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Abstract: This paper presents a new systematic approach to find a global solution to economic dispatch
(ED) with multiple fuel units using a function merger (FM). Currently, no systematic approach has been

developed to find a global solution to economic dispatch with multiple fuel units.

Various heuristic

methods have been proposed, however it is almost impossible to guarantee a global solution by those
methods yet. The proposed method uses the FM and A-P functions. A FM merges several fuel cost
functions into one that satisfies the optimal conditions of an ED. The FM procedures are described in
detail with illustrative examples. The global optimality of the proposed method is checked with the ACM
(All-Combination Method). The proposed method is tested with a 10-generator system. The results show
that the global optimality is achievable by the proposed method.

1. INTRODUCTION

Economic dispatch (ED) is defined as finding an optimal
distribution of system load to the generators, in order to
minimize the total generation cost. In recent decades, a
considerable number of studies have been conducted on ED
with a non-smooth fuel cost function for the systems
including multiple fuel units. Generally, ED problems are
solved by the Lagrangean multiplier method (Wood and
Wollenberg, 1996). However, this method cannot be applied
to solve an ED problem that includes multiple fuel units due
to its nonlinearity.

An ED containing multiple fuel units was introduced by C. E.
Lin and G. L. Viviani in 1984, and further research has been
published with the application of various approaches. Most of
the researches are based on heuristic optimization techniques
with distinct limitation in guaranteeing the global optimality
(Park et al., 2005). A mixed integer programming (Tao Li
and M. Shahidehpour, 2005) could be one of the ways to
obtain globally optimal solution but it may cause problems of

This paper focuses on the only essential principle to attain
optimality in the ED with multiple fuel units. A further
direction of this study will be to apply the proposed algorithm
to practical large systems including various constraints such
as ramp rate, flow limits, etc.

2. FORMULATION OF ED PROBLEM WITH MULTIPLE
FUEL UNITS

2.1 Formulation of the ED Problem

The ED can be formulated as an optimization as follows:

Min Y F(P) (1)
i=1
g

s.t. Zl)l =PD+PLusS (2)

i=l1

the “curse of dimension” if the number of generators Emin SP<P™  fori=l,...n, (3)
increases considerably.
. . . where
This paper proposes a new algorithm to find a global solution ) .
to ED with multiple fuel units using the function merger E fuel cost function of generator ;
(FM) method. FM merges several fuel cost functions intq one P power output of generator i
that satisfies the optimality. In order to merge the functions,
the A-P function method is applied, which inverts the P and A Py total system demand
axes of the incremental fuel cost function (Moon ef al., 2000,
Madrigal and Quintana, 2000 and Min et al., 2006). Pross  total system loss
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P™  minimum output of generator i
P™  maximum output of generator i
ng number of generators

For simplicity, Py, is often omitted with the assumption of P
accounting for the system loss. The fuel cost function may
have a high degree of nonlinearity, or may be impossible to
express as a closed function. However, the cost function is
usually approximated as a second order polynomial for
practical field applications.

F(R)=a,+bP +c,P’ (4)

where a;, b;, and ¢; are the cost coefficients of the generator i.

2.2 ED with Multiple Fuel Units

In the case of an ED with multiple fuel units, the ED problem
can be formulated by using piecewise quadratic functions (Lin
and Viviani, 1984). Piecewise quadratic and incremental cost
functions are illustrated in Fig. 1 (Park ef al., 2005). In this
case, the fuel cost has the following form.

2 . min
ay +by b +cy b if By <
2 . min
E(p)= ai2+bi2}.)i+ci2l:; if By <

a, +b, P +c, P> if P""<Pp<p™™

m m=i m=1

where ay;, by, and c;; are the cost coefficients of fuel j for unit i
and F;™"is equal to B}’

-1,/
A
$| /MW
Incremental cost /
Fuel 2 y
L PEUPE™)  PAM(PRY) PR PIMW]

Fig. 1. Piecewise quadratic and incremental fuel cost
functions

3. OVERVIEW OF ED ALGORITHM BY THE A-P
FUNCTION METHOD

The ED algorithm that uses the A-P function method is found
in some references (Moon ef al., 2000, Madrigal and Quintana,
2000 and Min et al., 2006). The main feature of this method
is to use the inverse of the incremental fuel cost functions
based on the duality theory, as illustrated in Fig. 2. The
inverse functions can be easily obtained because the
incremental fuel cost functions are linear.

This method is developed on the basis that each output power
of the generators can be determined by the incremental cost /.

Once the incremental cost A4 is determined, then the total
generating power, Pg,, can be directly calculated and can be
denoted as a function of 4 by

Bou (/1) = z Foi (’1) (6)
i=1

Here, it is noted that Pg,(4) is nondecreasing. Given the total
demand of the system, the optimal incremental cost 4 can be
obtained by solving

PGttl(ﬂ):ZPGi(ﬂ):PD (7
i=1

where Pp is the total demand including the estimated system
loss.

The nondecreasing property of Pg,, allows utilization of the
bisection or linear interpolation methods in order to obtain the
optimal incremental cost A”. It should be noted that the Kuhn-
Tucker conditions need not be checked, since Pg;i(A) provides
all the information of the limitation of the generation outputs
and the must-run conditions.

F, Gi &

ﬂ'r’ A Pm[dx

max Gi
ﬂ'i

min |I T PG’. (ﬂ/)
Ai Inverting
‘ Pg;m’””ﬁ:
PGl‘Tilin Pér;ax P=Gi lr;]in ﬂl}lax ;Li

Fig. 2. Inverting process of the incremental cost function
using duality theory

Fig. 3 shows an illustrative example with a 3-generator system.
Gen. 1 and Gen. 3 are operated in the must-run condition
where each generator must produce its minimum output,
while Gen. 2 is stopped because its economical efficiency is
below a certain marginal cost.

A
PIMW]

Fou(A)

Gen 3

Gen 2

A1/ MWh]

Fig. 3. The summation of three generators’ output power
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The A-P function method is composed of the following 4
steps:

Step 1) Establish the A-P functions by inverting the P-4
functions for all of the generators.

Step 2) Construct the total generation function Pg,(1) by
summing up the A-P functions for all the generators.

Step 3) Calculate the optimal A" by solving (7) and by using
the bisection method and/or linear interpolation.

Step 4) Calculate the optimal dispatch for each generator with
Pgi(2).

4. GLOBAL SOLUTION TO ED PROBLEM WITH
MULTIPLE FUEL UNITS

This study proposes a new systematic approach to finding a
global solution to an ED with multiple fuel units using a
function merger (FM) technique. A FM is defined as merging
several fuel cost functions into one fuel cost function that
satisfies all of the optimal conditions in an ED.

4.1 The FM with no consideration of generation limits

On the basis of the A-P function method, the FM merges the
inverse of the incremental cost functions for each generator
into a fuel cost function. Consider two generators with the
fuel cost functions as follows:

R(R)=1aR’ +bP+c (8)
Fy(P)=1a,P} +b,P +c, )

As indicated in Fig. 4(a), the merged A-P function can be
obtained by simply adding both functions. However, an
explicit merged fuel cost function for the FM process also
needs to be obtained in order to guarantee optimality of the
solution.

PA FA
Py (A
» erg (A) Frerg (P)
o Py(4)
: Fy(P)
” R(2)
i F(R)
. >/ >
A P

(a) A-P merging (b) Merged cost function generation

Fig. 4. Merged A-P and cost function

Here, the goal is to find a merged fuel cost function for the
two generators that satisfy optimality. The optimality
condition requires

(10)

B +P =P (11)

where P is the required generation for both generators.

By solving (10) and (11), the following is obtained:

*
B =mP+n (12)
*
a a
where  mj=—2—, my =—-o!
al +a2 Cll +a2
b, —b b —b,
nm = > Ny =

By using these results, the following merged fuel cost can
easily be obtained for the two generators.

Fruerg(P) = Fi(P) + Fy () (14)
Eq. (14) can be rewritten as
F,oe(P)=F(P)+ Fy (P,
g 1( 1 2( 2 ) (15)

_1 2
—EamP +b,P+c,

2 2
where  a,, =amj +a,m;

b,, = aym ny + aymyn, + bymy + bym,

_1 2 1 2
Cm —Ealnl +Ea2n2 +blnl +b2n2 + C + Cy

4.2 The FM process with multiple fuel cost functions

A FM with multiple fuel cost functions is similar to a FM with
nonduplicated A-P curves, which is explained in the previous
section.

Consider two generators with these fuel cost functions:

F(R)=ay R’ +b P+, B" <R <A™ (16)
2 min max
Fy(Py) = anly +by Pty Byt S B S By
apP; +byPy+cyy, PR <Py < PR (17)

with PJ™ = i

Fig. 5(a) shows the 1-P functions of two generators and the
merged cost function. The function merger can easily be
performed with A-P curves for the continuous parts. Here, it
should be noted that the A-P curves do have duplicate regions,
with respect to 4, even though both fuel cost functions do not,
with respect to P.

The duplicity problem of generation in the A region, for

example [A5", A3% ] in Fig. 5(a), can be solved by selecting

the smaller cost. A new breakpoint P,,,, is determined by the
point that both fuel costs are same, where the merged cost
functions F, and F; can be easily found by (15). Fig. 5(b)
shows that the merged fuel cost curve is represented by solid
lines and the eliminated parts by dotted lines. An intersection
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point of the fuel curves becomes a new minimum and/or a
maximum P for the corresponding unit.

PA Pa(A)
P, By (2)
P
PaZ
i Pai) - Pa(2)
a2 22
pmi /
22
Fa(d)
Py (2)
pi
e
—
poin ﬂ
11
imm ﬂmm imm imax lmaxlmaxj
21 11 22 21 22 M1

(a) Merged curve of A-P functions of two generators

FA
Prow = Pitnow = Piznew .
----Eliminated F
— Merged ‘,"/ b2
/ Fy
Fp
Fal
Pnew
Pnlnn Pnlnn Pmm P ax Pmameax ;
al a2 b1 a2 b1 b2 P

(b) merged fuel cost function

Fig. 5. Function merger of multiple fuel cost functions

There is no restriction in the number of functions for the
merging procedure. However, only the two-functions merging
technique with the one-by-one merging procedure is
explained here and it will be applied to the entire proposed
algorithm.

4.3 llustrative Examples

Consider the example of a 3-generator system. The fuel cost
functions of the generators are as follows:

F(R)=13.73-0.2871P, +0.002415P?, 100 < B, <230 (18)

39.24-0.4116P, +0.001524P7, 180< P, <306

(19)
132.71-0.8245P, +0.001875P2, 306< P, <390

Fz(Pz)Z{

22.96-0.07298P, +0.000902P2, 200< P, <364

(20)
22036-0.9746P, +0.00189P7, 364< P, <450

F3(P3)={

The A-P functions are:

B (1)=207.04+59.4, 0.196 <1 <0.824

@n

328.14+135.0, 0.137<4<0.521
k()= (22)
266.74+219.9, 0.323<1<0.638
554.11+40.4, 0.288<1<0.584
P(2) = (23)
264.64+257.8, 0.401<1<0.726
Fig. 6 shows a graph of the A-P functions in (21) to (23).
g
450
B(2)
390
364 P(A)
306
20 /,7 R(A)
= _—
//
100 —

0.137
0.196
0.288
0.323
0.401
0.521
0.584
0.638
0.726
0.824
Sy

Fig. 6. The A-P functions of the three generators
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4532]
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/—
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-
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0.323
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Fig. 7. The procedure of constructing the Py.,(A)

First, P;(1) is merged with P;;(1) and Py (A1) and then, P{.(1)
and P}»(1) are constructed, as illustrated in Fig. 7. The fuel
cost functions of P{,,(1) and Pﬁz(/l) are arranged in Table 1.

Second, Py:,(4) is built by choosing the cheapest parts of the
two curves for all P. The fuel cost functions of Py,,(4) appear
in Table 2. Py(1) is also merged with P.(1) in the same
manner as described above. Pi.,:3(4), Pl’+2+3(/1), and Pyir3(4)
are arranged in Table 1 and 2, respectively.

Finally, in order to calculate the dispatch of each generator,
find the range involving Py and calculate the optimal " in the
P,.5:5(1). Using the fuel combination, if A" is set between A
and A;"" for a specific generator, its generation power is
determined by the A-P function of each generator for 4. If 4
is smaller (larger) than 2;™ (4;"%) then the generator output
becomes P;"" (P;™) of each generator.
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Fig. 8. Construction of Py.,.3(A) in the example

Table 1. Fuel Cost Functions for Power Ranges

Pia(d), Pia(d), Plaa(A), and Paes(l)

It should be noted that if the committed generators are not
changed for another total demand, the procedures of
constructing the merged function tables can be omitted. Once
all of the FM procedures are executed, the dispatch of the
generators can easily be obtained by the FM table previously
constructed.

5. SIMULATION RESULTS

The proposed FM method is applied to the ED problems with
a 10-generator system (Lin and Viviani, 1984). For simplicity,
system losses are not considered. The fuel cost data of the
generators is given in Table 5. During testing the total system
demand is varied from 2400 MW to 2700 MW with 100 MW
increments. The globally optimal solution to the ED with
multiple fuel units is acquired by ACM and FM. Both ACM
and FM were directly coded using real values and were
implemented on a personal computer (Pentium D CPU 3.00
GHz) in Microsoft Visual C++ 6.0. The results of the
proposed algorithms and the ACM are summarized in Table 3.

Table 3. Comparison of ACM and FM

SU| FM ACM FM ACM FM ACM FM ACM
F GEN |F GEN |F GEN [F GEN |F GEN [F GEN |F GEN |F GEN
1 1|1 189.74|1 189.74]2 206.52(2 206.52|2 216.54|1 216.54|2 218.25|2 218.25
2|1 202.34|1 202.34]1 206.46|1 206.46(1 210.91|1 210.91|1 211.66(1 211.66
3|1 253.90[1 253.90|1 265.74|1 265.741 278.54|3 278.54|1 280.72(1 280.72
4|3 233.05|3 233.05|3 235.95|3 235.95(3 239.1|3 239.13 239.63(3 239.63
2 5|1 241.83|1 241.83|1 258.02|1 258.02|1 275.52|1 275.52|1 278.50|1 278.50
6 |3 233.05(3 233.05(3 235.95|3 235.95|3 239.1|3 239.1|3 239.63|3 239.63
7|1 253.27(1 253.27|1 268.86|1 268.86]1 285.72|1 285.72|1 288.58|1 288.58
3 8|3 233.05|3 233.05|3 235.95|3 235.95(3 239.1|3 239.1|3 239.63(3 239.63
9 |1 320.38|1 320.38|1 331.49|1 331.49|1 343.49|1 343.49|3 428.52(3 428.52
101 239.40{1 239.40|1 255.06|1 255.06{1 271.99|1 271.99|1 274.87(1 274.87
TP | 2400 2400 2500 2500 2600 2600 2700 2700
TC | 481.723 | 481.723 | 526.239 | 526.239 | 574.381 | 574.381 | 623.809 | 623.809

Rng| Puin | Puax | Amin | Amax a b c Fuel
Pioti) 1 | 280 |299.31 [0.137/0.196| 104.81 |-0.7164 |0.001524 | 11
2 | 29931 | 473.33 [0.196]0.521| 51.99 |-0.3634 | 0.000934 | 11
Pt 1 | 43231 | 581.53 [0.323]0.638| 129.61 |-0.5896 [ 0.001056 | 12
2 | 58153 | 620 [0.638(0.824| 589.36 |-2.1708 | 0.002415 | 12
1 | 480 |499.31 [0.137]0.196| 353.51 |-1.3260 [ 0.001524 | 111
2 | 499.31 | 548.59 [0.196|0.288 | 206.51 |-0.7372 | 0.000934 | 111
Pl 3 | 54859 | 729.71 0.288[0.454| 63.46 |-0.2157 | 0.000459 | 111
4 | 72971 | 919.94 {0.399(0.584| 118.49 [-0.3111|0.000486 | 121
5 | 919.94 | 945.53 [0.584(0.638| 600.04 |-1.3580 | 0.001056 | 121
6 | 94553 | 984 |0.638|0.824]1815.47 |-3.9289 | 0.002415 | 121
1 | 644 | 66331 [0.137/0.196| 683.53 [-1.8259 |0.001524 | 112
2 | 663.31 | 773.24 [0.196(0.401| 424.10 |-1.0437 [ 0.000934 | 112
3 | 773.24 | 824.08 |0.401[0.465| 239.28 |-0.5656 | 0.000625 | 112
Pons()| 4 | 824.08 833.42 0382 0.401) 600.11| -1.3580| 0.001056 122
5 | 833.22] 1008.15 0.401| 0.638 337.39 -0.7276| 0.000677 122
6 | 1008.15 1049.83| 0.638| 0.726] 726.63| -1.4998 0.001060| 122
7 | 1049.83]  1070] 0.726| 0.824| 2219.78| -4.3443| 0.002415] 122
Table 2. Fuel Cost Functions for Power Ranges
Pr2(2) and Priaia(4)
Rng| Puin Prax | Amin | Amax a b ¢ Fuel
1 | 280 |299.31 [0.137|0.196| 104.81 [-0.7164 |0.001524 | 11
Protl) 2 | 29931 | 453.16 0.196(0.483| 51.99 |-0.3634 |0.000934 | 11
3 | 453.16 | 581.53 |0.367[0.638| 129.61 |-0.5896 | 0.001056 | 12
4 | 58153 | 620 |0.638/0.824| 589.36 |-2.1708 | 0.002415 | 12
1 | 480 | 499.31 [0.1370.196| 353.51 [-1.3260 | 0.001524 | 111
2 | 499.31 | 548.59 [0.196|0.288 | 206.51 |-0.7372 | 0.000934 | 111
3 | 548.59 | 729.71 |0.288(0.454| 63.46 |-0.21570.000459 | 111
Pras(A) | 4 | 729.71 | 881.87 [0.399(0.547| 118.49 |-0.3111 | 0.000486 | 121
5 | 881.87 | 1008.15(0.467[0.638| 337.39 |-0.7276 | 0.000677 | 122
6 |1008.15 | 1049.83 [0.638|0.726| 726.63 |-1.4998 | 0.001060 | 122
7 |1049.83 | 1070 |0.7260.824|2219.78 | -4.3443 | 0.002415 | 122

As shown in Tables 3, the FM provides the globally optimal
solutions that are exactly equal to the results provided by
ACM. Table 5 in Appendix shows the fuel cost functions and
combinations of fuel type for a power range of 1353 MW to
3695 MW, which is the minimum to maximum feasible
generating power in the system, respectively. The global
solutions to the 10-generator system can be obtained by the
fuel cost function involving the total demand in Table 5.

The simulation time is checked, in order to compare ACM
with FM regarding the computational burden. The number of
generators increases from 2 to 10. These results appear in
Table 4.

Table 4. Simulation Time for the Number of Generators

Number ACM M

of Gens. [sec] [sec]
2 0.000722 0.001390
3 0.000819 0.001796
4 0.001019 0.002140
5 0.001671 0.002703
6 0.003859 0.003078
7 0.011421 0.003484
8 0.036710 0.003937
9 0.118282 0.004375
10 0.389060 0.004850
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The middle value between the minimum and maximum
feasible generating output is chosen as the total demand of the
ACM for each case. The periods of constructing fuel cost
functions for whole power ranges are measured as
computation time in the FM. The results show that the
computation time increases exponentially in the ACM, while
linearly in FM, which verifies that the FM demonstrates
predictable computational behaviour.

6. CONCLUSIONS

This paper presents an algorithm to find a global solution to
ED with multiple fuel units. The proposed algorithm uses FM
on the basis of the A-P function method using duality theory.
The global optimality is checked with ACM.

Conventional heuristic approaches cannot provide a global
optimality to the ED problem with multiple fuel units.
Moreover, these approaches have a crucial flaw, which is the
“curse of dimension” for large systems.

The proposed FM method is applied to a sample case of a 10-
generator system. The global solutions obtained by the FM are
compared with the results of the ACM, which provide the
global optimal solutions. By comparing simulation time, the
FM is shown to overcome the problems of the curse of
dimension.
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Appendix

Table 5. Fuel Cost Functions and Combination of Fuel
Type for All Power Ranges in 10-generator System

Pmin

Pmax

}hmin

}hmax

Fmin

Fmax

a

b

c

Fuel
[Combination

1353.00
1361.32
1406.19
1415.43
1473.07
1540.50
1553.41
1616.44
1672.09
1697.25
1715.87
1735.09
1754.01
1772.92
1798.63
1889.87
17]1950.78
18]1962.54
19{2002.55
20[2015.36
21{2054.32
22[2067.85
23[2068.21
24/2106.10,
25[2118.90
26[2170.67
27|2436.35
28]2614.10,
29[2744.62
30]2881.66
31{2918.90,
32/2959.07
33|3077.97
34)3161.48
35/3189.09
36/3290.50,
37|3303.30
38|3318.75
3913351.54,
40[3385.51
41]3462.58
42|3474.40
43|3490.84
44|3513.06
45|3537.47
46|3567.33
4713607.37
483629.59
49]3644.51
50§3657.77

o AN R W N -

e e
SN B W N - D

1361.32
1406.19
1415.43
1473.07
1540.50
1553.41
1616.44
1672.09
1697.25
1715.87
1735.09
1754.01
1772.92
1798.63
1889.87
1950.78
1962.54
2002.55
2015.36
2054.32
2067.85
2068.21
2106.10
2118.90
2170.67
2436.35
2614.10
2744.62
2881.66
2918.90
2959.07
3077.97
3161.48
3189.09
3290.50
3303.30
3318.75
3351.54
3385.51
3462.58
3474.40
3490.84
3513.06
3537.47
3567.33]
3607.37
3629.59
3644.51
3657.77
3695.00

0.038
0.074
0.141
0.147
0.177
0.168
0.177
0.195
0.202
0.208
0.203
0.208
0.202
0.207
0.196
0.271
0.310
0.283
0.310
0.282
0.310
0.318
0.280
0.310
0.318
0.341
0.439
0.479
0.520
0.568
0.506
0.520
0.567
0.594
0.573
0.601
0.597
0.601
0.625
0.577
0.601
0.596
0.601
0.625
0.660
0.586
0.593
0.601
0.625
0.660

0.074
0.141
0.147
0.177
0.200
0.177
0.203
0.219
0.214
0.217
0.215
0.218
0.216
0.224
0.271
0.310
0.316
0.310
0.317
0.310
0.318
0.318
0.310
0.318
0.341
0.442
0.505
0.520
0.579
0.584
0.520
0.579
0.609
0.609
0.601
0.609
0.601
0.625
0.654
0.601
0.612
0.601
0.625
0.660
0.713
0.593
0.601
0.625
0.660
0.808

205.63
206.09
210.92
212.25
221.58
234.26
236.48
248.44
259.97
265.20
269.16
273.18
277.21
281.16
286.70
308.02
325.73
329.42
341.28
345.30
356.83
361.08
361.19
372.38
376.40
393.47
497.54
581.47
646.72
722.03
743.48
764.11
829.50
878.62
895.24
954.78
962.53
971.79
991.89
1013.62
1059.01
1066.18
1076.02
1089.64
1105.33
1125.83
1149.44
1162.70
1171.85
1180.37

206.09
210.92
212.25
221.58
234.26
236.48
248.44
259.97
265.20
269.16
273.18
277.21
281.16
286.70
308.02
325.73
329.42
341.28
345.30
356.83
361.08
361.19
372.38
376.40
393.47
497.54
581.47
646.72
722.03
743.48
764.11
829.50
878.62
895.24
954.78
962.53
971.79
991.89
1013.62]
1059.01

0.002176
0.000747
0.000336
0.000255
0.000171
0.000341
0.000207
0.000218
0.000251
0.000238
0.000294
0.000277
0.000356
0.000331
0.000412
0.000321
0.000249
0.000342
0.000261
0.000367
0.000275
0.000219
0.000395
0.000291
0.000229
0.000189
0.000187
0.000157
0.000212
0.000214
0.000177
0.000248
0.000251
0.000272
0.000139
0.000320
0.000145
0.000355
0.000439
0.000159

1066.18
1076.02
1089.64
1105.33]
1125.83
1149.44
1162.70]
1171.85
1180.37,
1207.69

0.000451
0.000167
0.000524
0.000730
0.000884
0.000083
0.000187
0.000780
0.001344
0.001978

-5.851
-1.960
-0.805
-0.574
-0.329
-0.882
-0.465
-0.511
-0.637
-0.600
-0.806
-0.753
-1.047
-0.967
-1.285
-0.942
-0.660
-1.061
-0.737
-1.196
-0.821
-0.587
-1.352
-0.915
-0.651
-0.480
-0.470
-0.344
-0.643
-0.666
-0.524
-0.948
-0.977
-1.127
-0.313
-1.503
-0.362
-1.757
-2.319
-0.499
-2.519
-0.566
-3.059
-4.504
-5.592
-0.007
-0.754
-5.064
-9.174
-13.812

4138.0
1490.2
678.0
514.3
333.6
784.4
460.6
503.5
623.6
597.4
786.2
746.5
1018.4
954.8
1265.8
941.9
667.3
1092.6
768.4
1266.7
881.7
639.9
1469.8
1009.5
729.4
544.4
535.4
404.5
815.4
862.5
769.9
1396.6
1460.9
1720.4
479.6
2439.0
574.8
2889.1
3830.6
881.8
4379.2
1013.9
5365.7
7903.3
9827.7
91.8
1439.8
9262.2
16750.4
25234.0

1211121121
1211121121
1211121121
1211121121
1211121121
1211121111
1211121111
1311121111
1312121111
1311121111
1312121211
1111121211
1312111211
1111111211
1112111211
1112111211
1112111211
1113111211
1112131211
1112131311
1112131311
1112131311
1113131311
1113131311
1113131311
1113131311
2113131311
2113131331
2113131331
2113132331
2123131331
2123131331
2123132331
2123232331
2123133331
2123133331
2123233331
2123233331
2123233331
2123133332
2123133332
2123233332
2123233332
2123233332
2123233332
2123333332
2123333332
2123333332
2123333332
2123333332
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