2002],
a special choice of Q(t) is suggested to deal with the
windup problem and to control the convergence point of
the solution to (4)

Q(t) =
Pdϕ(t)ϕT (t)Pd

r(t) + ϕT (t)Pdϕ(t)

where Pd ∈ Rn×n, Pd > 0.

The difference E(t) = P (t)−Pd is shown, in Stenlund and
Gustafsson [2002] for non-singular P (t) and in Evestedt
and Medvedev [2006a] for a general case, to obey the
recursion

E(t + 1) = A−1
t (P (t))E(t)A−1

t (Pd) (7)

or, in a vectorized form

vec E(t + 1) = M(Pd, P (t))vec E(t) (8)

M(Pd, P (t)) = A−1
t (P (t − 1)) ⊗ A−1

t (Pd) (9)

where ⊗ denotes Kronecker product. Thus the matrix
equation in the SG-algorithm can be rewritten as a linear
discrete time-varying system which form facilitates its
analysis. In Medvedev [2004], this structure is utilized
to show non-divergence of the algorithm and in Evestedt
and Medvedev [2006a] to examine its stationary properties
under lack of excitation.

The fact that the matrix function At(X) appears both
in the Riccati equation of the SG-algorithm and in the
parameter estimate is striking. It was a key to the analysis
of the Riccati equation and will in the sequel also be proved
to facilitate the analysis of the parameter update equation.

3. STATIONARY POINTS

Using regression model (1), estimator (2) can be written
as

θ̂(t) = θ̂(t − 1) + K(t)(e(t) + ϕT (t)(θ − θ̂(t − 1))) (10)

Subtracting θ from both sides of the equation and defining

θ̃(t) , θ̂(t) − θ

yields

θ̃(t) = θ̃(t − 1) + K(t)(e(t) − ϕT (t)θ̃(t − 1))

= A−1
t (P (t − 1))θ̃(t − 1)) + K(t)e(t) (11)

In order to separate the direction of excitation at each par-
ticular time instant from the excitation intensity, introduce
a re-parametrization of the matrix function At(X)

At(X) = I + ρXU(t)

where ρ(t) = r−1(t)ϕ(t)T ϕ(t) and

U(t) =
ϕ(t)ϕT (t)

ϕT (t)ϕ(t)

The matrix U(t) is a Hermitian projection with rank U(t) =
1. Define the normalized eigenvectors of U(t) as ξi(t), i =
1, . . . , n, where ξ1(t) corresponds to the unit eigenvalue of
U(t) and ξ2(t), . . . , ξn(t) correspond to the zero eigenvalues
of U(t). Then ρ(t) describes the energy in the regressor
vector at time t and ξ1(t) characterizes the direction.

Excitation is called sufficient at time t when the following
rank condition is satisfied

rank [ξ1(t + n − 1) . . . ξ1(t)] = n (12)

which is a stricter condition than persistent excitation
since it demands that each sequence of n consequent
regressor vectors is linearly independent.

Now, assuming e(t) = 0, consider a stationary point of (10)

i.e. θ̂(t) = θ̂(t − 1) = θ̂∗ = const. The proposition below
characterizes the space of all possible stationary solutions.

Proposition 1. For e(t) = 0, any stationary solution of (10)
can be decomposed as

θ̂∗ = θ +
n
∑

k=2

mkξk (13)

for some scalars m2, . . ., mn.

Proof: Omitted.

Notice that the result above is valid even when condition
(6) for persistent excitation is not satisfied. The actual
stationary solution is dependent on the current excitation
properties of the regressor vector. For the case of persistent

excitation it follows that θ̂∗ = θ.

4. DYNAMICS OF THE PARAMETER ESTIMATE

The similarities between (5) and (7) suggest the use of
the Lyapunov transformation, earlier utilized in Medvedev
[2004] for analysis of the Riccati matrix equation, in order
to bring the parameter estimation equation to a structure
revealing form.

4.1 Lyapunov Transformation

Suppose that at each τ = 1, n+1, 2n+1, . . ., the sequence
{U(t)} is known n steps in advance. If the sequence is
sufficiently exciting on each interval of n consecutive steps,
a matrix T (τ) can be defined as follows

detT (τ) 6= 0 T (τ) = [ξ1(τ) . . . ξ1(τ + n − 1)]

If, however, the sequence is not sufficiently exciting such
that the set {ξ1(t), t = τ. . . . , τ + n − 1} includes only
k < n linearly independent vectors, the matrix T must be
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constructed differently. Let the matrix Tk(τ) consist of the
k linearly independent ξ1(t) on t ∈ [τ, . . . , τ + n − 1] and
µi, i = k + 1, . . . , n form an orthonormal basis of the left
nullspace of Tk. The transformation then has the following
form

T (τ) = [Tk(τ) µk+1 . . . µn]

The matrix T (τ) is a Lyapunov transformation and pre-
serves the stability properties of the original dynamic
system. The columns of the transformation matrix are
denoted as

T (t) = [ξ1
1(t) . . . ξn

1 (t)]

with time variable dropped when appropriate to save
space.

Introduce the state matrix

Z(t) = T T (t)E(t)T (t) (14)

and denote the elements of Z(t) by

Z(t) = {zkl, k = 1, . . . , n; l = 1, . . . , n}

Since E(t) is a symmetric matrix, the transformed matrix
Z(t) is also symmetric.

Let the column position in T (t) of the current direction
of excitation, i.e. ξi

1(t) be denoted by i. Then, for some
X ∈ Rn×n, consider X ≥ 0 the vectors

dT
i (X) =

[

ξ1
1

T
Xξi

1 . . . ξn
1

T
Xξi

1

]

DT
i (X) = [D1

i (X) . . . Dn
i (X)]

which are related to each other as

Di(X) =
ρidi(X)

1 + ρiξ
i
1
T
Xξi

1

It is shown in Medvedev and Evestedt [2008] that if P (t)
is a solution to (7), then

Dk
i (P (t)) =

ρi

(

ξk
1

T
Pdξ

i
1 + zik(t)

)

1 + ρi

(

ξk
1

T
Pdξ

i
1 + zii(t)

) (15)

After the transformation θ̄(t) = T T θ̂(t) of linear time-
varying discrete system (2), the transformed system ma-
trix becomes Ā−1

t (·) = T T A−1
t (·)T−T . The system matrix

is calculated in Medvedev [2004] to be

Ā−1
i (X) = I − [0n×(i−1) Di(X) 0n×(n−i)] (16)

Thus, at each step t = 1, . . . , n, Ā−1
t (X) is the sum of a

unit matrix and a matrix whose nonzero elements are all
in one column. The position i of the column vector Di(X)
in (16) is defined by the current excitation direction ξi

1.

In the sequel, the notion of vector element in the direction
of excitation comes in handy. Consider the vector x(t) =
[x1(t) x2(t) . . . xn(t)]T , recursively updated according to

x(t) = Ā−1
t (·)x(t − 1) = x(t − 1) − xi(t − 1)Di(·) (17)

This means that at each step, the vector x(t) is updated by
the vector Di(·) weighted by the vector element xi(t− 1).
The particular element i is defined by the current direction
of excitation and thus, the scalar xi(t−1) is defined as the
vector element in the direction of excitation.

4.2 Non-divergence of Parameter Estimate

For a parameter estimation algorithm to perform well
when excitation lacks in some directions, it is desirable

that the estimation error does not diverge. The following
propositions show, utilizing the transformation matrix
T (t), that this is the case for the SG-algorithm as well
as for any algorithm of the form (2), (3).

Proposition 2. In the ideal case of perfect measurements,
i.e. e(t) = 0, the parameter estimation error, θ̃ is non-
diverging.

Proof: Omitted.

The next proposition shows that the increase in the param-
eter error vector elements outside the current excitation di-
rection is bounded at each step and the value of the bound
is defined by the element of the parameter estimation error
in the current direction of excitation.

Proposition 3. Define the transformed parameter error
vector v(t) = T T (t)θ̃(t). If e(t) = 0, for each element vk of
v(t), k 6= i, the following inequality applies

|vk(t + 1) − vk(t)| ≤ |vi(t)| (18)

Proof: Omitted.

5. ELEMENTWISE FORM

In (11), it is not clear how the individual elements of the
matrix P in the Riccati equation of the SG-algorithm
affect the parameter updates. This is clarified by the
following proposition.

Introduce a new parameter state vector as θ̄(t) = T T θ̂(t).

Proposition 4. The elementwise parameter update equa-
tion can be written as

θ̄k(t) = θ̄k(t − 1) −
ρi

(

ξk
1

T
Pdξ

i
1 + zik(t − 1)

)

1 + ρi

(

ξk
1

T
Pdξ

i
1 + zii(t − 1)

) (19)

×

(

θ̄i(t − 1) +
1

||ϕ(t)||2
y(t)

)

or, for the special case of k = i

θ̄i(t) =
θ̄i(t − 1)

1 + ρi

(

ξi
1
T
Pdξ

i
1 + zii(t − 1)

)

+
1

||ϕ||2

ρi

(

ξi
1
T
Pdξ

i
1 + zii(t − 1)

)

1 + ρi

(

ξi
1
T
Pdξ

i
1 + zii(t − 1)

)y(t)

Proof: See Appendix A

As can be seen above, for each time instant, the dynamics
of each individual parameter update is only dependent
upon two elements of the transformed Riccati equation, zii

and zik, in the row corresponding to the current direction
of excitation.

5.1 Comparison to the Normalized Least Mean Squares
(N-LMS)

Consider the case when P (0) = Pd in the SG-algorithm.
Then the gain matrix in (2) becomes

K(t) =
Pdϕ(t)

r(t) + ϕT (t)Pdϕ(t)

In Ljung and Gunnarsson [1990], it is shown that the
N-LMS is a special case of the Kalman filter with the
choices Pd = µI, µ ∈ R+ and r(t) = 1. A general
choice of Pd yields a matrix step-size N-LMS algorithm.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10083



0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

t

|v
k
(t)−v

k
(t−1|

|v
i
(t−1)|

k=1 

k=2 

k=3 

Fig. 1. Bound (18) on the change of the estimated param-
eter vector elements.

Robustness conditions of such an algorithm are given in
Rupp and Cezanne [2000]. Ways of choosing the gain
matrix are suggested in Mokino [1993], Gay [1998]. In
(19), it is clear that Pd works as a weighting matrix of the
regressor directions affecting the updates of the individual
parameter estimate vector elements.

6. SIMULATION

In this section, simulations are performed to illustrate the
possibilities of decreasing the computational complexity of
recursive parameter estimation by employing the elemen-
twise calculations. Two types of approximations are made
and analyzed in terms of performance loss compared to
the full SG-algorithm.

6.1 Periodic Excitation

In order to facilitate the implementation of the element-
wise SG-algorithm, the special case of periodic regressor
vectors is considered. This assumption is often made in the
literature, Ramos et al. [2007], Akçay and At [2006] and
is reasonable in some engineering applications. Here the
number of estimated parameters equals the input period
as in Akçay and At [2006]. For the SG-algorithm, it means
that the transformation T is a constant matrix.

6.2 Bound on Parameter Error Increase

The bound stated in Proposition 3 is illustrated in Fig. 1
for a simulation of a system with n = 3. The subplots
correspond to different elements in the parameter error
vector. As can be seen, both the bound and the estimates
converge at what seems to be exponential rate.

6.3 Band Matrix Approximation

According to Medvedev and Evestedt [2008], transformed
Riccati equation (14) can be updated elementwise as

zkl(t + 1) = zkl(t) + ρi

(

ξi
l

T
Pdξ

i
1ξ

k
1

T
Pdξ

i
1

1 + ρiξ
i
1
T
Pdξ

i
1

(20)

−
(ξi

l

T
Pdξ

i
1 + zil(t))(ξ

k
1

T
Pdξ

i
1 + zik(t))

1 + ρiξ
i
1
T
Pdξ

i
1 + zii(t)

)

or, for the special case of l = i

zki(t + 1) =
(1 + ρiξ

i
1
T
Pdξ

i
1)zki(t) − ρiξ

k
1

T
Pdξ

i
1zii(t)

(

1 + ρiξ
i
1
T
Pdξ

i
1

)(

1 + ρi(ξi
1
T
Pdξ

i
1 + zii(t))

)

(21)

which reads for k = l = i as

zii(t + 1) =
zii(t)

(

1 + ρiξ
i
1
T
Pdξ

i
1

)(

1 + ρi(ξi
1
T
Pdξ

i
1 + zii(t))

)

(22)

The equations above allow to choose which elements of the
Riccati equation to employ in the parameter estimation
algorithm and it is tempting to exploit this possibility in
order to decrease its computational complexity.

One obvious approach is to only use a limited number
of super- and subdiagonals in the matrix Z for updating
the parameter estimates. These elements are guaranteed
to be non-diverging since they obey the same equations
as the full SG-algorithm. All other elements in Z are
considered to be zero, i.e. the corresponding elements of
P are assumed to already have converged to the elements
of Pd at these positions, making Z a band matrix.

Zq=



































z11 z12 · · · z1q 0 · · · 0
z21 z22 z23 · · · z2(q+1) 0 · · · 0

z32 z33

. . .
. . .

.

.

.

.

.

.
. . . 0

zq1

.

.

. z(n−q+1)n

0 z(q+1)2 z(n−q+2)n

0
. . .

.

.

.

.

.

.
.
.
.

. . .
. . .

0 0 · · · 0 zn(n−q+1) zn(n−q+2) · · · znn



































(23)

The selected zkl can either be computed online or, if the
regressor sequence is known, in advance. The procedure for
updating the parameter vector between t = τ + 1 . . . τ + n
is the following.
Algorithm 1

(1) Select q as the number of required diagonals.
(2) Let t = τ + 1.

(3) Transform the parameter vector by θ̄(t) = T T θ̂(t).
(4) Update the parameter estimates according to (19).
(5) Update the Riccati equation elements according to

(20) and (23).
(6) Increase t = t + 1.
(7) if t ≤ τ + n goto (3).

(8) Transform the parameter vector by θ̂(τ + n) =
T−T θ̄(τ + n).

This procedure is similar to that of AKFA (Average
Kalman Filter Algorithm) in Wigren [1998], where the
adaptation gains in the Kalman filter are the solution of
an averaged diagonal Riccati equation, breaking the latter
down to a small number of scalar equations. Here it is how-
ever possible to add super- and subdiagonals to improve
the estimation performance. An extensive comparison of
the SG-algorithm to other parameter estimation methods
is given in Evestedt et al. [2005].

A 3-dimensional system was simulated with 3-periodic
input signal u(t). The output signal was constructed
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Fig. 2. Comparison between AKFA and the diagonal SG-
algorithm with q = 1.

with (1), ϕ(t) = [u(t − 1) u(t − 2) u(t − 3)] and white
measurement noise (SNR= 15dB). The matrices Pd and
P (0) in the SG-algorithm were selected randomly and no
tuning other than that described in Wigren [1998] was
performed for the AKFA. In Fig. 2, it can be seen that both
estimation algorithms reach the true parameter vector
values but the diagonal element (q = 1) SG-algorithm
converges faster at the cost of larger estimate variance.
In general, AKFA seems to be more sensitive to the
actual excitation directions used in the construction of the
regressor vectors. The performance of the SG-algorithm is
on the other hand highly dependent on the choice of Pd in
the same way as the Kalman filter algorithm is dependent
on r and Q.

The main difference between employing the full SG-
algorithm Riccati equation and the super- subdiagonal
ones lies in the transient period. When P has converged
to Pd, the transformed matrix Z becomes zero which gives
the same parameter estimation updates in both cases. In
Fig. 3 illustrates this for the main diagonal SG-algorithm.
By increasing the number of diagonals used, the deviation
from the full SG-algorithm is decreased. For a higher di-
mensional system, a small difference persists over a longer
period of time.

6.4 Small Matrix Elements Approximation

Yet another approximation of the SG-algorithm is pro-
vided in Medvedev and Evestedt [2008]. There it is argued
that (22) implies fast convergence of the diagonal elements
of Z in the direction of excitation. Assuming small zii is
thus justified and an approximation of (22) is given as

zii(t + 1) =
zii(t)

(

1 + ρiξ
i
1
T
Pdξ

i
1

)2

and for the off-diagonal elements of Z in the direction of
excitation

zki(t + 1) =
zki(t)

1 + ρiξ
i
1
T
Pdξ

i
1

This means that also zki, k = 1, . . ., n, k 6= i are small.
Then (21) becomes

zkl(t + 1) = zkl(t), k 6= i, l 6= i

The convergence of Z to zero is guaranteed by the nature
of the algorithm.
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Fig. 3. Comparison between the parameter estimates using
the full SG-algorithm and only the main diagonal, q =
1. Asterisks give the true values of the parameters.

Combining the above approximations into matrix form
yields

Z(t + 1) = (24)










































z11(t) z12(t) · · ·
z1i(t)

1 + ρiξ
i
1
T
Pdξ

i
1

· · · z1n(t)

z21(t) z22(t) z23(t)
...

z32(t) z33(t)
...

...
. . .

zii(t)
(

1 + ρiξ
i
1
T
Pdξ

i
1

)2

...

zn1(t) · · ·
zni(t)

1 + ρiξ
i
1
T
Pdξ

i
1

· · · znn(t)











































The adaptation gains can be calculated beforehand if ρi

and Pd are known. The algorithm becomes

Algorithm 2

(1) Let t = τ + 1.

(2) Transform the parameter vector by θ̄(t) = T T θ̂(t).
(3) Update the parameter estimates according to (19).
(4) Update the Riccati equation elements according to

(20) and (24).
(5) Increase t = t + 1.
(6) if t ≤ τ + n goto (2).

(7) Transform the parameter vector by θ̂(τ + n) =
T−T θ̄(τ + n).

The transient employing this procedure is shown in Fig. 4
for the 3-dimensional system described above.

7. CONCLUSIONS

The parameter estimation by means of the SG-algorithm is
studied for sufficiently and insufficiently exciting regressor
vector sequences. In absence of measurement disturbance,
the stationary solution to the parameter update equation
is shown to belong to a manifold defined by the properties
of the regressor vector sequence. The parameter error vec-
tor is proved to be non-divergent under lack of excitation.
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Fig. 4. Comparison between the parameter estimates using
the full SG-algorithm and the small matrix elements
approximation. Asterisks give the true values of the
parameters.

An elementwise representation of the parameter updates
and the related Riccati equation is utilized to decrease the
computational load for the case of periodic regressor at
the price of a small decrease in the identification algorithm
performance.
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Appendix A. PROOF OF PROPOSITION 4

After the transformation of (5) by θ̄(t) = T T (t)θ̂(t) the
system matrix becomes Ā−1

t (·). Furthermore, the input
matrix is transformed as

T T K(t) =







ξ1
1

T

...
ξn
1

T







P (t − 1)ϕ(t)

r + ρiξ
i
1
T
P (t − 1)ξi

1

=
1

||ϕ(t)||2
Di(P (t − 1))

Thus the transformed system equations can be written in
terms of individual elements as

θ̄k(t)= θ̄k(t − 1)−Dk
i (P (t − 1))

(

θ̄i(t − 1)+
1

||ϕ(t)||2
y(t)

)

or, for the special case of k = i

θ̄i(t) = (1 − Di
i(P (t − 1))θ̄i(t − 1) + Di

i(P (t − 1))

×
1

||ϕ(t)||2
y(t)

The above equation together with (15) yields the desired
result.
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