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Abstract: This paper presents a new systematic approach to find a global solution to economic dispatch 
(ED) with multiple fuel units using a function merger (FM). Currently, no systematic approach has been 
developed to find a global solution to economic dispatch with multiple fuel units.  Various heuristic 
methods have been proposed, however it is almost impossible to guarantee a global solution by those 
methods yet. The proposed method uses the FM and λ-P functions. A FM merges several fuel cost 
functions into one that satisfies the optimal conditions of an ED. The FM procedures are described in 
detail with illustrative examples. The global optimality of the proposed method is checked with the ACM 
(All-Combination Method). The proposed method is tested with a 10-generator system. The results show 
that the global optimality is achievable by the proposed method. 

 

1. INTRODUCTION 

Economic dispatch (ED) is defined as finding an optimal 
distribution of system load to the generators, in order to 
minimize the total generation cost. In recent decades, a 
considerable number of studies have been conducted on ED 
with a non-smooth fuel cost function for the systems 
including multiple fuel units. Generally, ED problems are 
solved by the Lagrangean multiplier method (Wood and 
Wollenberg, 1996). However, this method cannot be applied 
to solve an ED problem that includes multiple fuel units due 
to its nonlinearity. 

An ED containing multiple fuel units was introduced by C. E. 
Lin and G. L. Viviani in 1984, and further research has been 
published with the application of various approaches. Most of 
the researches are based on heuristic optimization techniques 
with distinct limitation in guaranteeing the global optimality 
(Park et al., 2005). A mixed integer programming (Tao Li 
and M. Shahidehpour, 2005) could be one of the ways to 
obtain globally optimal solution but it may cause problems of 
the “curse of dimension” if the number of generators 
increases considerably. 

This paper proposes a new algorithm to find a global solution 
to ED with multiple fuel units using the function merger 
(FM) method. FM merges several fuel cost functions into one 
that satisfies the optimality. In order to merge the functions, 
the λ-P function method is applied, which inverts the P and λ 
axes of the incremental fuel cost function (Moon et al., 2000, 
Madrigal and Quintana, 2000 and Min et al., 2006). 

This paper focuses on the only essential principle to attain 
optimality in the ED with multiple fuel units. A further 
direction of this study will be to apply the proposed algorithm 
to practical large systems including various constraints such 
as ramp rate, flow limits, etc. 

2. FORMULATION OF ED PROBLEM WITH MULTIPLE 
FUEL UNITS 

2.1  Formulation of the ED Problem 

The ED can be formulated as an optimization as follows: 
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where 
Fi fuel cost function of generator i 

Pi power output of generator i 

PD total system demand 

PLoss total system loss 
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Pi
min minimum output of generator i 

Pi
max maximum output of generator i 

ng number of generators 

For simplicity, PLoss is often omitted with the assumption of PD 
accounting for the system loss. The fuel cost function may 
have a high degree of nonlinearity, or may be impossible to 
express as a closed function. However, the cost function is 
usually approximated as a second order polynomial for 
practical field applications. 
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where ai, bi, and ci are the cost coefficients of the generator i. 

2.2  ED with Multiple Fuel Units 

In the case of an ED with multiple fuel units, the ED problem 
can be formulated by using piecewise quadratic functions (Lin 
and Viviani, 1984). Piecewise quadratic and incremental cost 
functions are illustrated in Fig. 1 (Park et al., 2005). In this 
case, the fuel cost has the following form. 
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where aij, bij, and cij are the cost coefficients of fuel j for unit i 
and min

ijP  is equal to max
,1 jiP− . 
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Fig. 1.  Piecewise quadratic and incremental fuel cost 
functions 

3. OVERVIEW OF ED ALGORITHM BY THE λ-P 
FUNCTION METHOD 

The ED algorithm that uses the λ-P function method is found 
in some references (Moon et al., 2000, Madrigal and Quintana, 
2000 and Min et al., 2006).  The main feature of this method 
is to use the inverse of the incremental fuel cost functions 
based on the duality theory, as illustrated in Fig. 2. The 
inverse functions can be easily obtained because the 
incremental fuel cost functions are linear. 

This method is developed on the basis that each output power 
of the generators can be determined by the incremental cost λ. 

Once the incremental cost λ is determined, then the total 
generating power, PGttl, can be directly calculated and can be 
denoted as a function of λ by 
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Here, it is noted that PGttl(λ) is nondecreasing. Given the total 
demand of the system, the optimal incremental cost λ* can be 
obtained by solving 

( ) ( ) D

n

i
GiGttl PPP

g

== ∑
=

λλ
1

  (7) 

where PD is the total demand including the estimated system 
loss. 

The nondecreasing property of PGttl allows utilization of the 
bisection or linear interpolation methods in order to obtain the 
optimal incremental cost λ*. It should be noted that the Kuhn-
Tucker conditions need not be checked, since PGi(λ) provides 
all the information of the limitation of the generation outputs 
and the must-run conditions. 
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Fig. 2.  Inverting process of the incremental cost function 
using duality theory 

Fig. 3 shows an illustrative example with a 3-generator system. 
Gen. 1 and Gen. 3 are operated in the must-run condition 
where each generator must produce its minimum output, 
while Gen. 2 is stopped because its economical efficiency is 
below a certain marginal cost. 
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Fig. 3.  The summation of three generators’ output power 
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The λ-P function method is composed of the following 4 
steps: 

Step 1) Establish the λ-P functions by inverting the P-λ 
functions for all of the generators. 

Step 2) Construct the total generation function PGttl(λ) by 
summing up the λ-P functions for all the generators. 

Step 3) Calculate the optimal λ* by solving (7) and by using 
the bisection method and/or linear interpolation. 

Step 4) Calculate the optimal dispatch for each generator with 
PGi(λ*). 

4. GLOBAL SOLUTION TO ED PROBLEM WITH 
MULTIPLE FUEL UNITS 

This study proposes a new systematic approach to finding a 
global solution to an ED with multiple fuel units using a 
function merger (FM) technique. A FM is defined as merging 
several fuel cost functions into one fuel cost function that 
satisfies all of the optimal conditions in an ED. 

4.1  The FM with no consideration of generation limits 

On the basis of the λ-P function method, the FM merges the 
inverse of the incremental cost functions for each generator 
into a fuel cost function. Consider two generators with the 
fuel cost functions as follows: 
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As indicated in Fig. 4(a), the merged λ-P function can be 
obtained by simply adding both functions. However, an 
explicit merged fuel cost function for the FM process also 
needs to be obtained in order to guarantee optimality of the 
solution. 

*P

λ

*
1P

*
2P

*λ

P

)(2 λP

)(λmergP

)(1 λP

 P

F

)( 22 PF

)(PFmerg

)( 11 PF

 
(a) λ-P merging  (b) Merged cost function generation 

Fig. 4.  Merged λ-P and cost function 

Here, the goal is to find a merged fuel cost function for the 
two generators that satisfy optimality. The optimality 
condition requires 
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where P is the required generation for both generators. 

By solving (10) and (11), the following is obtained: 
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By using these results, the following merged fuel cost can 
easily be obtained for the two generators. 
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Eq. (14) can be rewritten as 
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4.2  The FM process with multiple fuel cost functions 

A FM with multiple fuel cost functions is similar to a FM with 
nonduplicated λ-P curves, which is explained in the previous 
section. 

Consider two generators with these fuel cost functions: 

max
111

min
1111111

2
11111 ,)( PPPcPbPaPF ≤≤++=      (16) 

min
22

max
21

max
222

min
2222222

2
222

max
212

min
2121221

2
221

22

with

,
,)(

PP

PPPcPbPa
PPPcPbPaPF

=

⎪⎩

⎪
⎨
⎧

≤≤++
≤≤++

=
 (17) 

Fig. 5(a) shows the λ-P functions of two generators and the 
merged cost function. The function merger can easily be 
performed with λ-P curves for the continuous parts. Here, it 
should be noted that the λ-P curves do have duplicate regions, 
with respect to λ, even though both fuel cost functions do not, 
with respect to P. 

The duplicity problem of generation in the λ region, for 
example ],[ max

21
min
22 λλ  in Fig. 5(a), can be solved by selecting 

the smaller cost. A new breakpoint Pnew is determined by the 
point that both fuel costs are same, where the merged cost 
functions Fa2 and Fb1 can be easily found by (15). Fig. 5(b) 
shows that the merged fuel cost curve is represented by solid 
lines and the eliminated parts by dotted lines.  An intersection 
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point of the fuel curves becomes a new minimum and/or a 
maximum P for the corresponding unit. 
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(a) Merged curve of λ-P functions of two generators 
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(b) merged fuel cost function 

Fig. 5. Function merger of multiple fuel cost functions 

There is no restriction in the number of functions for the 
merging procedure. However, only the two-functions merging 
technique with the one-by-one merging procedure is 
explained here and it will be applied to the entire proposed 
algorithm. 

4.3  Illustrative Examples 

Consider the example of a 3-generator system. The fuel cost 
functions of the generators are as follows: 
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Fig. 6 shows a graph of the λ-P functions in (21) to (23). 
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Fig. 6. The λ-P functions of the three generators 
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Fig. 7.  The procedure of constructing the P1+2(λ) 

First, P1(λ) is merged with P21(λ) and P22(λ) and then, Pa
1+2(λ) 

and Pb1+2(λ) are constructed, as illustrated in Fig. 7. The fuel 
cost functions of Pa

1+2(λ) and Pb1+2(λ) are arranged in Table 1. 

Second, P1+2(λ) is built by choosing the cheapest parts of the 
two curves for all P. The fuel cost functions of P1+2(λ) appear 
in Table 2. P3(λ) is also merged with P1+2(λ) in the same 
manner as described above. Pa

1+2+3(λ), Pb1+2+3(λ), and P1+2+3(λ) 
are arranged in Table 1 and 2, respectively. 

Finally, in order to calculate the dispatch of each generator, 
find the range involving PD and calculate the optimal λ* in the 
P1+2+3(λ). Using the fuel combination, if λ* is set between λijmin 
and λijmax for a specific generator, its generation power is 
determined by the λ-P function of each generator for λ*. If λ* 
is smaller (larger) than λijmin (λijmax) then the generator output 
becomes Pij

min (Pij
max) of each generator. 
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Fig. 8. Construction of P1+2+3(λ) in the example 

Table 1. Fuel Cost Functions for Power Ranges 

Pa
1+2(λ), Pb1+2(λ), Pa

1+2+3(λ), and Pb1+2+3(λ) 

 Rng Pmin Pmax λmin λmax a b c Fuel 
1 280 299.31 0.137 0.196 104.81 -0.7164 0.001524 11 Pa

1+2(λ) 
2 299.31 473.33 0.196 0.521 51.99 -0.3634 0.000934 11 
1 432.31 581.53 0.323 0.638 129.61 -0.5896 0.001056 12 

Pb1+2(λ) 
2 581.53 620 0.638 0.824 589.36 -2.1708 0.002415 12 
1 480 499.31 0.137 0.196 353.51 -1.3260 0.001524 111 
2 499.31 548.59 0.196 0.288 206.51 -0.7372 0.000934 111 
3 548.59 729.71 0.288 0.454 63.46 -0.2157 0.000459 111 
4 729.71 919.94 0.399 0.584 118.49 -0.3111 0.000486 121 
5 919.94 945.53 0.584 0.638 600.04 -1.3580 0.001056 121 

Pa
1+2+3(λ) 

6 945.53 984 0.638 0.824 1815.47 -3.9289 0.002415 121 
1 644 663.31 0.137 0.196 683.53 -1.8259 0.001524 112 
2 663.31 773.24 0.196 0.401 424.10 -1.0437 0.000934 112 
3 773.24 824.08 0.401 0.465 239.28 -0.5656 0.000625 112 
4 824.08 833.42 0.382 0.401 600.11 -1.3580 0.001056 122 
5 833.22 1008.15 0.401 0.638 337.39 -0.7276 0.000677 122 
6 1008.15 1049.83 0.638 0.726 726.63 -1.4998 0.001060 122 

Pb1+2+3(λ) 

7 1049.83 1070 0.726 0.824 2219.78 -4.3443 0.002415 122 

 
Table 2. Fuel Cost Functions for Power Ranges 

P1+2(λ) and P1+2+3(λ) 

 Rng Pmin Pmax λmin λmax a b c Fuel 
1 280 299.31 0.137 0.196 104.81 -0.7164 0.001524 11 
2 299.31 453.16 0.196 0.483 51.99 -0.3634 0.000934 11 
3 453.16 581.53 0.367 0.638 129.61 -0.5896 0.001056 12 

P1+2(λ) 

4 581.53 620 0.638 0.824 589.36 -2.1708 0.002415 12 
1 480 499.31 0.137 0.196 353.51 -1.3260 0.001524 111 
2 499.31 548.59 0.196 0.288 206.51 -0.7372 0.000934 111 
3 548.59 729.71 0.288 0.454 63.46 -0.2157 0.000459 111 
4 729.71 881.87 0.399 0.547 118.49 -0.3111 0.000486 121 
5 881.87 1008.15 0.467 0.638 337.39 -0.7276 0.000677 122 
6 1008.15 1049.83 0.638 0.726 726.63 -1.4998 0.001060 122 

P1+2+3(λ) 

7 1049.83 1070 0.726 0.824 2219.78 -4.3443 0.002415 122 

It should be noted that if the committed generators are not 
changed for another total demand, the procedures of 
constructing the merged function tables can be omitted. Once 
all of the FM procedures are executed, the dispatch of the 
generators can easily be obtained by the FM table previously 
constructed. 

5. SIMULATION RESULTS 

The proposed FM method is applied to the ED problems with 
a 10-generator system (Lin and Viviani, 1984). For simplicity, 
system losses are not considered. The fuel cost data of the 
generators is given in Table 5. During testing the total system 
demand is varied from 2400 MW to 2700 MW with 100 MW 
increments. The globally optimal solution to the ED with 
multiple fuel units is acquired by ACM and FM. Both ACM 
and FM were directly coded using real values and were 
implemented on a personal computer (Pentium D CPU 3.00 
GHz) in Microsoft Visual C++ 6.0. The results of the 
proposed algorithms and the ACM are summarized in Table 3. 

Table 3. Comparison of ACM and FM 

S U FM ACM FM ACM FM ACM FM ACM 
F GEN F GEN F GEN F GEN F GEN F GEN F GEN F GEN 

1 1 1 189.74 1 189.74 2 206.52 2 206.52 2 216.54 1 216.54 2 218.25 2 218.25 
 2 1 202.34 1 202.34 1 206.46 1 206.46 1 210.91 1 210.91 1 211.66 1 211.66 
 3 1 253.90 1 253.90 1 265.74 1 265.74 1 278.54 3 278.54 1 280.72 1 280.72 
4 3 233.05 3 233.05 3 235.95 3 235.95 3 239.1 3 239.1 3 239.63 3 239.63 

2 5 1 241.83 1 241.83 1 258.02 1 258.02 1 275.52 1 275.52 1 278.50 1 278.50 
 6 3 233.05 3 233.05 3 235.95 3 235.95 3 239.1 3 239.1 3 239.63 3 239.63 
7 1 253.27 1 253.27 1 268.86 1 268.86 1 285.72 1 285.72 1 288.58 1 288.58 

3 8 3 233.05 3 233.05 3 235.95 3 235.95 3 239.1 3 239.1 3 239.63 3 239.63 
 9 1 320.38 1 320.38 1 331.49 1 331.49 1 343.49 1 343.49 3 428.52 3 428.52 
10 1 239.40 1 239.40 1 255.06 1 255.06 1 271.99 1 271.99 1 274.87 1 274.87 

TP 2400 2400 2500 2500 2600 2600 2700 2700 
TC 481.723  481.723  526.239  526.239  574.381  574.381  623.809  623.809  

 

As shown in Tables 3, the FM provides the globally optimal 
solutions that are exactly equal to the results provided by 
ACM. Table 5 in Appendix shows the fuel cost functions and 
combinations of fuel type for a power range of 1353 MW to 
3695 MW, which is the minimum to maximum feasible 
generating power in the system, respectively. The global 
solutions to the 10-generator system can be obtained by the 
fuel cost function involving the total demand in Table 5. 

The simulation time is checked, in order to compare ACM 
with FM regarding the computational burden. The number of 
generators increases from 2 to 10. These results appear in 
Table 4.  

Table 4. Simulation Time for the Number of Generators 

Number 
of Gens. 

ACM 
[sec] 

FM 
[sec] 

2 0.000722 0.001390 
3 0.000819 0.001796 
4 0.001019 0.002140 
5 0.001671 0.002703 
6 0.003859 0.003078 
7 0.011421 0.003484 
8 0.036710 0.003937 
9 0.118282 0.004375 
10 0.389060 0.004850 
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The middle value between the minimum and maximum 
feasible generating output is chosen as the total demand of the 
ACM for each case. The periods of constructing fuel cost 
functions for whole power ranges are measured as 
computation time in the FM. The results show that the 
computation time increases exponentially in the ACM, while 
linearly in FM, which verifies that the FM demonstrates 
predictable computational behaviour. 

6.  CONCLUSIONS 

This paper presents an algorithm to find a global solution to 
ED with multiple fuel units. The proposed algorithm uses FM 
on the basis of the λ-P function method using duality theory. 
The global optimality is checked with ACM. 

Conventional heuristic approaches cannot provide a global 
optimality to the ED problem with multiple fuel units. 
Moreover, these approaches have a crucial flaw, which is the 
“curse of dimension” for large systems. 

The proposed FM method is applied to a sample case of a 10-
generator system. The global solutions obtained by the FM are 
compared with the results of the ACM, which provide the 
global optimal solutions. By comparing simulation time, the 
FM is shown to overcome the problems of the curse of 
dimension. 
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Appendix 

Table 5. Fuel Cost Functions and Combination of Fuel 
Type for All Power Ranges in 10-generator System 

 Pmin Pmax λmin λmax Fmin Fmax a b c Fuel 
Combination 

1 1353.00 1361.32 0.038 0.074 205.63 206.09 0.002176 -5.851 4138.0 1211121121 
2 1361.32 1406.19 0.074 0.141 206.09 210.92 0.000747 -1.960 1490.2 1211121121 
3 1406.19 1415.43 0.141 0.147 210.92 212.25 0.000336 -0.805 678.0 1211121121 
4 1415.43 1473.07 0.147 0.177 212.25 221.58 0.000255 -0.574 514.3 1211121121 
5 1473.07 1540.50 0.177 0.200 221.58 234.26 0.000171 -0.329 333.6 1211121121 
6 1540.50 1553.41 0.168 0.177 234.26 236.48 0.000341 -0.882 784.4 1211121111 
7 1553.41 1616.44 0.177 0.203 236.48 248.44 0.000207 -0.465 460.6 1211121111 
8 1616.44 1672.09 0.195 0.219 248.44 259.97 0.000218 -0.511 503.5 1311121111 
9 1672.09 1697.25 0.202 0.214 259.97 265.20 0.000251 -0.637 623.6 1312121111 
10 1697.25 1715.87 0.208 0.217 265.20 269.16 0.000238 -0.600 597.4 1311121111 
11 1715.87 1735.09 0.203 0.215 269.16 273.18 0.000294 -0.806 786.2 1312121211 
12 1735.09 1754.01 0.208 0.218 273.18 277.21 0.000277 -0.753 746.5 1111121211 
13 1754.01 1772.92 0.202 0.216 277.21 281.16 0.000356 -1.047 1018.4 1312111211 
14 1772.92 1798.63 0.207 0.224 281.16 286.70 0.000331 -0.967 954.8 1111111211 
15 1798.63 1889.87 0.196 0.271 286.70 308.02 0.000412 -1.285 1265.8 1112111211 
16 1889.87 1950.78 0.271 0.310 308.02 325.73 0.000321 -0.942 941.9 1112111211 
17 1950.78 1962.54 0.310 0.316 325.73 329.42 0.000249 -0.660 667.3 1112111211 
18 1962.54 2002.55 0.283 0.310 329.42 341.28 0.000342 -1.061 1092.6 1113111211 
19 2002.55 2015.36 0.310 0.317 341.28 345.30 0.000261 -0.737 768.4 1112131211 
20 2015.36 2054.32 0.282 0.310 345.30 356.83 0.000367 -1.196 1266.7 1112131311 
21 2054.32 2067.85 0.310 0.318 356.83 361.08 0.000275 -0.821 881.7 1112131311 
22 2067.85 2068.21 0.318 0.318 361.08 361.19 0.000219 -0.587 639.9 1112131311 
23 2068.21 2106.10 0.280 0.310 361.19 372.38 0.000395 -1.352 1469.8 1113131311 
24 2106.10 2118.90 0.310 0.318 372.38 376.40 0.000291 -0.915 1009.5 1113131311 
25 2118.90 2170.67 0.318 0.341 376.40 393.47 0.000229 -0.651 729.4 1113131311 
26 2170.67 2436.35 0.341 0.442 393.47 497.54 0.000189 -0.480 544.4 1113131311 
27 2436.35 2614.10 0.439 0.505 497.54 581.47 0.000187 -0.470 535.4 2113131311 
28 2614.10 2744.62 0.479 0.520 581.47 646.72 0.000157 -0.344 404.5 2113131331 
29 2744.62 2881.66 0.520 0.579 646.72 722.03 0.000212 -0.643 815.4 2113131331 
30 2881.66 2918.90 0.568 0.584 722.03 743.48 0.000214 -0.666 862.5 2113132331 
31 2918.90 2959.07 0.506 0.520 743.48 764.11 0.000177 -0.524 769.9 2123131331 
32 2959.07 3077.97 0.520 0.579 764.11 829.50 0.000248 -0.948 1396.6 2123131331 
33 3077.97 3161.48 0.567 0.609 829.50 878.62 0.000251 -0.977 1460.9 2123132331 
34 3161.48 3189.09 0.594 0.609 878.62 895.24 0.000272 -1.127 1720.4 2123232331 
35 3189.09 3290.50 0.573 0.601 895.24 954.78 0.000139 -0.313 479.6 2123133331 
36 3290.50 3303.30 0.601 0.609 954.78 962.53 0.000320 -1.503 2439.0 2123133331 
37 3303.30 3318.75 0.597 0.601 962.53 971.79 0.000145 -0.362 574.8 2123233331 
38 3318.75 3351.54 0.601 0.625 971.79 991.89 0.000355 -1.757 2889.1 2123233331 
39 3351.54 3385.51 0.625 0.654 991.89 1013.62 0.000439 -2.319 3830.6 2123233331 
40 3385.51 3462.58 0.577 0.601 1013.62 1059.01 0.000159 -0.499 881.8 2123133332 
41 3462.58 3474.40 0.601 0.612 1059.01 1066.18 0.000451 -2.519 4379.2 2123133332 
42 3474.40 3490.84 0.596 0.601 1066.18 1076.02 0.000167 -0.566 1013.9 2123233332 
43 3490.84 3513.06 0.601 0.625 1076.02 1089.64 0.000524 -3.059 5365.7 2123233332 
44 3513.06 3537.47 0.625 0.660 1089.64 1105.33 0.000730 -4.504 7903.3 2123233332 
45 3537.47 3567.33 0.660 0.713 1105.33 1125.83 0.000884 -5.592 9827.7 2123233332 
46 3567.33 3607.37 0.586 0.593 1125.83 1149.44 0.000083 -0.007 91.8 2123333332 
47 3607.37 3629.59 0.593 0.601 1149.44 1162.70 0.000187 -0.754 1439.8 2123333332 
48 3629.59 3644.51 0.601 0.625 1162.70 1171.85 0.000780 -5.064 9262.2 2123333332 
49 3644.51 3657.77 0.625 0.660 1171.85 1180.37 0.001344 -9.174 16750.4 2123333332 
50 3657.77 3695.00 0.660 0.808 1180.37 1207.69 0.001978 -13.812 25234.0 2123333332 

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11069


