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Abstract: This paper considers the application of LQG integral control theory to a problem
of cavity locking in quantum optics. The cavity locking problem involves controlling the error
between the laser frequency and the cavity frequency. A model for the cavity system, which
comprises of a piezo-electric actuator and an optical cavity is determined in the frequency
domain using a subspace identification method. An LQG controller which includes integral
action is synthesized to stabilize the frequency of the cavity at the laser frequency and to reject
low frequency noise inherent in laser systems. The controller is discretized and is successfully
tested in the laboratory after being implemented on a dSpace DSP board.

1. INTRODUCTION

Experimental quantum optics is an area in which feedback
control is applied to systems whose dynamics are most nat-
urally described using a quantum mechanical description
rather than a classical description. Such quantum optical
systems have applications in areas such as quantum com-
puting, quantum teleportation, quantum communications,
and gravity wave detection.

Fig. 1 shows a photograph of a typical quantum optics
laboratory. Quantum optical systems are comprised of
optical components (such as mirrors, beamsplitters, op-
tically active materials, etc) and optical subsystems (such
as cavities, interferometers, lasers, etc) constructed from
these components. Two such subsystems, a cavity and a
laser, are indicated.

Fig. 1. Photograph of a quantum optics laboratory includ-
ing cavity system.

⋆ This work is supported by the Australian Research Council.

In this paper, we consider the application of systematic
methods of LQG optimal control to a problem of cavity
locking which occurs in the area of experimental quantum
optics. In this problem, an optical cavity is driven by a
laser and a piezoelectric actuator is used to adjust the
position of one of the cavity mirrors. This allows the
resonant frequency of the cavity to be locked onto the
frequency of the laser via the use of feedback control.
The most common method which has been used to date
to achieve this frequency locking is known as the Pound
Drever Hall method; e.g., see Black [2001]. This approach
involves measuring the frequency error, commonly referred
to as “detuning” variable ∆. In our case, the available
measurement y is one of the cavity quadratures which is
measured using the standard homodyne detection method;
e.g., see Bachor and Ralph [2004]. In addition, we also
create a fictitious output from our measured output, which
is the integral of the output y. These two outputs are
then used to obtain a Kalman state estimate, which when
combined with a state feedback optimal control law, allows
us to control the slowly varying unmodeled disturbances
(low frequency laser noise) present in our system. The
cavity locking requirement, which now includes rejecting
this disturbance, is reflected in an LQG integral cost
functional.

The model of the system is determined by first stabi-
lizing the system. In particular, the data for the plant
is gathered when the system is in a closed-loop with a
proportional-integral controller in place. In our case, we
measure frequency domain data of the plant over a suitable
frequency range using a swept sine digital signal analyser.
We then use a subspace identification method to determine
a linear model in state-space form from the measured
data; see McKelvey et al. [1996]. This allows the plant to
be modeled as a linear system with reference to a given
operating point, where laser locking occurs. Our LQG
integral controller design is based on this linear model. The
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controller thus obtained is discretized and implemented
on a dSpace DSP system in the laboratory. Experimental
results were obtained showing that our controller has been
effective in locking the optical cavity to the laser frequency.

2. THE CAVITY LOCKING PROBLEM

We begin by considering a model for our cavity system.
This cavity system is made up of two parts:

• A mechanical subsystem representing the dynamics
of the piezo-actuator, the controlled mirror and the
power amplifier driving the actuator;

• An optical subsystem representing the dynamics of
the optical cavity (formally this system is a quantum
system but in the LQG control problem under consid-
eration, the system can be controlled by controlling
an equivalent classical subsystem; e.g., see Edwards
and Belavkin [2005]; Shaiju et al. [2007]).

We assume that the laser driving the cavity is in a coherent
state (see Bachor and Ralph [2004] for details) since our
homodyne detection system uses the laser driving the
cavity as the reference oscillator in the homodyne detector.
This has the effect of canceling out any common-mode
quadrature amplitude and phase variations in the laser
and thus our assumption is justified.

The components in the frequency stabilization problem are
depicted in Fig. 2. The problem is to regulate to zero the
“detuning” ∆ between the laser frequency and the natural
cavity frequency. This is achieved by controlling the piezo-
electric actuator which in turn accurately controls the
position of one of the cavity mirrors.
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Fig. 2. Cavity locking feedback control loop.

The state of a quantum mechanical system is represented
by a vector in a separable Hilbert space. The state ψ is
denoted using Dirac’s notation as |ψ〉 in quantum mechan-
ics and is called a ket. The laser mode b of frequency ω0

is represented by a coherent state |β〉, where β is a real
number (without loss of generality), modeled by a boson
field b = b0 + β, where b0 is a vacuum field, a standard
quantum Gaussian white noise (with unit variance), Gar-
diner and Zoller [2000]. In addition to the source laser
mode b, the cavity is also coupled to two other optical
fields: a transmitted mode b1, and a loss mode bL (these
respective input fields are both standard vacua).

A quadrature of the laser field reflected by the cavity bout is
continuously measured by homodyne detection, producing
a classical electrical signal y. This signal is processed by
a classical computer producing an electrical control signal
u, which influences the position of the cavity mirror via a
high voltage amplifier and a piezo-electric actuator.

3. MODELLING AND SYSTEM IDENTIFICATION

Our cavity system, referred to as the cavity in Fig. 2 can
be further subdivided as shown in Fig. 3. It comprises of an
electro-mechanical subsystem (piezo-electric actuator and
high voltage amplifier) and the optical cavity. In practice,
the control signal u together with a noise process w1 feeds
into the mechanical subsystem generating ∆ at its output.
The “detuning” ∆ represents the frequency deviation of
the cavity’s resonant frequency from the laser frequency
ω0. However, ∆ is not available for measurement and
instead we have the signal y which is the output of the
optical cavity. The signal y is measured using a standard
homodyne detection method and also includes the sensor
noise w2. In addition, there are other noise sources that
enter the optical cavity which are referred to generally as
quantum noises here and these are discussed in more detail
in Sec. 3.2.
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Fig. 3. Block diagram of the cavity system.

3.1 The Optical Cavity

The cavity is described by the following set of equations:

ȧ=−(
κ

2
+ i∆)a−

√
κ0(β + b0)

−
√
κ1b1 −

√
κLbL

bout =
√
κ0a+ β + b0 (1)

Here, a denotes the annihilation operator for the cavity
mode, defined in an appropriate rotating frame, (see Ba-
chor and Ralph [2004]; Gardiner and Zoller [2000]). We
have written κ = κ0 + κ1 + κL, where κ0, κ1 and κL

quantify the strength of the couplings of the respective
optical fields to the cavity.

It is clear that the cavity dynamics in (1) contain a
nonlinear product term ∆ a, and we need to use a standard
linearization method to obtain linear equations.

Let α denote the steady state average of a when ∆ = 0, so

that 0 = −κ
2
α − √

κ
0
β and hence α = − 2

√
κ
0

κ
β, which is

a real number. We write a = α+ ã, so that the linearized
operator ã satisfies (neglecting higher order terms)

˙̃a = −κ
2
ã− i∆α−

√
κ0b0 −

√
κ1b1 −

√
κLbL. (2)
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The linearized output field operator b̃out is given by

b̃out =
√
κ0ã+ b0 (3)

since bout =
√
κ

0
α+ β + b̃out.

3.2 Quadrature Measurement

We model the measurement of the Xφ quadrature of

b̃out with homodyne detection by changing the coupling
operator for the laser mode to

√
κ

0
e−iφa, and measuring

the real quadrature of the resulting field. The linearized
equations (2) and (3) become

˙̃a = −κ
2
ã− i∆α−

√
κ0e

−iφb0 −
√
κ1b1 −

√
κLbL (4)

and b̃out =
√
κ

0
e−iφã + b0. Note that here, b0(t)e

−iφ has
been relabeled b0(t). The measurement signal is

ỹ = b̃out + b̃
†
out =

√
κ0(e

−iφã+ eiφã†) + q0 (5)

where q0 = b0 + b
†
0

is a standard Gaussian white noise.

We are now ready to express the cavity dynamics in state-
space form. To this end, we re-express the cavity dynamics

as follows. We will write q̃ = ã+ã†, p̃ = ã−ã†

i
for the cavity

quadratures. Then in matrix form equations (4) and (5)
for the linearized cavity model and sensor output become

[

˙̃q
˙̃p

]

=





−κ
2

0

0 −κ
2





[

q̃
p̃

]

+

[

0
2α

]

∆

−
√
κ0

[

cosφ − sinφ
sinφ cosφ

] [

q0
p0

]

−
√
κ1

[

1 0
0 1

] [

q1
p1

]

−
√
κL

[

1 0
0 1

] [

qL
pL

]

;

y= k2

√
κ0 [ cosφ sinφ ]

[

q̃
p̃

]

+ k2 [ 1 0 ]

[

q0
p0

]

+ w2 (6)

with noise quadratures qj = bj + b
†
j , pj =

qj−p
†

j

i
, for

j = 0, 1, L (all standard Gaussian white noises). Here, y
is the sensor output in which we have included a sensor
noise term w2. Also, k2 is a gain parameter defining the
sensitivity of the sensor; see Huntington et al. [2007].

3.3 Identification of the Cavity Transfer Function

The cavity system, which comprises of both the electrome-
chanical subsystem and the optical cavity is identified
under closed-loop conditions.

In particular, although the optical subsystem can be mod-
elled physically as in Sec. 3.2, the parameters in this
model cannot be easily determined experimentally. Also,
the electromechanical subsystem exhibits highly complex
dynamics and is not easy to model physically. Hence, we
are forced to obtain our complete model via system iden-
tification. A proportional-integral (PI) controller (whose

coefficients are adjusted by trial and error) is used to stabi-
lize the system to allow measurement of the system under
closed-loop conditions. The gain and the phase of the plant
is directly determined for each frequency point within a
suitable frequency range using a digital signal analyzer
(DSA) (HP 35665A). The system is configured as shown in
Fig. 4. The plant is excited with a sinusoidal input from the
DSA and the outputs, control signal u and measurement
signal y, are fed back to the DSA inputs. This setup allows
us to directly measure the transfer function of the plant.

PLANT

PI

Out In 1 In 2

Digital Signal Analyzer

−

−

u
y

Fig. 4. System setup used for direct determination of plant
transfer function in closed-loop condition.

The frequency response data obtained is fitted to an 8th

order model using a subspace identification method, McK-
elvey et al. [1996]. The algorithm we use accommodates
arbitrary frequency spacing, and is guaranteed to exactly
estimate any finite-dimensional transfer function, given a
finite number of data (depending on the model order). The
algorithm is also known to have provided good results with
flexible structures, making it suitable for our application
which includes a piezo-electric actuator coupled to the
cavity mirror. Fig. 5 shows the gain(dB) and the phase
of the measured frequency data points and the Bode plot
of the identified system.

The system identification approach leads to a model in
state-space form as follows:

ẋ=Ax+ Bu;

y=Cx. (7)

3.4 Model of the Optical Cavity

Using (6), the Bode plot of the transfer function for the
optical cavity from ∆ to y in Fig. 3 will be of the form
shown in Fig. 6. In particular, for our cavity, the corner
frequency −κ

2
in (6), will be in the order of 105 Hz, which

is well beyond the frequency range of interest for the LQG
integral controller design. Hence, in constructing our LQG
cost functional, we can safely replace ∆ by y.
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Fig. 5. Measured Frequency Response Data and Identified
Model of the System.
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Fig. 6. Typical gain response for the optical subsystem

4. LQG INTEGRAL CONTROLLER DESIGN

4.1 LQG Performance Criterion and Integral Action

The LQG performance criterion to be used should encode
the desired performance, namely to (i) keep the frequency
error ∆ small (ideally zero), and (ii) not use too much
control energy. However, in our case, the system is also
subject to frequency noise from the laser which drives
the cavity. This laser frequency noise is most significant
at low frequencies and presents itself as a slowly varying
disturbance. An LQG performance criterion as described
above will not provide satisfactory performance in the
face of such a disturbance. This is the justification for
including integral action in the LQG controller design.
Integral action is included by adding an additional term in
the cost function which involves the integral of the output.
Furthermore, we also generate an additional fictitious
output of the system by integrating the output y. This new
output

∫

y dt is also fed to the Kalman filter, which when
combined with an optimal state feedback control law leads

to an LQG integral optimal controller. This controller
meets the desired performance requirement as described
above as well as rejecting low frequency disturbances; e.g.,
see Grimble [1979]. Fig. 7 shows the setup used for the
LQG integral controller design.

+

+

+ +

+

+ ∫

w1

w2

w3

K

u
y

z1

z2

PLANT

Fig. 7. Setup used for integral LQG controller design

From Fig. 7, the system can be described in state-space
form as follows:

˙̃x= Ãx̃+ B̃w1 + B̃u;

z̃ = C̃x̃+

[

w2

w3

]

, (8)

where

x̃ =

[

x
∫

y dτ

]

and z̃ =

[

z1
z2

]

and the matrices Ã, B̃, C̃ are constructed from the matri-
ces A,B,C in (7) as follows:

Ã =

[

A 0
C 0

]

, B̃ =

[

B
0

]

, and C̃ =

[

C 0
0 I

]

.

In equation (8), w1 represents mechanical noise entering
the system which is assumed to be Gaussian white noise
with variance ǫ21. Also, w2 represents the sensor noise
entering the system output y, which is assumed to be
Gaussian white noise with variance ǫ2

2
. The quantity w3

is included to represent sensor noise which enters the
integrated output

∫

y dt. It is assumed to be Gaussian
white noise with variance ǫ2

3
and is included to fit into

the standard framework of the LQG controller design. The
parameters ǫ1, ǫ2 and ǫ3 are treated as design parameters
in the LQG controller design in Sec. 4.2.

The integral LQG performance criterion can be described
as:

J = lim
T→∞

E





1

T

T
∫

0

[xTQx+ uTRu+ L(y)T Q̄L(y)]dt



(9)

where

L(y) =

∫ t

0

y(τ) dτ.

We choose the matrices Q,R and Q̄ such that

xTQx = |y|2, uTRu = r|u|2, and Q̄ = q̄,
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where r > 0 and q̄ > 0 are also treated as design
parameters.

The expectation in (9) is with respect to the Gaussian
classical noise processes described previously, and the
assumed Gaussian initial conditions. Given our system as
described by (8), the optimal LQG controller is given by
(e.g., see Kwakernaak and Sivan [1972])

u=−r−1B̃TX ˆ̃x, (10)

where

0 =XÃ+ ÃTX + Q̃− r−1XB̃T B̃X, (11)

and

Q̃ = C̃T

[

1 0
0 q̄

]

C̃.

The observer dynamics are described by

dˆ̃x = Ãˆ̃x dt+ B̃u dt+K[dz̃ − C̃ ˆ̃xdt] (12)

and for the case of uncorrelated process and measurement
noises, the solution of the optimal observer is obtained by
choosing the gain matrix

K = PC̃TV −1

2
, (13)

where

0 = ÃP + PÃT + V1 − PC̃TV −1

2
C̃P. (14)

Here

V1 = ǫ21B̃B̃
T = E[w1w

T
1 ] and V2 =

[

ǫ2
2

0
0 ǫ23

]

define the covariance of the process and measurement
noises respectively.

4.2 Design Parameters

In designing the LQG controller, the design parameters
ǫ21 (the mechanical noise variance), ǫ22 (the sensor noise
variance of y), ǫ2

3
(the sensor noise variance of

∫

y), r (the
control energy weighting in the LQG cost function) and q̄
(the integral output weighting in the LQG cost function)
were adjusted for good controller performance. The values
used are given in Table 1:

Design parameter Value

ǫ1 4× 10−2

ǫ2 20

ǫ3 5× 10−4

r 1× 10−3

q̄ 1× 108

Table 1. Design Parameter Values

These parameter values led to an LQG controller which
is then discretized using a first-order hold at a sampling
frequency of 10 kHz. The Bode plots of the continuous and
the discrete controller are shown in Fig. 8. The discrete
bode plot becomes distorted at frequencies above the
Nyquist frequency (5 kHz).
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Also, the corresponding loop gain Bode plot is shown in
Fig. 9. The controller provides comfortable gain and phase
margins of 19 dB and 78◦ respectively.

Finally, the gain of the closed-loop transfer function from
control signal u to output y is shown in Fig. 10, which
shows that the controlled system should have a bandwidth
of about 200 Hz.

5. EXPERIMENTAL RESULTS

The discrete controller as described above is compiled to
run on a dSpace DS1005 PPC Board at 933 MHz. The
controller in place successfully stabilizes the frequency in
the optical cavity, locking its frequency to that of the laser
frequency, ω0.

Fig. 11 shows a time history of the measurement gathered
and control signal generated over a time period of 0.02 s.
The measurement signal is the output of the homodyne
detector y and is a reflection of the frequency error ∆. The
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Fig. 11. Measurement and Control Signals

control signal generated is also as a consequence a signal
of small magnitude that is superimposed over a d.c. offset
voltage. This signal is amplified through a high-voltage
(HV) amplifier in our system before being applied to the
piezo-electric actuator, which in turn controls the position
of the cavity mirror. It can be seen from Fig. 11 that even
though we have achieved frequency stabilization, external
disturbances from within the laboratory still excite to
a small degree the resonances in the electromechanical
system at frequencies of 500 Hz and 5 kHz approximately.
Nevertheless, it can be safely stated that the experimental
results obtained validate our modeling of the cavity sys-
tem and confirm that the LQG integral controller design
technique used is appropriate for this type of system.

6. CONCLUSION AND FUTURE WORK

In this paper, we have shown that a modern control
technique such as LQG integral control can be applied
to a problem in experimental quantum optics which has
previously been addressed using classical control and an
ad hoc technique measuring the normally unmeasurable
quantity of the frequency error ∆. An important advantage

of the LQG technique is that it can be extended in a
straightforward way to multivariable control systems with
multiple sensors and actuators. This will be investigated
in future work in which we will consider the possibility
of using additional actuators such as a phase modulator
situated within the cavity or an additional piezo actuator
to control the driving laser. The use of additional sensors
will also be considered. Such sensors could include the use
of a beam splitter and an additional homodyne detector
to measure the other optical quadrature. Also, we may
consider the use of accelerometers to provide additional
measurements of the mechanical subsystem. Furthermore,
we may wish to control the effects of air turbulence within
the cavity and an additional interferometric sensor could
be included to measure the optical path length adjacent
to the cavity. Such a measurement would be correlated to
the air turbulence effects within the cavity. The subspace
approach to identification used to determine the plant
is also particularly suited to multivariable systems. In
addition, techniques for controller reduction will also be
considered to reduce computational burden, especially as
the model gets more complicated.
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