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Abstract:
This paper presents an elegant method for controlling nonlinear systems by modeling them in terms of a
Takagi-Sugeno(T-S) fuzzy model. The concept of network inversion is used to design the controller for
such a system. The proposed controller is shown to make the closed loop system stable in the sense of
Lyapunov. The existing controller design techniques for T-S fuzzy model, like LMI techniques, robust
control techniques are based on a sufficient or prerequisite condition for closed loop stability whereas
in the present scheme no such sufficient condition is necessary. Moreover the present approach greatly
simplifies the process of controller design compared to the earlier techniques. Simulation results on three
nonlinear systems show the efficacy of the proposed control scheme. The proposed controller has also
been implemented on the cart pole system in real time and the results are provided with a qualitative
comparison with the well established LQR control.

Keywords: T-S Fuzzy model, Fuzzy Neural Network, Stability analysis, Network Inversion

1. INTRODUCTION

Takagi and Sugeno [Takagi and Sugeno, 1985] proposed a
fuzzy modeling approach wherein the input space of the nonlin-
ear system to be modeled is divided into different fuzzy regions
with a local linear model being used in each region. The overall
model output is obtained by defuzzification using the center of
gravity (COG) method. Using the same concept, Johansen and
Foss [Johansen and Foss, 1993] designed an ARMAX model
in each of the operating regions. The global model was then
obtained by interpolation. Since there are numerous established
methods to design controllers for linear systems, one would def-
initely be attracted to simplify the nonlinear control problem by
finding a global control law from the local linear controllers that
will stabilize the entire fuzzy model. Thus the stability analysis
and controller design for T-S fuzzy systems have attracted many
researchers [Tanaka, 1995, Cao et al., 1998] in recent years.

In general, asymptotic stability of fuzzy system is not guaran-
teed even if individual subsystems are stable. Tanaka [Tanaka
and Sugeno, 1992, Tanaka, 1995] analyzed the stability of this
kind of fuzzy systems where stability can be ensured by finding
a common Lyapunov function for all the ARMA models. The
conditions for existence of common Lyapunov function are
derived and the common Lyapunov function is obtained by
solving a Linear Matrix Inequality (LMI). But it is generally
difficult to find a common Lyapunov function, moreover it does
not exist always. In 1998, these stability conditions have further
been relaxed by Tanaka et al. [1998]. Feng et al. [1997] also dis-
cussed stability of fuzzy systems in continuous time case based
on the same Lyapunov function approach. There, they have
ensured global stability by introducing a compensating term
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by variable structure control along with the local controllers.
For continuous time T-S fuzzy system, Zak [Zak, 1999] has
proposed a fixed gain state feedback controller for the global
system by expressing the T-S fuzzy model as a linear plant
with a nonlinear disturbance term. In a recent work [Premkumar
et al., 2006], we have proposed variable gain controllers using
a similar approach. However these controllers need a tedious
design procedure before applying.

In this paper, we propose a controller design scheme based on
the inversion of the T-S fuzzy model of a nonlinear system.
The local linear models of the T-S fuzzy system can either be
identified from the input output data set using a fuzzy neural
network or be computed from the nonlinear dynamics using a
linearization technique. After identifying the system as a fuzzy
cluster of local linear models, the required input to achieve
a desired output, is predicted from the learned model by net-
work inversion. Linden and Kindermann [Linden and Kinder-
mann, 1989] first proposed a method of inversion for arbitrary
continuous multilayer nets (MLN) based on iterative gradient
search in the input space. This technique has been extended
by Hoskins et al. [1992] where the forward dynamic model of
the plant is learned using MLN, and iterative constrained inver-
sion is performed online to generate control commands. Behera
et al. have proposed an extended Kalman filter (EKF) based
inversion algorithm for radial basis function (RBF) networks
[Behera et al., 1995, 1996] to predict the control input. Above
mentioned works motivated us to use this network inversion
technique for T-S fuzzy model where given a desired output
pattern, the control input is predicted through direct inversion
of the fuzzy model using Lyapunov function approach.

Further the network inversion based control design scheme is
extended to derive the feedback gains of a linearly parametrized
control input for the T-S fuzzy model. The control law u(k) in
this case is assumed to have a simple representation u(k) =
−

∑

j σjFjx(k) where Fj’s are designed online through net-
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work inversion. The advantage of such a scheme is that it
avoids the need of any sufficient condition as in LMI techniques
[Tanaka and Sugeno, 1992, Tanaka, 1995, Tanaka et al., 1998]
or any prerequisite constraint as in robust control techniques
[Zak, 1999, Premkumar et al., 2006]. It also simplifies the
process involved in controller design. Furthermore, this design
procedure can be used both for regulation as well as tracking
problems. The applicability of the proposed scheme is demon-
strated through simulation as well as experimental results.

2. MODELING OF NONLINEAR SYSTEMS USING T-S
FUZZY SYSTEM

2.1 T-S fuzzy model

Let us consider a class of discrete time nonlinear system as,

x(k + 1) = f(x(k), u(k)) (1)

where x(k) is the n-dimensional state vector, u(k) the p-
dimensional input vector.

The above system can be effectively modeled as a T-S fuzzy
system where the nonlinear system is approximated by a fuzzy
cluster of M local linear models where jth fuzzy rule has the
following form:

IF x1(k) is F j
1

AND · · · AND xn(k) is F j
n THEN

x(k + 1) = Ajx(k) + Bju(k) (2)

where x = [x1, x2 · · · , xn]T , j = 1, · · ·M . Now onwards, we
will term a local linear model as subsystem.

Given an input-output pair (x(k), u(k)), the fuzzy model
around this operating point is constructed as the weighted aver-
age of the linear subsystems and has the form

x(k + 1) =

∑M

j=1
µj(Ajx(k) + Bju(k))

∑M

j=1
µj

(3)

where µj =
n

∏

i=1

µi
j(xi)

µi
j(xi) is the membership function of the fuzzy term F j

i , j =
1, 2, · · · , M . The fuzzy system (3) can be rewritten as,

x(k + 1) =

M
∑

j=1

σj(Ajx(k) + Bju(k)) (4)

where, σj =
µj

∑M

j=1
µj

,
M
∑

j=1

σj = 1

2.2 Identification of local linear models

The linear model parameters Aj ’s and Bj’s can be found either
by linearizing the nonlinear system dynamics or from the input-
output data set using a fuzzy neural network. The linearization
at origin can be done using the standard Taylor series expansion
and at other operating points the procedure described in [Zak,
2003] can be adopted. A typical fuzzy neural network is shown
in Figure 1 where xi(k + 1) is the individual state, i = 1, · · ·n.
The four layers are fuzzification layer, rule layer, linear model
layer and defuzzification layer. The specific function of each

layer is given in [Zhang and Morris, 1995]. Detailed description
of the identification method including the weight update law
can be found in [Behera and Anand, 1999].
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Fig. 1. Fuzzy neural network model of a nonlinear system with
n states

3. STABILITY ANALYSIS AND CONTROLLER DESIGN
FOR A T-S FUZZY MODEL

3.1 Parallel Distributed Fuzzy Compensator

In parallel distributed compensation (PDC) [Tanaka et al.,
1998], each control rule is designed based on the corresponding
rule of a T-S fuzzy model. The designed fuzzy controller uses
the same fuzzy sets of the model. For the fuzzy model (4), a
fuzzy regulator can be designed as follows:

Regulator Rule j:

IF x1(k) is F j
1

AND · · · AND xn(k) is F j
n THEN

u(k) = −Fjx(k), j = 1, 2 · · ·M (5)

The overall fuzzy regulator is represented by

u(k) = −

M
∑

j=1

σjFjx(k) (6)

Thus the design problem simplifies to designing the local
feedback gains Fj .

If we put the control law (6) in equation (4), the closed loop
system becomes

x(k + 1) =
M
∑

i=1

σi(Ai − Bi

M
∑

j=1

σjFjx(k))

=

M
∑

i=1

M
∑

j=1

σiσj(Ai − BiFj)x(k) (7)

The above system will be asymptotically stable if there exists a
common P for all the subsystems such that

HT
ijPHij − P < 0

where Hij = Ai − BiFj . Tanaka et. al. presented relaxed
stability conditions [Tanaka et al., 1998] for the closed loop T-
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S fuzzy system which provide a mean to design the controller
gains by use of LMI techniques.

3.2 Inversion Based Controller Design Scheme

In this section we provide a new scheme for designing the
controller gains which uses the concept of network inversion
[Linden and Kindermann, 1989, Behera et al., 1995, Behera,
2003]. The inverse mapping of any network generates an input
pattern for a desired output pattern. It is possible to obtain
the required control input for the desired output via inversion
process.

Control Scheme 1: In this control design scheme, given a
desired state vector and the present state vector of the system
model, a control input is generated such that the closed loop
system is Lyapunov stable. The Lyapunov function for the
system is taken as

V =
1

2
x̃T x̃

where x̃ = xd − x̂. Here, xd is the desired state vector, x̂ is
the actual state vector of the FNN model. u is the predicted
input using the inversion of the model which is fed to the actual
system. Since during the inversion process, the present states
are kept constant, x̂(k + 1) can be considered as a function of
only u. Thus the time derivative of the Lyapunov function can
be written as

V̇ =−x̃T ∂x̂

∂u
u̇

=−x̃T Ju̇ (8)

where J = ∂x̂
∂u

∈ Rn.

Theorem 1. If arbitrary initial input u(0) is updated by

u(T ) = u(0) +

∫ T

0

u̇dt (9)

where u̇ is given by

u̇ = −
‖x̃‖2

‖JT x̃‖2
JT x̃ (10)

then x̃ converges to zero provided u̇ exists along the conver-
gence trajectory.

Proof: Substituting u̇ from equation (9) into (8) we get

V̇ = −‖x̃‖2

The iterative inversion based input update law is given by the
following equation.

u(t + 1) = u(t) + δu̇ (11)

where t is the iterative index and δ is a small positive constant
which represents the update rate. The possible numerical insta-
bility associated with the weight update law can be avoided by

adding a small positive constant in the denominator. In this V̇
will be negative semi definite and the error will not converge
to zero asymptotically. Instead it will bounded by ball of small
radius. The schematic diagram of the control scheme is shown
in figure 2.

The inversion process can also be carried out using gradient
search. In this case the iterative input update law is given as:

u(t + 1) = u(t) + δ
∂x̃

∂u
(12)

Nonlinear

Plant

T-S Fuzzy

Model

Network

Inversion

Algorithm

u xa

x

predicted input past inputs

present & past states

next desired states

x̃

u

u

Fig. 2. Network Inversion Based Control Scheme

Control Scheme 2: The similar idea can be used to get the
feedback gains Fj when the control input u(k) is represented
by the following parametrized form.

u(k) = −
∑

j

σjFjx(k) (13)

Since the above form of control law is used for regulation
purpose, we will first derive the feedback gains Fj for regu-
lation only. For a regulation problem, the Lyapunov function
candidate is chosen as:

V =
1

2
xT x

We can get the required control input u(k) by recursively
updating Fj while keeping x(k) fixed. Thus the control action
can be viewed as a function of feedback gains only. Thus
the time derivative of the Lyapunov function candidate can be
derived as:

V̇ = xT ẋ = xT ∂x

∂u
(

M
∑

j=1

σj

∂u

∂Fj

Ḟj) =

M
∑

j=1

σj(x
T DjḞj)

where Dj = ∂x
∂u

∂u
∂Fj

. It is assumed here that the state changes

due to the change in input only.

Let us select the incremental feedback gain to be

Ḟj = −
‖x‖2

‖DT
j x‖2

DT
j x (14)

Thus V̇ becomes

V̇ = −

M
∑

j=1

σj‖x‖
2 = −‖x‖2

which is negative definite. Thus the following theorem ensures
the asymptotic stability of the overall system.

Theorem 2. If an arbitrary initial feedback gain Fj(0) is up-
dated by

Fj(t) = Fj(0) +

∫ t

0

Ḟjdt (15)

where Ḟj is given in (14), then x converges to zero provided Ḟj

exists along the convergence trajectory.

The possible numerical instability associated with the weight
update law can be avoided by adding a small positive constant
in the denominator.

Since the LMI techniques try to design the gains by finding
out a common P and the existence of the common P is not
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guaranteed always, there may be cases where it fails to find out
any feasible set of gains. But in the presented design technique
no such sufficient condition is needed to be satisfied. The gains
can be found out online while maintaining the closed loop
stability through Lyapunov approach. We will show in one of
the simulation results that the feedback gains designed using the
proposed scheme actually satisfy the relaxed stability condition
as given in [Tanaka et al., 1998].

The inversion process requires the training data set to be di-
mensionally sufficient to obtain an accurate T-S fuzzy model
of the system. For open loop unstable nonlinear systems, the
training data sets are obtained using a PD controller. Thus the
input data depends on the states of the system which makes
the data dimensionally insufficient. Random sinusoid trajecto-
ries are taken as the desired trajectories for the PD controller.
Various dither signals like white noise, impulses, step functions
are added to the output of the PD controller to make input data
independent of the states of the system.

4. SIMULATION AND EXPERIMENTAL RESULTS

In this section we provide the simulation results for three
nonlinear systems namely single link manipulator, cart pole
system and two link manipulator to establish the validity of the
proposed control schemes. One of the proposed controllers has
also been implemented in real time for the cart pole system.

Single Link Manipulator The dynamic model of a single link
manipulator is given as:

ml2θ̈ + mgl cos θ = τ

where m = 11.36 kg, l = 0.432 meter, g = 9.81 meter/sec2.

Considering the systems states as z1 = π
2
− θ, z2 = θ̇, the

state space model becomes

ż1 =−z2

ż2 =−22.7 sin z1 + 0.47 τ (16)

Input (τ ) and output (θ, θ̇) data are generated within the
workspace 0 < z1 < 2 and −2 < z2 < 2. Since the single link
manipulator is an open loop unstable system, a PD controller
is used for data generation. Random sinusoidal trajectories are
taken as the desired trajectories. Various dither signals like
noise, impulse, step are added to the PD controller output to
make the identification proper. Joint angle z1 and joint velocity
z2 are fuzzified in three equally spaced regions in the specified
workspace. Gaussian function is chosen as fuzzy membership
function. Thus the T-S fuzzy model is having 9 fuzzy rules.
Each rule has been identified from the input-output data using
the fuzzy neural network described in chapter 2. Out of 9 fuzzy
rules, one fuzzy rule is given below:

Rule 1: If x(k) is around [0 0]T

Then x(k+1) =

[

1.0000 −0.0050
0.0913 0.9995

]

x(k)+

[

0
0.0330

]

u(k)

The identification result is shown in Figure 3. For model val-
idation, we have carried out network inversion using test data
pairs. The result is plotted in figure 4.

After identifying the system, the control law is designed for
regulation purpose using both control schemes described in
section 3.2. In the first control scheme, u is directly updated
using Lyapunov function based iterative inversion technique
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Fig. 3. Model prediction for Single Link Manipulator
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Fig. 4. Model Validation for Single Link Manipulator
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0.4

x
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Fig. 5. Regulation result for Single Link Manipulator: Solid line
represents control scheme 1 and dashed line represents
control scheme 2

(equation (9)). In the second control scheme, u is a function of
different feedback gains (equation (13)). The initial feedback
gains Fj in (13) are taken as small random numbers and Fj’s
are updated online using the update law (14). The feedback
gains Fj of only those subsystems are actually updated which
are fired along the convergence trajectory. Gains of rest of the
systems remain almost unchanged. The convergence results
for two different state trajectories, starting from the initial
conditions 0.4 and−0.3 respectively, are shown in figure 5. The
solid line represents the control scheme one where the dashed
line represents control scheme 2.

Though the feedback gains are designed using the proposed
control scheme, they also satisfy the relaxed stability condition
as described in [Tanaka et al., 1998]. Using the LMI technique,
the common Lyapunov matrix P for the initial condition 0.4

is found to be P =

[

0.15 −0.01
−0.01 0.02

]

along the state trajectory

starting from the initial conditions 0.4.
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Fig. 6. Tracking result for two link manipulator based on
Lyapunov based inversion technique

4.1 Two Link Manipulator

For a two-link robotic manipulator, the dynamical equations
which relate the joint torques [τ1, τ2] to the joint angles [θ1,
θ2] of the links are given as

[

θ̈1

θ̈2

]

=
1

D

[

m22 −m12

−m21 m11

] [

τ1 − v1

τ2 − v2

]

(17)

a1 = 3.82, a2 = 2.12, a3 = 0.71, a4 = 81.82, a5 = 24.06.
m11 = a1 + a2 cos θ2, m12 = m21 = a3 +

a2

2
cos θ2, m22 = a3

v1 = a4 cos θ1 − (a2 sin θ2)(θ̇1θ̇2 +
θ̇2

2

2
) + a5 cos(θ1 + θ2)

v2 = (a2 sin θ2)
θ̇1

2

2
+ a5 cos(θ1 + θ2)

D = m11 m22 − m12 m21

Since the system dynamics exhibits a nonlinear behavior
mainly because of the joint angles θ1 and θ2, we have fuzzified
these two states only. Each state is fuzzified in seven equally
spaced regions in the range [π

3
, 2π

3
] and [−π

6
, π

6
] respectively.

Gaussian function is chosen as fuzzy membership function.
One of the total 49 fuzzy rules is given as follows:

Rule 1: If x is around [π
2
, 0, 0, 0]T , then

x(k+1) =







1.0 .005 0 0
0.15 1.0 .118 0
.001 0 1.00 .005
.205 0.0 .463 1.00






x(k)+







0 0
−0.003 .008

0 0
−0.008 .027






u(k)

x(k) = [x1 x2 x3 x4]
T = [θ1 θ2 θ3 θ4]

T and u(k) = [τ1 τ2]
T .

The above linear model is computed using Taylor series ex-
pansion for the discrete time approximation of the model and
the linear models at other operating points are obtained by
the linearization technique described in chapter eight of [Zak,
2003]. The controller is designed using Lyapunov approach
based direct inversion algorithm for the desired trajectories,

θ1d =
π

2
−

π

6
sin(3t), θ2d =

π

6
cos(3t)

The tracking results are shown in figure 6. Figure 7 shows the
required input torques for the system.

4.2 Cart-Pole System

The proposed control algorithms are applied to stabilize an
inverted pendulum mounted on a cart. The dynamics of the
system can be written as
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Fig. 7. Control torques for two link manipulator
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Fig. 8. Simulation results for cart pole system: Lyapunov based
iterative inversion algorithm

ẋ1 = x2

ẋ2 =
g sin(x1) − amlx2

2
sin(2x1)/2 − c1 a x4 cos(x1)

4l/3 − aml cos2(x1)

−
c2 a cos(x1)

4l/3− aml cos2(x1)
u

ẋ3 = x4

ẋ4 =
−mag

2
sin(2x1) + 4

3
mlax2

2
sin(x1) + 4

3
ac1x4 + 4

3
ac2u

4/3 − am cos2(x1)

(18)

where x1 is the angle of the pendulum from vertical, x2 is the
angular velocity of the pendulum, x3 is cart position, x4 is the
cart velocity and u is the input voltage. The system parameters
are m, mass of the pendulum, M , mass of the cart, 2l, length
of the pendulum. g is acceleration due to gravity. a, c1 and c2

are three constants. The controller has been implemented both
in simulation and real time. The real time experimental set up
is a Quanser product for which the system parameters are given
as m = 0.23 kg, M = 0.5 kg, l = 0.321 m.

Pendulum angle x1 is fuzzified in 7 equally spaced regions
within the operating region [−π/6, π/6]. Gaussian function is
chosen as fuzzy membership function. Around the equilibrium
point (0,0), we have linearized the discrete time approximation
of the system model using standard Taylor series expansion.
At other operating points, linear models are obtained by the
technique, described in chapter eight of [Zak, 2003].

The control objective here is to stabilize the system states at
the equilibrium point x = [0 0 0 0]T . Once the system is
expressed as a fuzzy cluster of 7 linear models, the control
input is computed using direct iterative inversion as given in
(10) - (11). The desired output is taken as the output of a
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Fig. 9. Experimental results for cart pole system: Solid line rep-
resents the LQR control scheme and dashed line represents
the proposed inversion based control scheme

reference linear model. The reference model is regulated using
LQR control strategy. Simulation result is shown in figure 8.

Next we have applied the proposed controller to the real time set
up of the cart pole system. The control input is obtained from
the fuzzy model of the system using iterative gradient search.
The results are compared with the well established LQR control
where the control input is obtained from the linear model at
the equilibrium point. Since the T-S fuzzy model represents
the system for a wide operating range, it is expected that the
proposed controller will work for a wide initial angle. This fact
was indeed observed in the real time experiment. It was also
observed that the proposed controller is more robust in the sense
that it can tolerate disturbance of higher magnitude compared to
LQR. The same observation can be made from the experimental
results, shown in figure 9.

5. CONCLUSION

This work discusses the methods to design controllers for
nonlinear systems when they are expressed as a discrete time
T-S fuzzy model. The linear models of the T-S fuzzy model are
obtained either from the input output data set of the nonlinear
system using a fuzzy neural network or using a linearization
technique from the nonlinear system model. In this work we
use the concept of network inversion for the designing the
controller. In one of the control schemes we have used the T-
S fuzzy model to predict the control input directly for a desired
output using inversion process. In the other scheme, a linearly
parametrized form, as in the earlier design techniques, of the
control input is used where the parameters are updated online
using the inversion of the system model. Since the inversion
process uses the Lyapunov function approach, it also guarantee
the stability of the closed loop system. The advantage of such
a model is that it does not require any prerequisite condition to
be satisfied while designing the controller. The feedback gains
are calculated online and the design process is much simplified
in comparison with the earlier techniques.

Three simulation examples have been demonstrated which
show the applicability of the proposed controllers. In first ex-
ample, the T-S fuzzy model of a single link manipulator is
identified from the input-output data and a stabilizing controller
is designed using the proposed schemes. It has been found that
the feedback gains for the second control scheme also satisfy
the LMI condition. In the second example, two link manipulator
system is considered for which a tracking controller is designed
using the direct inversion technique. In the third example the
nonlinear dynamics of a cart pole system is considered. The
proposed direct inversion based controller is implemented both
in simulation and real time. The experimental results are com-
pared with the established linear control law (LQR) and it is
seen that the proposed controller can work for a wide range
of initial pendulum angle and tolerate disturbance with higher
magnitude compared to the LQR.
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