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Abstract: In this paper, the effects of periodic partial harvesting of a continuously grown crop
on augmentative biological control are analysed. Partial harvesting can remove a proportion
of both pests and biological control agents, so its influence on the control efficiency cannot be
a priori neglected. An impulsive model consisting of a general predator-prey model in ode is
used. It is augmented by a discrete component to depict releases of biological control agents
and the periodic partial harvesting. A stability condition for pest eradication is expressed as
the minimal value of the budget per unit time to spend on predators. We consider the partial
harvesting period to be fixed so that the only manipulated variable is the release period. One
period is taken as the integer multiple of the other. We show that when the releases are carried
out more often than the harvests, the release period influences the minimal budget. Conversely,
there is no effect on this budget when releases take place as often as or less frequently than
harvests.

1. INTRODUCTION

Biological control is the reduction of pest populations
to harmless levels through the release of their natural
enemies. The target pest species and the setting usually
determine the type of control required, namely whether
pest eradication is necessary or not. For an exhaustive
list of definitions and applications, we refer the reader
to Eilenberg et al. [2001]. In this paper, we consider
the implementation of biological control through natural
predators to protect continuously grown crops which have
zero tolerance to pest invasions. Examples are flowers of
high cosmetic value, as well as fruits and vegetables, which,
upon being attacked by a pest, become inedible. There are
three aspects in the formulation of this problem:

• Firstly, the most appropriate method of protection
in such a case is inundative or augmentative control.
This involves a calculated number of predators to
be periodically injected into the ecosystem, indepen-
dently of the detection of pest insects. Such a pre-
emptive approach is becoming increasingly popular
as it appears to achieve more acceptable pest control
(see De Courcy Williams [2001], Jacobson et al. [2001]
for real life experiments).

• Secondly, pest eradication is desirable.
• Thirdly, over their growing period, these crops are

partially harvested on a regular basis. This prac-
tice is likely to remove a proportion of the insects
- including the predatory ones - present throughout
the plantation. Harvest has already been shown in
Volterra [1978] among others to influence, even coun-
terintuitively, predator-prey dynamics. Hence, it is
incorporated into the model under study.

? This work was partially funded by the INRA ECOGER program.

The model consists of ODEs augmented by a discrete
component to integrate the effect of partial harvest and
releases that by their very nature are discrete phenomena.
Few papers in the literature on impulsive crop protection
seem to focus on stability of the pest-free state: Liu et al.
[2005], Negi and Gakkhar [2007] for instance study the
chaotic properties of similar models. Yet this is of practical
importance, especially for high valued crop cultures.

We are able to express a stability condition as the minimal
number of predators per unit time required to drive the
pests to zero. This time unit can be chosen to be the
budget year over which the number of predators bought
by the grower corresponds to the budget allocated to
biological control. In line with the work of Mailleret
and Grognard [2006], we investigate how the frequency
of releases is to be varied with respect to the (fixed)
harvesting frequency to minimise the minimal budget
value. We consider the harvest period as the reference since
it is set by market constraints and crop dynamics. One
period is taken as the integer multiple of the other. This
feature is key in solving for the stability condition.

We show that for a given harvest period, when releases
take place less often or as often as harvests, the minimal
budget is at a calculated value which is independent of
release period. However, when releases take place more
often than harvests, the minimal budget required always
exceeds this value.

In section 2, the system model is described. Next, in sec-
tion 3, the mathematical analysis of the system’s stability
and the formulation of the stability condition in terms of
the minimal budget are presented. A brief interpretation
of the mathematical results follows in section 4. Finally,
we conclude with a discussion on their implications.
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2. MODEL DESCRIPTION

We consider the case at the onset of pest invasion where
the crop - the pest food supply - is in abundance. At this
stage, it is sufficient to model a two-dimensional system
consisting only of the pest x and predator y species.

ẋ = f(x)− g(x)y
ẏ = h(x)y − dy

x(nT+
h ) = (1− αx)x(nTh)

y(nT+
h ) = (1− αy)y(nTh) + δ (nTh mod Tr) µTr

y(mT+
r ) = (1− δ (mTr mod Th) αy)y(mTr) + µTr

(1)
∀n ,m ∈ N and where 0 ≤ αx, αy ≤ 1.

Continuous part f(x) is the growth velocity or feeding
input of the pests. It represents the growth function of the
pest species and in our model, it also encompasses any
non-predatory losses of the pest population (e.g. logistic
growth). We assume that the predator population is never
large enough for intra-predator interaction to take place so
the functional and numerical responses can be expressed
solely in terms of the prey numbers, i.e. as g(x) and h(x)
respectively. The functions discussed are not specified so
they are representative of most functions reported in the
literature. Only the following hypotheses are made.
Hypothesis 1. Let f(x), g(x) and h(x) be locally Lips-
chitz continuous in R+ such that

• f(0) = 0
• g(0) = 0, g′(0) > 0 and g(x) > 0 ∀x > 0
• h(0) = 0 and h(x) > 0 ∀x > 0
• f(x)

g(x) and g(x)
x are upper bounded for x ≥ 0

g(x) is increasing for small pest population levels. We
also consider that, in the presence of pests, predation
always takes place with a negative impact on x (g(x) >
0) and a positive impact on y (h(x) > 0). In classical
density dependent models, g(x) is bounded or linear, so
that g(x)

x is always bounded. The boundedness of f(x)
g(x)

means that there is no value of x where the pest growth
f(x) overwhelmingly dominates the predation g(x), which
would render the biological control impossible.

Discrete part Partial crop harvests and predator releases
occur respectively every Th and Tr. αx and αy represent
the respective proportions of the prey and predator pop-
ulations affected at each harvest. These parameters are
allowed be different since in reality, it is likely that each
species occupies different parts of the plant. We also as-
sume that the insects are uniformly distributed throughout
our plantation. The +-superscript denotes the instant right
after the relevant impulse is applied. The δ-function is
defined thus to identify instants of simultaneous partial
harvest and predator release.

δ(θ) =
{

1 if θ = 0
0 otherwise

µ refers to the total number of predators purchased per
time unit. So as to give an economic dimension to the
solution, the time unit will be the budget time period for
which a crop grower will invest that number µ. In this
same unit, µTr is the number of predators released every
Tr.

3. MATHEMATICAL ANALYSIS

While the formalism in model (1) is more general, we
restrict ourselves to the case where either one of the
periods (release or partial harvests) is the integer multiple
of the other. We study the stability of the system around
x = 0. In addition of being invariant, it is the target
state. Our analysis takes place separately for the case when
releases are more frequent than harvests, and when they
are less frequent.

3.1 Pest-free stability analysis

Releases more frequent than harvests
Proposition 2. Let Th = kTr where k ∈ N∗ and Hy-
potheses 1 be satisfied. Then, in the absence of pests,
model (1) possesses a globally stable periodic solution
(xph (t) , yph (t)) such that{

xph(t) = 0
yph(t) = y∗e−d(t mod Th) + µTre

−d(t mod Tr)Λ (2)

with Λ =
b t mod Th

Tr
c−1∑

j=0

e−jdTr , and where

y∗ =

(
1−e−dTh

1−e−dTr

)
(1− αy) + αy

1− (1− αy)e−dTh
µTr (3)

Proof. When Th = kTr, in the absence of pests and using
Hypotheses 1, the system is simplified to

ẋ = 0
ẏ = −dy

x(mT+
r ) = (1− δ (m mod k) αx)x(mTr)

y(mT+
r ) = (1− δ (m mod k) αy)y(mTr) + µTr

∀m ∈ N
The pest population stays nil since in the absence of pests,
their population does not change either. The solution

xph(t) = 0
is trivial. On the other hand, the predator population
will vary according to the number of predators manually
injected into the system and, since the population is non-
zero, according to the partial harvest effect. The absence of
their source of food will cause an exponential decay of the
population. We demonstrate that these forces will provoke
the predator population to reach a periodic pattern of
period equal to Th, which we shall refer to as the period
of reference. The instant following a coinciding partial
harvest and release is taken as the point of reference.

To prove Proposition 2, we first express the predator
population right after a release in terms of the point of
reference as

y(nTh + iT+
r ) = y(nT+

h )e−idTr + µTr

i−1∑
j=0

e−jdTr (4)

where i ∈ [0, 1, . . . , (k − 1)]. This can be verified by
induction [Nundloll et al., 2007].

To evaluate the evolution of y according to the pe-
riod of reference Th, we need to calculate the value
of y((n + 1)T+

h ), which is equivalent to y(nTh + kT+
r ),

in terms of y(nT+
h ). At this point however, we suppose
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that partial harvesting takes place before predator release
so as not to directly waste predators; so we first express it
in terms of y(nTh +(k−1)T+

r ) then expand the expression
using (4) as follows
y
(
(n + 1)T+

h

)
= y

(
nTh + (k − 1)T+

r

)
e−dTr (1− αy) + µTr

=

y(nT+
h )e−d(k−1)Tr + µTr

k−2∑
j=0

e−jdTr

 e−dTr (1− αy)

+µTr

= y(nT+
h )e−dTh + µTr(1− αy)

k−1∑
j=1

e−jdTr + µTr

= y(nT+
h )e−dTh + µTr

(1− αy)
k−1∑
j=0

e−jdTr + αy


(5)

In this linear dynamical system, the coefficient of y(nT+
h ),

e−dTh is less than one in magnitude, so the sequence will
converge to a limit, the equilibrium of (5). This equilibrium
yields (3) and the convergence of y(t) to a periodic solution
yph(t) based on y∗.

Now that we have established the existence of the periodic
solution yph(t), we seek to formulate it. We focus on a refe-
rence period over nTh < t ≤ (n+1)Th during which yph(t)
is piecewise continuous, with the continuous components
separated by predator releases. The continuous intervals
are defined over nTh + iTr < t ≤ nTh + (i + 1)Tr where
i ∈ [0, 1, . . . , k − 1]. For a given value of t, the value of i

is easily identified as being i = b t mod Th

Tr
c. The value of

yph(t) is then of the form

yph(t) = yph(nTh + iT+
r )e−d(t mod Tr)

and, from (4) with y(nT+
h ) = y∗, we have that

yph(nTh + iT+
r ) = y∗e−idTr + µTr

i−1∑
j=0

e−jdTr

so that

yph(t) =

y∗e−idTr + µTr

i−1∑
j=0

e−jdTr

 e−d(t mod Tr)

= y∗e−d(t mod Th) + µTre
−d(t mod Tr)

i−1∑
j=0

e−jdTr

Using the original notation where i = b t mod Th

Tr
c leads to

the same form as proposed in (2), thereby completing our
proof.

Releases less frequent than harvests When harvesting is
more frequent than the release of predators, we have a
similar result about the existence of a periodic solution.
Proposition 3. Let Tr = kTh where k ∈ N∗ and Hypothe-
ses 1 be satisfied. Then, in the absence of pests, model (1)
possesses a globally stable periodic solution

(xpr (t) , ypr (t)) =
(
0, y∗e−d(t mod Tr)(1− αy)b

t mod Tr
Th

c
)

where
y∗ =

µTr

1− (1− αy)ke−dTr

The proof is constructed in the same manner as for
Proposition 2, and is detailed in [Nundloll et al., 2007].

The form of the yph and ypr functions is illustrated on
Figure 1.

PSfrag replacements

0 Tr 2Tr Th = 3Tr 4Tr 5Tr 2Th 7Tr 8Tr 3Th
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0 Th 2Th Tr = 3Th 4Th 5Th 2Tr 7Th 8Th 3Tr

y
p
r
(t

)

t

Fig. 1. Top Periodic solution yph(t) in the case where
k = 3. Releases of predators are apparent at every
mTr instant. Bottom Periodic solution ypr(t) in the
case where k = 3. Harvests are apparent at every nTh

instant, while the release of predators dominates the
harvest at every mTr instant. Between impulses, the
population decays exponentially since it has no prey
to feed on.

3.2 Stability analysis in the presence of pests

We will now show that, when preys are present at the
initial time, convergence of the predator population also
takes place to that same periodic solution, while the preys
go extinct provided some condition on the parameters is
verified.

Since we will study the convergence of the solutions to
(0, yp(t)) (where the p subscript stands as well for ph or
pr), it will be convenient to describe the system in terms
of the deviation coordinates with respect to the reference
periodic solution, (x̃(t), ỹ(t)) = (x(t)− xp(t), y(t)− yp(t)).
This yields{ ˙̃x = f(x)− g(x)y = f(x̃)− g(x̃)(ỹ + yp(t))

˙̃y = h(x)y − dy − h(xp)yp + dyp = h(x̃)(ỹ + yp(t))− dỹ

The harvest effects on x̃ and for ỹ are obviously unchanged
compared to those on x and y. On the other hand, the
release effects on y disappear in ỹ; indeed, we have

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15519



ỹ(mT+
r ) = y(mT+

r )− yp(mT+
r )

= y(mTr) + µTr − (yp(mTr) + µTr) = ỹ(mTr)

To perform a global and a local stability analysis, we
will also need the computation of the linear approxima-
tion of the deviation system around the periodic solution
(0, yp(t)): { ˙̃x = (f ′(0)− g′(0)yp(t))x̃

˙̃y = h′(0)yp(t)x̃− dỹ
(6)

We obtain two different constraints for the Local Asymp-
totic Stability (LAS) and Global Asymptotic Stability
(GAS) of the periodic solution in system (1). The latter is
obviously stronger than the former, but is sufficient in the
case where pests outbreaks do not immediately take large
proportions.

Releases more frequent than harvests In order to state
the following theorem, we first need to define the function

µ
h
(S, r) = d

(
S +

ln (1− αx)
rTh

)
1

1−
(

αy(1−e−dTh)
1−(1−αy)e−dTh

)
Γ

where Γ = e−dTh/k

k(1−e−dTh/k) , and S and r are constants. This

function is increasing in S and r because the sign of the
partial derivatives is determined by the sign of factor Γ,
which is positive [Nundloll et al., 2007].
Theorem 4. When Th = kTr with k ∈ N∗, the solution
(x(t), y(t)) = (0, yph(t)) of (1) is LAS iff

µ > µ
h

(
f ′(0)
g′(0)

, g′(0)
)

(7)

and is GAS if
µ > µ

h
(Sg, rg) (8)

where Sg = supx≥0
f(x)
g(x) and rg = supx≥0

g(x)
x

Proof. We start with the proof of global convergence
under condition (8). In this proof, we will first show that
x̃ goes to zero, from which we will derive that ỹ goes to 0
also (so that y(t) converges to yph(t)).

Let the initial condition for system (6) be (x̃0, ỹ0) at time
t0 = 0+, that is after the harvest and the predator release
that take place at the initial time. Analysing (6) and noting
that yph(t) + ỹ = y(t) ≥ 0, we have

˙̃y ≥ −dỹ

so that ỹ(t) ≥ min(0, ỹ0)e−dt.

In order to analyse the ˙̃x equation, we define the function

G(x̃) =
∫ x̃

x0

1
g(s)

ds (9)

which can easily be seen to be an increasing function of x̃
since g(s) > 0. We also have that
g(s) <

(
supx≥0

g(x)
x

)
s, therefore lim

x̃
>→0

G(x̃) = −∞. In

order to show the extinction of the pests we will then prove
that G(x̃) goes to −∞ as t goes to infinity. We start by
writing the G-dynamics:

dG(x̃)
dt

=
1

g(x̃)
˙̃x =

f(x̃)
g(x̃)

− ỹ − yph(t)

≤ f(x̃)
g(x̃)

−min(0, ỹ0)e−dt − yph(t)

We then consider the evolution of G between two succes-
sive harvests, that is between the times nT+

h and (n+1)Th

for a given n:

G(x̃((n + 1)Th)) ≤ G(x̃(nT+
h ))

+
∫ (n+1)Th

nT+
h

[
f(x̃(s))
g(x̃(s))

−min(0, ỹ0)e−ds − yph(s)
]

ds

Since no impulse is present inside the integral, we can drop
the + superscript in its lower extremity.

We now analyse how the harvest that takes place at time
(n + 1)Th impacts G. We have
G(x̃((n + 1)T+

h ))

= G(x̃((n + 1)Th)) +
∫ x̃((n+1)T+

h
)

x̃((n+1)Th)

1
g(s)

ds

≤
∫ x̃((n+1)T+

h
)

x̃((n+1)Th)

1
g(s)

ds + G(x̃(nT+
h ))

+
∫ (n+1)Th

nTh

[
f(x̃(s))
g(x̃(s))

−min(0, ỹ0)e−ds − yph(s)
]

ds

(10)

The first term represents the influence of harvest on G and
can easily be approximated because
x̃((n + 1)Th) > x̃((n + 1)T+

h ) = (1 − αx)x̃((n + 1)Th).
Substituting in Sg and rg, we have∫ (1−αx)x̃((n+1)Th)

x̃((n+1)Th)

1
g(s)

ds ≤
∫ (1−αx)x̃((n+1)Th)

x̃((n+1)Th)

1
rgs

ds

=
ln(1− αx)

rg

(11)
Introducing (11) into (10) then yields a bound on the
application between successive moments after harvest.

G(x̃((n + 1)T+
h )) ≤ ln(1− αx)

rg
+ G(x̃(nT+

h ))

+
∫ (n+1)Th

nTh

[
f(x̃(s))
g(x̃(s))

−min(0, ỹ0)e−ds − yph(s)
]

ds

We can now evaluate an upper-bound for G at any time
t ≥ 0. Defining l as the integer part of t

Th
, we have:

G(x̃(t))−G(x0)

≤
∫ t

0

[
f(x̃(s))
g(x̃(s))

−min(0, ỹ0)e−ds − yph(s)
]

ds

+l
ln(1− αx)

rg

≤
∫ t

0

[
Sg −min(0, ỹ0)e−ds − yph(s)

]
ds + l

ln(1− αx)
rg

= −
∫ t

0

min(0, ỹ0)e−dsds +
∫ t

lTh

[Sg − yph(s)] ds

+l

∫ Th

0

[Sg − yph(s)] ds + l
ln(1− αx)

rg

=
min(0, ỹ0)

d
(e−dt − 1) +

∫ t

lTh

[Sg − yph(s)] ds

+l

∫ Th

0

[Sg − yph(s)] ds + l
ln(1− αx)

rg

The first two terms are bounded (the first one is obvious
and the second one is upper-bounded by SgTh). We then

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15520



have to analyse the third one, which has been obtained
through the periodicity of yph(t) and the fourth in order
to know if G(x̃(t)) goes to −∞ when t goes to infinity. In
fact, it suffices to have∫ Th

0

[Sg − yph(s)] ds +
ln(1− αx)

rg
< 0

to achieve this. It is more clearly rewritten in the form∫ Th

0

yph(t)dt > SgTh +
ln(1− αx)

rg
(12)

In order to obtain (8), we are now left with the computa-
tion of

∫ Th

0
yph(t)dt, which is detailed in [Nundloll et al.,

2007].∫ Th

0

yph(t)dt =
µTh

d

(
1−

(
αy

(
1− e−dTh

)
1− (1− αy) e−dTh

)
Γ

)
(13)

Introducing (13) into (12) then yields (8), which shows
that this last condition is sufficient for having x̃ going to
0 as t goes to ∞.

Since x̃ goes to zero, there exists a finite time tf after
which h(x̃) ≤ d

2 for all times. Therefore, after this time,

˙̃y = h(x̃)(yph(t) + ỹ)− dỹ ≤ h(x̃)yph(t)− d

2
ỹ

We have seen that h(x̃)yph(t) goes to zero as t goes to
infinity; so does ỹ also.

In order to have the global asymptotic stability, we are
only left with the local asymptotic stability to prove. In
order to do that, we only have to consider the discrete
system that maps the state at time nT+

h onto the state
at time (n + 1)T+

h with respect to the linear equation (6)
and the discrete part [Shulgin et al., 1998]. After some
computations, we obtain:(

x̃
ỹ

)(
(n + 1)T+

h

)
= B

(
x̃
ỹ

)(
nT+

h

)
where

B =

 (1− αx)e

∫ (n+1)Th

nTh

f′(0)−g′(0)yphdτ

0

‡ (1− αy)e
−d

∫ (n+1)Th

nTh

dτ


Since the matrix is triangular, it is stable if |B11| < 1, i.e.∫ (n+1)Th

nTh

yphdτ >
f ′(0)Th + ln(1− αx)

g′(0)
(14)

Similarly to what was done earlier, it can be shown
that (14) is equivalent to (7), so that the necessary and
sufficient condition for local stability is proven.

It is directly seen that (14) is satisfied when (12) is because
µ

h
(S, r) is increasing in S and r and we have

f ′(0)
g′(0)

= lim
x
≥
→0

f(x)
g(x)

≤ sup
x≥0

f(x)
g(x)

g′(0) = lim
x
≥
→0

g(x)
x

≤ sup
x≥0

g(x)
x

This completes the proof of global stability, since we have
shown global convergence and local stability when (8) is
satisfied.

Releases less frequent than harvests If we now consider
the case where predators releases take place less often than
harvests, we also obtain global and local stability results
based on the following function

µ
r
(S, r) = d

(
S +

ln(1− αx)
rTh

)
1− (1− αy)e−dTh

1− e−dTh

which is increasing in S and r since the last fraction is
positive and αx ≤ 1.
Theorem 5. When Tr = kTh with k ∈ N∗, the solution
(x(t), y(t)) = (0, ypr(t)) of (1) is LAS iff

µ > µ
r

(
f ′(0)
g′(0)

, g′(0)
)

(15)

and is GAS if

µ > µ
r

(
sup
x≥0

f(x)
g(x)

, sup
x≥0

g(x)
x

)
This proof does not depart very much from the one of
Theorem 4, and is given in detail in [Nundloll et al., 2007].

Comment As we have seen, when the condition (8) or (5)
is satisfied, the extinction of the pests is GAS. When the
local condition (7) or (15) is not verified, the extinction of
the pests is not stable and a bifurcation analysis similar
to what is done in Lakmeche and Arino [2000], Liu et al.
[2005] would show the presence of a limit cycle when µ
is close to the limit. For smaller values of µ, chaos can
arise. When µ satisfies condition (7) or (15) only, the
pests extinction is locally stable and we cannot rule out
that it is globally stable (since our global condition is
only sufficient). Such a budget has the advantage of being
smaller than the one that guarantees global stability. It
allows for good control of limited pest invasions; however
the culture is at risk of being destroyed by a large pest
outbreak. We also need to note that when S+ ln(1−αx)

rTh
< 0,

for any of the local or global condition, the condition
is trivially verified. Indeed, it implies simply that no
biological control is needed for exterminating the pests;
in fact, the partial harvesting is effective enough for this
purpose (as αx is large enough).

4. INTERPRETATION OF RESULTS

It is clear from (15) that µ
r

is independent of Tr. The
latter’s influence for non-trivial values of µ

h
is formulated

in the following theorem,
Theorem 6. Let Th = kTr where k ∈ N∗.

The minimal budget is monotonically decreasing with
respect to the release period Tr for non-negative values
of µh, i.e.

∂µ
h

∂Tr
< 0 (16)

the proof of which can be found in [Nundloll et al., 2007].

We can deduce that we hit the smallest minimal value
for the budget for the largest possible Tr in this case
that corresponds to when k = 1. This happens when
the release frequency equals the partial harvest frequency.
Figure 2 represents the analytical results formulated in
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the Theorem 6, and obtained from the expressions (7) and
(15).
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Fig. 2. Variation of the minimal number of predators
required per budget year µ as a function of release to
harvest period ratio. Parameters are given the values
(in arbitrary units): αx = αy = 0.5, d = 1, and the
rate of growth f ′(0), functional response g′(0) and
numerical response h′(0) when the ecosystem is pest-
free, i.e. xp(t) = 0, are all equal to 1.

These results imply that it is clearly less costly to protect
a greenhouse culture for lower frequencies of release. Of
additional economic interest, in this case, the biological
treatment is always combined with partial harvesting, so
that there is little or no extra cost linked to the presence
of workers on-site. However, this result runs counter to
that obtained by Mailleret and Grognard [2006] who
demonstrated that the higher the release frequency, the
smaller the worst-case damages. Merging the two, for
the set of possibilities considered, seems to indicate that
the harvest frequency is a threshold that should not be
exceeded when releasing predators for efficient biological
control.

We are also concerned with the real-life applicability of
this result and we are currently working out the design
of an experimental setup that would allow us to test our
conclusions. Data from a preliminary field test in fact seem
to confirm the validity of our theoretical approach.

5. CONCLUSION

Our study was based on the biological control of conti-
nuously grown crops which are partially harvested on a
regular basis. We formulated the stability condition for
the system in terms of the minimal number of predators
to inject over a period of time, formalising mathematically
the concept of a minimal budget.

We investigated the combined effects of releases and par-
tial harvests on this minimal budget in terms of the relative
frequencies of their implementation. We considered the
case where these two events occurred at periods such that
one was the integer multiple of the other, and with the two
events coinciding over the longer period. We found that
the harvest frequency provided a threshold for the release

frequency, below which biological control is less costly.
(Note that this threshold does not depend on the absolute
value of the harvest period in itself.) Combined with the
findings of Mailleret and Grognard [2006], we concluded
that for the set of possibilities that was studied, the current
‘best’ strategy is when release and harvest frequencies are
equal.

This approach has, however, its shortcomings. One is that
it is not yet generalised to other scenarios where neither
period is the integer multiple of the other. It is possible
that these intermediate ratios induce other dynamics in
the system. Whether they might stabilise it giving even
lower minimal budget values or favour chaos remains to
be seen.

Nevertheless, we consider that our results already have a
practical economic advantage. Indeed, coinciding periods
imply little or no additional costs incurred in terms of
labour: the task of predator release can be assigned to
workers in charge of partial harvesting.
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