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Abstract: This paper addresses the issue of the practical implementation of closed-form Model
Predictive Controllers (MPC) to processes with very short sampling times. Such questions come
in consideration when the solution to MPC problems is expressed in a so-called parametric or
closed-form fashion. The underlying idea of this paper is to approximate the optimal control law
defined over state space regions by a higher degree polynomial which then guarantees closed-
loop stability, constraint satisfaction, and a bounded performance decay. The advantage of the
proposed scheme lies in faster controller evaluation and lower storage demand compared to
currently available techniques.
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1. INTRODUCTION

In the Model Predictive Control (MPC) framework (Mayne
et al., 2000), the process to be controlled is described by a
dynamical model, based on which the predicted behavior
of the plant can be optimized. If the model of the plant
is constrained and linear, and the performance index is
based on linear vector norms, it can be shown (Borrelli,
2003) that the underlying optimization problem can be
formulated and solved with a multi-parametric linear pro-
gram (mpLP). The resulting closed-form solution, which
can be interpreted as a lookup table, is a piecewise affine
(PWA) control law defined over polyhedral regions of the
state space. Moreover, in (Borrelli, 2003) it was shown
that the same type of solutions can be obtained even
when the controlled plant is described by a hybrid model.
Such hybrid systems (Bemporad and Morari, 1999) are
systems which combine continuous dynamics with discrete
logic, such as on/off switches or finite state machines.
These systems are appealing because of their ability to
approximate non-linear plants with arbitrary precision.

An advantage of the closed-form solutions is that their
on-line application reduces to a simple set-membership
test, which can be performed much faster compared to
traditional on-line optimization-based techniques. Hence
allowing MPC to control processes also with fast sampling
rates.

However, the time needed to evaluate the lookup table still
limits the minimal admissible sampling time of the con-
trolled system and even in an ‘average’ case the complexity
of the lookup table in the number of defining state space
regions tends to be very large and above the storage limit
of most control devices (Borrelli, 2003). Therefore, it is
often essential for a real-life implementation of the closed-
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form solution to find an appropriate approximation of the
controller or a controller with reduced complexity. Several
authors therefore addressed the complexity reduction or
approximation issue by either modifying the original MPC
problem, retrieving a suboptimal solution, or by post-
processing the computed optimal controller, cf. e.g. (Bem-
porad and Filippi, 2003; Geyer et al., 2004; Tøndel et al.,
2003; Ulbig et al., 2007; Lazar et al., 2007). However, a
direct guarantee on the reduction of the complexity, closed-
loop stability, or performance decay is mostly neglected.

In this paper we propose first to calculate a parametriza-
tion of a set of stabilizing feedback laws and then (in the
second step) to find a multivariate polynomial contained in
such a set. If the polynomial exists and is applied as a state
feedback control law to the system, closed-loop stability
and constraint satisfaction are guaranteed. The advantage
of the polynomial feedback law is that it can be evaluated
on-line more efficiently compared to existing approaches. It
will be illustrated that the polynomial-based scheme can
be evaluated in a constant number of CPU operations,
regardless of the complexity of the underlying parametric
solution. Similarly, the memory requirement is only a con-
stant function of the degree of the approximation polyno-
mial and does not depend on the complexity of the lookup
table. We show that the memory requirements needed to
store the approximated control law are reduced by several
orders of magnitude compared to existing methods.

2. CONSTRAINED OPTIMAL CONTROL OF
HYBRID SYSTEMS

Piecewise affine (PWA) systems (Sontag, 1981) are equiv-
alent to many other hybrid system classes (Heemels et al.,
2001) such as mixed logical dynamical systems, linear com-
plementary systems, and max-min-plus-scaling systems
and thus form a very general class of linear hybrid systems.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 3877 10.3182/20080706-5-KR-1001.1470



Moreover, PWA systems can be used to identify or approx-
imate generic nonlinear systems via multiple linearizations
at different operating points (Sontag, 1981). Although
hybrid systems (and in particular PWA systems) are a
special class of nonlinear systems, most of the nonlin-
ear system and control theory does not apply because
it usually requires certain smoothness assumptions. For
the same reason we also cannot simply use linear control
theory in some approximate manner to design controllers
for PWA systems.

We consider the class of discrete-time, stabilizable, linear
hybrid systems that can be described as constrained Piece-
wise affine (PWA) systems of the following form

x(t + 1) = fPWA(x(t), u(t)) (1)

:= Adx(t) + Bdu(t) + ad, if
[

x(t)
u(t)

]
∈ Dd,

where t ≥ 0, the domain D := ∪ND

d=1Dd of fPWA(·, ·)
is a non-empty compact set in R

nx+nu with ND < ∞

the number of system dynamics, and {Dd}
ND

d=1 denotes
a polyhedral partition of the domain D, i.e. the closure
of Dd is D̄d :=

{
[ x
u ] ∈ R

nx+nu | Dx
dx + Du

du ≤ D0
d

}
and

int(Dd) ∩ int(Dj) = ∅ for all d 6= j. Note that linear state
and input constraints can be naturally incorporated in the
description of Dd. Throughout this work it is assumed that
the origin is an equilibrium point of the PWA system (1).

2.1 Constrained Finite Time Optimal Control

We define for the aforementioned PWA system (1) the
constrained finite time optimal control (CFTOC) problem

J∗
T (x(0)) := min

UT

ℓT (x(T )) +

T−1∑

t=0

ℓ(x(t), u(t)) (2a)

s.t.

{
x(t + 1) = fPWA(x(t), u(t))
x(T ) ∈ X f ,

(2b)

where ℓ(·, ·) is the stage cost, ℓT (·) the final penalty
function, UT is the optimization variable defined as the

input sequence UT := {u(t)}
T−1
t=0 , T < ∞ is the prediction

horizon, and X f is a compact terminal target set in
R

nx . With a slight abuse of notation, when the CFTOC
problem (2a)–(2b) has multiple solutions, i.e. when the

optimizer is not unique, U∗
T (x(0)) := {u∗(t)}

T−1
t=0 denotes

one (arbitrarily chosen) realization from the set of possible
optimizers. The CFTOC problem (2) implicitly defines
the set of feasible initial states XT ⊂ R

nx (x(0) ∈ XT )
and the set of feasible inputs UT−t ⊂ R

nu (u(t) ∈ UT−t,
t = 0, . . . , T − 1). In the sequel we will consider linear cost
functions of the form

ℓ(x(t), u(t)) := ‖Qx(t)‖p + ‖Ru(t)‖p, (3a)

ℓT (x(T )) := ‖Px(T )‖p, (3b)

where ‖·‖p with p ∈ {1,∞} denotes the standard vector
1-/∞-norm.

The goal in this section is to give an explicit (closed-form)
expression for u∗(t) : XT → UT−t, t = 0, . . . , T − 1.

Theorem 2.1. (Solution to CFTOC (Borrelli, 2003)). The
solution to the optimal control problem (2a)–(2b) with a
linear performance index (3) is a time-varying piecewise
affine function of the initial state x(0)

µPWA(x(0), t) = KT−t,i x(0) + LT−t,i,

if x(0) ∈ Pi with u∗(t) = µPWA(x(0), t), where t =

0, . . . , T − 1, and {Pi}
NP

i=1 is a polyhedral partition of the

set of feasible states x(0), XT = ∪NP

i=1Pi, with the closure
of Pi given by P̄i = {x ∈ R

nx | P x
i x ≤ P 0

i }. �

If the resulting feedback law is applied in the receding
horizon (RH) fashion (Mayne et al., 2000), the control is
given as a time-invariant state feedback law of the form

µRH(x(t)) := KT,i x(t) + LT,i, (4)

if x(t) ∈ Pi, where i = 1, . . . , NP and u(t) = µRH(x(t)) for
t ≥ 0.

Definition 2.2. (Feasibility). A CFTOC problem is called
feasible at time t if there exists a control action at time
t for the measured state xt := x(0), which satisfies the
state and input constraints over the considered prediction
horizon T . A receding horizon control problem is called
feasible for all time if it is feasible for all t ≥ 0. �

Assumption 2.3. (Stability, feasibility). Note that in the
following it is assumed that the parameters T,Q,R, P ,
and X f are chosen in such a way that (4) is closed-loop
stabilizing, feasible for all time (Christophersen, 2007) and
that a polyhedral piecewise affine Lyapunov function of the
form

V (x) = V x
i x + V 0

i , if x ∈ Pi

for the closed-loop system

fCL(x(t)) := fPWA(x(t), µRH(x(t)), (5)

x(t) ∈ XT , exists and is given. �

This is not a restricting requirement but rather the aim of
most (if not all) control strategies. Furthermore, we remark
that if the parameters are chosen according to e.g. (Mayne
et al., 2000) one can simply take V (·) equal to the optimal
cost J∗

T (·).
In the course of this paper our focus lies on the reduction
of the complexity of the closed-form control law µRH(·)
without losing closed-loop stability nor feasibility for all
time.

3. STABILITY TUBES

In order to present the complete result for the new con-
troller approximation approach, the two underlying core
ideas need to be explained. The first idea is based on the
inherent freedom of the Lyapunov decay inequality (6b) of
Theorem 3.1, repeated for completeness in the following
and proved e.g. in (Lazar et al., 2008).

Theorem 3.1. (Asymptotic/exponential stability). Let XT

be a bounded positively invariant set in R
nx for the au-

tonomous (closed-loop) system x(t + 1) = fCL(x(t)) with
x(t) ∈ XT and let α(·), α(·), and β(·) be K-class functions
(Vidyasagar, 1993). If there exists a non-negative function
V : XT → R≥0 with V ( nx

) = 0 such that

α(‖x‖) ≤ V (x) ≤ α(‖x‖), (6a)

∆V (x) := V (fCL(x)) − V (x) ≤ −β(‖x‖), (6b)

for all x ∈ XT , then the following results hold:

(a) The equilibrium point nx
is asymptotically stable

(Vidyasagar, 1993) in the Lyapunov sense in XT .
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(b) If α(‖x‖) := a‖x‖γ , α(‖x‖) := a‖x‖γ , and β(‖x‖) :=
b‖x‖γ for some positive constants a, a, b, γ > 0
then the equilibrium point nx

is exponentially stable
(Vidyasagar, 1993) in the Lyapunov sense in XT . �

Simply speaking, if all the prerequisites of Theorem 3.1
are fulfilled with a given controller µRH(·), the resulting
behavior of the closed-loop system is stabilizing. If, for
the given function V (·), β(·) is now relaxed, one can
(possibly) find a set of controllers that will render the
closed-loop system stabilizing and feasible. (Note, that
setting β(·) close to the zero-function is sufficient for
pure asymptotic stability. Naturally, however, the altered
closed-loop system is likely to exhibit a modified, possibly
detuned, performance and transient behavior.)

These sets of controllers are denoted in the following as
stability tubes. (The concept and results of stability tubes
– along with their computation – are elaborated in further
detail in (Christophersen, 2007, Ch. 10).)

Definition 3.2. (Stability tube). Let V (·) be a Lyapunov
function for the general nonlinear, closed-loop system x(t+
1) = f(x(t), u(t)), with x(t) ∈ XT , under the stabilizing
control u(t) = µ(x(t)) and constraints [ x

u ] ∈ D and let the
prerequisites of Theorem 3.1 be fulfilled. Furthermore, let
β(·) be a K-class function. Then the set

S(V, β) :=
{

[ x
u ] ∈ R

nx×nu

∣∣∣ f(x, u) ∈ XT ,

[ x
u ] ∈ D, V (f(x, u)) − V (x) ≤ −β(‖x‖)

}

is called stability tube. �

Theorem 3.3. (Stability tube (Christophersen, 2007)). Let
the assumptions of Definition 3.2 be fulfilled. Then every
control law u(t) = µ̃(x(t)), x(t) ∈ XT , (also any sequence
of control samples u(t)) fulfilling[

x(t)
u(t)

]
∈ S(V, β) (7)

asymptotically stabilizes the system x(t+1) = f(x(t), u(t)),
where x(t) ∈ XT , to the origin. �

Naturally, for general nonlinear systems, the stability
tube S(V, β) can basically take any form. Note, however,
that for the considered class of PWA systems, PWA
control laws, and PWA Lyapunov functions with β(·)
consisting of a sum of weighted vector 1-/∞-norms, the
stability tube can be described by a collection of polytopic
sets in the state-input space and can be computed with
basic polytopic operations. In the case considered here,
the stability tube can be represented and ‘easily’ be
obtained as a collection (or union) of polytopes of the

form S(V, β) := ∪NS

j=1Sj , where the closure of Sj is

S̄j :=
{
[ x
u ] ∈ R

nx+nu | Sxu
j [ x

u ] ≤ S0
j

}
. Without going into

details, by construction, we have the following properties:
(a) for some index set Ii ⊆ {1, . . . , NS}, the union
∪j∈Ii

Sj is defined over the controller region Pi, and (b),∑NP

i=1 |Ii| = NS . This means that each Sj is defined
over a single region Pi, i.e. if for some i1 and j we have
projx(Sj) ⊆ Pi1 then there does not exist a i2 6= i1 with
projx(Sj) ⊆ Pi2 . (We remark, that simulations seem to
indicate that most often Ii = 1 for all i, i.e. only one Sj is
defined over Pi.)

Example 3.4. To demonstrate the idea of the stability
tubes, consider the following simple PWA example

state x

co
n
tr

o
l
u

µRH(x)

10−5

0.2
0.4

β = 0.9

S(J∗

5
, β‖x‖1)

-2 -1 0 1 2

-1

-0.5

0

0.5

Figure 1. Optimal control law µRH(·) (dashed line) for Ex-
ample 3.4. The shadowed sets are the corresponding
stability tubes S(J∗

5 , β‖x‖1) for different values of β.

x(t + 1) =

{
4/5 x(t) + 2u(t) if x > 0,

−6/5 x(t) + u(t) if x ≤ 0,
(8)

with u(t) ∈ [−1, 1] and x(t) ∈ [−2, 2]. When solving the
CFTOC Problem (2) with p = 1 and Q = 1, R = 1, P = 0,
T = 5 one obtains the result illustrated in Fig. 1. The
control law µRH(·) (dashed line) is a PWA function defined
over 3 regions, while the stability tube S(J∗

5 , β‖x‖1) for the
region is shadowed. Note that S(J∗

5 , β‖x‖1), for a fixed β,
is represented by a collection of 3 polytopes. �

Moreover, with the choice of β(·) a detuning of the closed-
loop performance

∑∞

t=0 ℓ(x(t), u(t)), with some control
law u(t) = µ̃(x(t)), compared to the optimal receding
horizon control solution µRH(·), can be performed. Thus,
one can try to find an approximation µ̃(·) ‘inside’ the
stability tube without losing closed-loop stability, all time
feasibility, while still guaranteeing a given, bounded per-
formance decay of η %. The influence of a different β(·) is
elaborated in the following.

Corollary 3.5. (Perform. bound (Christophersen, 2007)).
Let the assumptions of Def. 3.2 be fulfilled, the stage
cost ℓ(·, ·) be lower bounded by some K-class function,
and β > 0. Then every control law u(t) = µ̃(x(t)) with
x(t) ∈ XT (also any sequence of control samples u(t))

fulfilling
[

x(t)
u(t)

]
∈ S (V, βℓ) asymptotically stabilizes the

system x(t + 1) = f(x(t), u(t)), where x(t) ∈ XT , to the
origin and guarantees a level of closed-loop performance
given by ∑∞

t=0 ℓ(x(t), µ̃(x(t))) ≤ 1
β
V (x(0)). (9)

�

We remark, that from (9) it follows that the performance
decay η [in %] with respect to V (x(0)) is related to β > 0

via β(η) =
(
1 + η [in %]

100

)−1

.

Figure 1 illustrates for Example 3.4 the stability tubes for a
variety of different β and fixed V (·). Note, that (naturally)
the stability tubes are subsets of each other and collapse
to the control law µRH(·) itself as β → 1.

In the next section the set S(V, β) will be used to find
a simple polynomial approximation of the optimal con-
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trol law such that stability and feasibility guarantees are
maintained.

4. POLYNOMIAL APPROXIMATION

As outlined in the introduction, we aim at finding a
polynomial µ̃(·) of a fixed degree which, when applied
as a state feedback control law, guarantees stability of
the closed-loop system and approximates the optimal
solution µRH(·) to the CFTOC Problem (2) with certain
optimality. This is achieved by optimizing the coefficients
of a given approximation polynomial such that each point
of the polynomial is contained inside the stability tube
of the corresponding parametric solution to the CFTOC
problem (2). The family of polynomials of interest takes
the following form:

µ̃(x) :=
∑

l=1,...,d

alx
l1
1 · · ·xln

n (10)

where d denotes the degree of the approximation polyno-
mial and the matrices al ∈ R

nu×nx are the coefficients
to be determined. Note that there is no constant offset
a0 present in (10) since µ̃(x = nx

) = nu
is required to

attain stability in the sense of Theorem 3.1.

From Theorem 3.3 follows, in order to guarantee closed-
loop stability, that for all regions Pi, the polynomial µ̃(·)
has to satisfy[

x

µ̃(x)

]
∈ ∪j∈Ii

Sj , ∀x ∈ Pi, ∀ i = 1, . . . , NP , (11)

where ∪j∈Ii
Sj are the stability tubes associated to region

Pi through the index set Ii. In other words, if there

exists a polynomial µ̃(x) such that
[

x

µ̃(x)

]
for all points

x ∈ ∪NP

i=1Pi is contained in S(V, β), then such polynomial,
when applied as a state feedback, guarantees closed-loop
stability and feasibility for all time for the controlled
system (1).

Assumption 4.1. Through the rest of this section we as-
sume that the set Sj defined over the i-th region Pi is con-

vex (and thus |Ii| = 1), and the union ∪NS

j=1Sj = S(V, β)
is connected. �

We remark that simulations seem to indicate that most
often this is fulfilled.

Under Assumption 4.1, condition (11) can be written in a
matrix form as

Sxu
i

[
x

µ̃(x)

]
≤ S0

i , ∀x ∈ Pi ∀ i = 1, . . . , NP . (12)

When considering only a single region Pi = {x ∈
R

nx | P x
i x ≤ P 0

i }, the Positivestellensatz (Stengle, 1974)
provides a sufficient condition for the existence of a suit-
able polynomial approximation µ̃(·) which satisfies (12):

Lemma 4.2. (Positivestellensatz). Given a polynomial
h(x) =

∑
α aαxα and a set of r polynomials gr(x) =∑

α bα,rx
α. If there exist non-negative polynomials sr(x) =∑

α cα,rx
α such that

h(x) −
∑

r

sr(x)gr(x)≥ 0, (13a)

sr(x)≥ 0, (13b)

then the following statement

gr(x) ≥ 0 ⇒ h(x) ≥ 0, (14)

holds for all x ∈ {x|gr(x) ≥ 0}. �

To observe the relation between the Positivestellensatz and
the polynomial approximation (12), notice that one can
define the polynomials h(x) and gr(x) in (14) as

h(x) := S0
i − Sxu

i

[
x

µ̃(x)

]
, (15a)

gr(x) := [P 0
i ]r − [P x

i ]rx, (15b)

where [·]r denotes the r-th row of the respective matrix.
Therefore, in order to find µ̃(x) we need to ensure the
non-negativity of (13). This can be achieved by a sum
of squares decomposition as captured by Lemma 4.3 and
Lemma 4.4.

Lemma 4.3. (Parrilo, 2004) A real valued polynomial
P (x) is non-negative for all x if there exists a sum of
squares (SOS) decomposition of the form

P (x) =
∑

i

p2
i (x), pi(x) ∈ R[x]. (16)

�

Lemma 4.4. (Sum of squares (Parrilo, 2004)). A polyno-
mial P (x) is a sum of squares if and only if it can be written
as P (x) = z′Qz, where z is a vector of monomials (i.e.
polynomials with only one term, e.g. xn

i ) in the xi variables
and Q is a symmetric, positive semi-definite matrix of
suitable dimension. �

By Lemma 4.4, the decomposition (16) can be found by
solving a semi-definite program (SDP), for which efficient
solvers exist (Löfberg, 2004).

We can now state the main result of this section.

Theorem 4.5. (Polynomial approximation). There exists a
state feedback µ̃(x) of the form (10) which stabilizes the
PWA system (1) if the polynomials Pi(x)

Pi(x) := S0
i − Sxu

i

[
x

µ̃(x)

]
−

∑

r

si,r(x)([P 0
i ]r − [P x

i ]rx)

(17)
and polynomials si,r(x) are sum of squares ∀i = 1, . . . , NP .
Moreover, the coefficients al, l = 1, . . . , d, of the polyno-
mial µ̃(x) in (10) can be found by an SOS decomposi-
tion (17) by solving a semi-definite program. �

Proof. By Theorem 3.3, any control law µ̃(x) with[
x

µ̃(x)

]
∈ S(V, β), for all x ∈ XT , stabilizes system (1)

while satisfying the system constraints. The polynomial
µ̃(x) fulfills this condition for all admissible states x ∈ XT

if and only if (12) is fulfilled for all regions Pi. According
to Lemma 4.2, the satisfaction of (12) is implied by the
existence of polynomials sr(x) ≥ 0 and the non-negativity
of (13a). By substituting (15a) and (15b) into (13a) we
obtain

S0
i − Sxu

i

[
x

µ̃(x)

]
−

∑

i

si,r(x)([P 0
i ]r − [P x

i ]rx) ≥ 0. (18)

It follows from Lemma 4.3 that (18) will be globally non-
negative if there exists a set of coefficients al, l = 1, . . . , d
of the polynomial µ̃(·) defined by (10) such that (17)
is a sum of squares and, simultaneously, there exists a
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Figure 2. Stabilizing approximation of the optimal feed-
back law u = µRH(·) (blue line) by polynomials of
different degrees.

SOS decomposition of the polynomials si,r(x). Finally,
Lemma 4.4 shows that the SOS decomposition, and hence
the coefficients of the polynomial µ̃(x), can be found using
semi-definite programming techniques. �

Remark 4.6. The conditions in Theorem 4.5 are merely
sufficient for the existence of a suitable polynomial µ̃(x).
The approximation can still exist even if the SOS prob-
lem (17) is infeasible. �

Theorem 4.5 allows us to search for the coefficients of
the approximation polynomial µ̃(·) by solving an SDP.
We can further extend this result to give a procedure
which optimizes the parameters al, l = 1, . . . , d such
that the point-wise distance between the approximation
µ̃(·) and the optimal control input µRH(·) is minimized,
hence providing a tighter polynomial approximation of the
optimal control law. This can be achieved by solving the
following optimization problem:

min
ad,...,a1

∑

i

‖µRH(x) − µ̃(x)‖2 (19)

subj. to (17) is sum of squares,

si,r(x) are sums of squares.

SOS problems of the form (19) can be formulated and
solved using higher-level optimization tools, such as
YALMIP (Löfberg, 2004).

To illustrate the results of Theorem 4.5, we investi-
gated again the Example 3.4. Three polynomials with
degrees d ∈ {3, 5, 7} were chosen to fit the stability tube
S(J∗

5 , β‖x‖1), where 0 < β ≪ 1. Coefficients of the
polynomials have been obtained by solving problem (19)
using YALMIP. The resulting approximations are depicted
in Figure 2. In all three cases the SOS problem (19)
was feasible. Hence, by Theorem 4.5, each of the three
polynomials guarantees closed-loop stability.

5. COMPLEXITY ANALYSIS

The aim of this section is to compare the polynomial
controllers presented in Section 4 and the binary search
approach of Tøndel et al. (2003) with respect to memory
and CPU requirements.

In order to achieve better run-time performance as well
as lower memory footprint, it is worth to replace the

polynomial approximation of the form of (10) by a simpler
expression, namely by

µ̃(x) := adx
d + ad−1x

d−1 + · · · + a1x. (20)

Remark 5.1. The results of Theorem 4.5 still hold even
for µ̃(x) defined by (20), since this simpler form can be
directly derived from (10) by setting to zero the coefficients
which multiply the cross-products between different pow-
ers of x. This is easily done by imposing additional equality
constraints when solving the approximation problem (19).

Remark 5.2. The sole purpose of the simplification (20)
is to reduce the number of mathematical operations which
are needed to evaluate the polynomial µ̃(x) for a particular
value of x. Since (20) has less degrees of freedom compared
to the full form of (10), there could exist cases for which
given stability tubes S(V, β) can be approximated by µ̃(x)
given by (10), but not with the simpler form of (20).
However, in all investigated cases the approximation prob-
lem (19) was feasible even when µ̃(x) was considered as
in (20).

If the Horner’s scheme (Eve, 1964) is used, the on-line
evaluation of the polynomial (20) for a given value of x
takes at most 1

2nunx(3d + 5) floating point operations
(FLOPS), and one needs at most dnunx bytes to store
all its coefficients. The binary search tree, on the other
hand, can be evaluated in D(2nx +1)+2nxnu FLOPS and
requires as many as D(nx + 3) + Nunu(nx + 1) memory
elements to store all its parameters. Here D stands for the
depth of the tree and Nu represents the number of unique
control laws. Tøndel et al. (2003) gives D ≈ 1.7 log2 NP

as a good estimate, while from the authors’ experience the
number of unique control laws can be roughly estimated
as Nu ≈ 1

4NP .

Therefore the complexity of the on-line implementation
of the binary search tree grows logarithmically with the
increasing number of controller regions NP . On the other
hand, these parameters stay constant in the proposed
polynomial approximation scheme. For better illustration
are these correlations depicted visually in Figure 3. As can
be seen from the pictures, the polynomial approximation
approach easily outperforms the binary tree in terms of
complexity for any reasonably complex partition, i.e. for
NP > 5.

6. EXAMPLE

Consider the example from (Bemporad and Morari, 1999)

x(t + 1) = 4/5

[
cos α(x(t)) − sin α(x(t))
sin α(x(t)) cos α(x(t))

]
x(t) +

[
0

u(t)

]

α(x(t)) =

{
π/3 if [1 0]x(t) ≥ 0,

−π/3 if [1 0]x(t) < 0,

x(t) ∈ [−10, 10] × [−10, 10], u(t) ∈ [−4, 4].

The CFTOC Problem (2) was solved with the parameters
Q = I2, R = 1, T = 3, P = 02, p = ∞ using the
MPT toolbox (Kvasnica et al., 2004) yielding a PWA con-
trol law defined over 26 regions. Subsequently, the stability
tube S was computed with the choice of the performance
tuning parameter β = 0.7143, which corresponds to a
maximum allowed performance decay of 40%. We remark
that the resulting stability tubes satisfied the convexity
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Figure 3. Memory and processing requirements needed to
store and evaluate the binary search tree and the
polynomial controller (20).

assumption 4.1, i.e. the union of the sets Sj defined over
the region Pi was indeed convex.

The approximation problem (19) was then successfully
solved for different degrees of the approximation polyno-
mial (20) using YALMIP. Specifically, we have investigated
the range d ∈ {3, 4, 5, 6}. Overview of the obtained results
is presented in Table 1. It summarizes the time needed
to solve the approximation problem (19) for a particular
polynomial degree d as well as the average performance
decay versus the optimal solution.

The performance drop was calculated as a ratio of the
value of the cost function (2a) with µRH(x0) driven by
the optimal feedback (4) versus the value of the same
objective with µ̃(x0) given by the approximation of the
form (20). The performance objective (2a) in both cases
was evaluated over the closed-loop trajectory for 1000
distinct initial conditions x0. Since a feasible solution was
always recovered, the calculated polynomials, when ap-
plied as state feedback, guarantee closed-loop stability and
feasibility. Note that the performance of the polynomial
controller can be improved by assuming stability tubes
calculated for different values of β as per Corollary 3.5.

Approximation order 3 4 5 6

Runtime [s] 70 130 220 300

Performance decay 26 % 20 % 40 % 14 %

Table 1. Numerical results for the example in
Section 6.
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