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Abstract: This paper proposes an adaptive TS recurrent fuzzy CMAC (TS-RFCMAC) model
based control of uncertain time-delay nonlinear systems. First, we introduce a TS-RFCMAC
network and its application on system modeling. Next, a TS-RFCMAC controller is developed
based on parallel distributed compensation and adaptive control laws. Even if uncertain local
subsystem matrices and fuzzy sets exist in the model, asymptotic stability is assured by proper
gain design and adaptive learning laws. Since all the weights (including recurrent weights) are
also on-line adjusted, the proposed controller is more suitable for applying to uncertain time-
delay systems. Finally, the simulation results show the expected performance.
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1. INTRODUCTION

The cerebellar model articulation controller (CMAC) is
a non-fully connected perceptron-like associative mem-
ory network with an overlapping receptive-field (cf. Al-
bus [1975]). The advantages of using CMAC have been
reported in many practical applications in recent litera-
ture. Compared to the multi-layer percetron with back-
propagation algorithms, the CMACs are widely adopted
for the closed-loop control of complex dynamic systems
because of its fast learning property, good generalization
capability, and simple computation (Hwang et al. [1998],
Shiraishi et al. [1995]). However, the traditional CMAC
uses logic basis functions as the input sensors such that a
discontinuous output exits. To avoid this drawback, some
fuzzy CMAC (FCMAC) networks (e.g., Lin et al. [2004]-
Su et al. [2006]) use fuzzy sensors to extension to more
complex applications. Nevertheless, these FCMAC based
control methods usually need complex learning laws. This
drawback stems from the fact that some information about
the controlled systems (e.g., the structure) is not involved
into the FCMAC.

Many significant research efforts have been done for TS
(Takagi-Sugeno) fuzzy controllers to guarantee control
performance and system stability (Tanaka et al. [2001],
Lian et al. [2001]). Most of the stability analysis and de-
sign methods are according to the LMI formulation (Boyd
et al. [1994]). The advantage is providing an efficient and
effective way for the controller design. However, these TS
fuzzy model-based controllers will fail when considering
⋆ This work was supported by the National Science Council, Taiwan,
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both uncertain local subsystem matrices and fuzzy sets
of premise variables. Moreover, the fuzzy rules and the
fuzzy defuzzification are complicated. On the other hand,
some TS fuzzy model-based control methods have solved
the control problem of nonlinear time-delay systems as an
extension with works considering linear time-delay sys-
tems, such as (Yi et al. [2002]). In addition, based on
neural-network approaches, some researches have focused
on dealing with the nonlinear time-delay systems (Huang
et al. [2003], Cao et al. [2003]). Nevertheless, these control
schemes cannot be straightforwardly applied to practical
systems due to the high complexity.

To combine the advantages of the CMAC control (e.g.,
easy implementation) and the TS fuzzy control (e.g.,
unified formulation), this study develops a TS recurrent
FCMAC (TS-RFCMAC) control scheme for controlling
uncertain systems with time-delays. Inspired by the TS
fuzzy model, we introduce a TS-RFCAMC network to
represent general nonlinear systems. Based on the TS-
RFCMAC model, the TS-RFCMAC model-based control
is developed in a straightforward manner. The advantages
of the proposed modeling network are: 1) the complex
fuzzy defuzzification is dropped; and 2) the parallel dis-
tributed compensation concept can be used in the con-
troller design (i.e., the advantage of the TS fuzzy model-
based control). When there is uncertainty on the TS-
RFCMAC model, the TS-RFCMAC controller is modified
into an adaptive learning network, i.e., the control gains
and fuzzy sensors are tuned on-line. Moreover, asymptotic
stability is assured by proper learning laws. Therefore, the
adaptive TS-RFCMAC controller achieves high robustness
and easy implementation.
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2. T-S RECURRENT FUZZY CMAC NETWORK

This section proposes a recurrent fuzzy CMAC net-
work, called Takagi-Sugeno Recurrent Fuzzy CMAC (TS-
RFCMAC). This TS-RFCMAC is composed of the input
layer, the recurrent fuzzified layer, the rule association
layer, and the output layer. The detailed construction of
the TS-RFCMAC is introduced as follows.

1) Input Layer X : This is the layer where the input
is obtained from the raw data. Consider the input

x = [ x1 x2 · · · xnx ]
T
∈ Rnx , each input variable xℓ

has an appropriate discussion region.
2) Recurrent Fuzzified Layer F : This layer fuzzifies all

input variables to obtain fuzzy activated levels, while
the outputs of this layer are back-propagated into
the fuzzy sensors of this layer. When the sensors
fuzzify the inputs, the activated level will be back-
propagated into the premise variables of fuzzy rules
(i.e., recurrent states) as

x̄ℓ(N)=xℓ(N)+hℓiFℓi(x̄ℓ(N − 1)) (1)

for ℓ = 1, 2, ..., nx, where N denotes the number
of iteration; Fℓi denotes a proper fuzzy membership
function for the recurrent state x̄ℓ in the i-th fuzzy
rule; and hℓi is the recurrent weight associated to
the (ℓ, i) membership function. Contrary to the tra-
ditional CMAC, the output of these sensors are real
numbers from zero to 1. Moreover, the recurrent neu-
ron can further provide more flexibility for functional
approximation.

3) Rule Association Layer R: This layer is the rule layer,
and each association cell represents a TS fuzzy rule.
The AND operation and OR operation are carried out
to activate appropriate rules. Consider the network
associated to the following TS fuzzy rules:

Rule i : IF x̄1(t) is F1i and · · · and x̄nx
(t) is Fnxi

THEN

yo = a0i + a1ix1 + ... + anxixnx
, i = 1, 2, ..., r

where r is the number of the fuzzy rules; yo is the
output of the network; and a0i ∼ anxi are tunable
weights for the i-th TS fuzzy rule. Here all parameters
of fuzzy rules are stored in a corresponding physical
memory space. Then the activated weight of the i-th
fuzzy rules is obtained as

wi(x̄) =
∏nx

ℓ=1
Fℓi(x̄ℓ) ≥ 0, for i = 1, 2, ..., r (2)

where x̄ = [ x̄1 x̄2 · · · x̄nx ]
T

.
4) Output Layer O : This layer is fully connected to the

rule association layer. The output of TS-RFCMAC
is the algebraic sum of the activated weights and is
expressed as

yo=

r∑

i=1

wi(x̄)[aix+ai0] (3)

where ai = [ a1i ... anxi ].

Therefore, the proposed TS-RFCMAC network has com-
bined the concept of TS fuzzy rules and the structure of the
recurrent CMAC network. To show the difference between
the traditional TS fuzzy systems and the proposed TS-
FRCAMC, we made the following note.

Remark 1: Without loss of generality, a TS fuzzy system
consists of IF-THEN rules as follows:

Rule i :

IF x1(t) is F1i and · · · and xnx
(t) is Fnxi THEN

yo = a0i + a1ix1 + ... + anxixnx
, i = 1, 2, ..., r

By using the singleton fuzzifier, product fuzzy inference,
and weighted average defuzzifier, the output of the above
fuzzy system is

yo =

r∑

i=1

µi(x(t))[aix+ai0] (4)

where µi(x(t)) = wi(x(t))∑
r

i=1
wi(x(t))

with

wi(x(t)) =

nx∏

ℓ=1

Fℓi(xℓ(t)) (5)

is regarded as a normalized weight. Making a comparison
between (3) and (4), we find that they are the same if
hℓi = 0 (no recurrent loop exists) and

∑r
i=1 wi(x(t)) = 1.

In other words, since the output of the TS-RFCMA net-
work is not fuzzy, the proposed TS-RFCMAC network
does not require a complex defuzzification (e.g., a weighted
average defuzzifier is not needed). Moreover, the recur-
rent neuron can further provides better approximation
of complex functions, such as time-delay states. Thus,
the above TS-RFCMAC has a simple structure, which is
easily implemented in comparison of the traditional fuzzy
CMAC. The validity of this in practice contains benefits
with fast learning and good generalization of CMAC.

Due to the TS-RFCMAC structure, the dynamics of time-
delay systems can potentially be modelled in a more
flexible way than with a pure time-series approach. Ac-
cordingly, the TS-RFCMAC is more suitable for complex
functional approximation and system modeling. In the fol-
lowing, we apply the proposed TS-RFCMAC to represent
nonlinear systems.

3. TS-RFCMAC MODELING OF NONLINEAR
SYSTEMS

Consider a general dynamic equation of nonlinear systems
which contains time delays as follows:

ẋ(t) = f(x(t),x(t − τ(t))) + g(x(t),x(t − τ(t)))u, (6)

where x(t) ∈ Rnx denotes the state vector in a continuous-
time system; τ(t) is a time-varying delay satisfying τ̇(t) ≤
β < 1; u(t) ∈ Rnu is a control input of the system;
and f (·) , g(·) are the nonlinear dynamic function vectors.
According to the work (Lian et al. [2001]), if each scalar
nonlinear term in f(·) is separable with a proper state
variable xℓ, the system has the expression:

ẋ(t) = Φ1(x(t),x(t − τ(t)))x(t)

+Φ2(x(t),x(t − τ(t)))x(t − τ(t))

+g(x(t),x(t − τ(t)))u

where Φ1(·) and Φ2(·) are proper matrices. Based the
above section, the TS-RFCMAC presenting the system is
associated to the following rules:
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Rule i :

IF x̄1 is F1i and · · · and x̄nx
is Fnxi THEN

ẋ(t) = Aix(t) + Adix(t − τ(t)) + Biu (7)

for i = 1, 2, ..., r, where x̄ℓ is the recurrent variable defined
in (1); Ai, Adi, Bi are local subsystem matrices with proper
dimensions. The inferred output of the TS-RFCMAC is

ẋ(t) =

r∑

i=1

wi(x̄)Aix(t) +

r∑

i=1

wi(x̄)Adix(t − τ(t))

+
r∑

i=1

wi(x̄)Biu

with wi(x̄) =
∏nx

ℓ=1 Fℓi(x̄ℓ). If we properly choose the fuzzy
membership function Fℓi(x̄ℓ) and parameters Ai, Adi, Bi,
the system (6) can be represented by the TS-RFCMAC as
actual as possible. To choose appropriate fuzzy sets and
parameters, some on-line learning schemes (Kim [2002])-
(Su et al. [2006]) can be applied to solve this problem.
As a result, the system (6) is rewritten in terms of the
TS-RFCMAC as

ẋ(t) =
r∑

i=1

wi(x̄)Aix(t) +
r∑

i=1

wi(x̄)Adix(t − τ(t))

+

r∑

i=1

wi(x̄)Bi(u + ψ(t,x(t),x(t − τ(t)))) (8)

where ψ(·) presents the modeling error and the system
uncertainties. Since the matrices Ai and Adi may contain
uncertainty, the remainder of this paper will discuss the
controller design based on the TS-RFCMAC model.

4. IDEAL TS-RFCMAC MODEL-BASED CONTROL

Based on the TS-RFCMAC model (8), an ideal TS-
RFCMAC model-based control scheme is developed below.
Here, the ideal case is considered with an exactly known
model, i.e., Ai and Adi are exactly known. First, we set the
TS-RFCMAC controller with the same construction as the
TS-RFCMAC model. Inspired by the parallel distributed
compensation concept, the TS-FRCAMC controller is as-
sociated to the fuzzy rules:

Rule i :

IF x̄1 is F1i and · · · and x̄nx
is Fnxi THEN

u = −(k0i + k1ix1 + k2ix2 + ... + knxixnx
)

where k0i ∼ knxi are controller gain vectors determined
later. According to Section 2, the output of the TS-
RFCMAC controller is

u(t) = −

r∑

i=1

wi(x̄)[Kix(t) + k0i]. (9)

with Ki = [ k1i ... knxi ]. By substituting the control law
(9) into the system (8), the closed-loop system is expressed
as

ẋ(t) =

r∑

i=1

r∑

j=1

wi(x̄)wj(x̄)(Ai − BiKj)x(t)

+

r∑

i=1

wi(x̄)Adix(t − τ(t)) +

r∑

i=1

wi(x̄)Bi

×[ψ(t,x(t),x(t − τ(t)) −

r∑

j=1

wj(x̄)k0j ] (10)

From an observation on the above equation, the controller
gain Ki will be designed from the Lyapunov-Krasovskii
stability method while the controller k0j will be on-line
adjusted to compensate the uncertainty ψ(x(t)). Accord-
ing to the proposed TS-RFCMAC network, there exists
an optimal parametric set k∗

0j (corresponding to k0j , for
j = 1, 2, ..., r) resulting into an approximation error of ψ
which is defined as

ε = ψ(t,x(t),x(t − τ(t)) −
r∑

j=1

wj(x̄)k∗

0j

The error ε can be made arbitrarily small by using ap-
propriate fuzzy sets and parameters. Due to the unknown
optimal parameter k∗

0j , we rewrite the error system (10)
in the following form:

ẋ(t) =

r∑

i=1

r∑

j=1

wi(x̄)wj(x̄)[(Ai − BiKj)x(t) + Biε]

+

r∑

i=1

wi(x̄)Adix(t − τ(t))

−
r∑

i=1

r∑

j=1

wi(x̄)wj(x̄)Bik̃0j (11)

where k̃0j = k0j − k∗

0j . Then, the design theorem is stated
below.

Theorem 1: Consider an uncertain nonlinear system
described by the TS-RFCMAC model (8) using the TS-
RFCMAC controller (9) adjusted by the update law

k̇0j = γwj(x̄)

r∑

i=1

wi(x̄)BT
i Px, for j = 1, 2, ..., r (12)

and γ > 0. If there exist symmetric positive-definite
matrices X = P−1, QX and matrices Mi satisfying the
following LMIs

X,QX > 0


{AiX + XAT
i − BiMj

−MT
j BT

i +
1

1 − β
QX}

Adi Bi

AT
di −QX 0

BT
i 0 −

1

ρ2
Inu




< 0 (13)

for given ρ > 0, Mi = KiX and all i, j, then asymptotic
stability is assured with uniformly ultimate bound. More-
over, the closed-loop system achieves the following H∞

performance:

α

∫ tf

0

xT (t)x(t)dt ≤ V1(0) +
1

ρ2

∫ tf

0

‖ε(t)‖
2
dt. (14)

Proof : Consider the Lyapunov-Krasovskii function V1 =

xT (t)Px(t) + 1
1−β

∫ t

t−τ(t)
xT (ν)Qx(ν)dν + 1

γ

∑r
i=1 k̃T

0j k̃0j
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with P = PT = X−1, Q = QT = PQXP , and γ >
0. Taking the time derivative of V1(t) along the error
dynamics (11), we obtain

V̇1 =

r∑

i=1

r∑

j=1

wi(x̄)wj(x̄)

×{xT (t)P [(Ai − BiKj)x(t) + Biε]

+[(Ai − BiKj)x(t) + Biε]
T Px(t)}

+2
r∑

i=1

wi(x̄)xT (t)PAdix(t − τ(t))

+
2

γ

r∑

i=1

k̃T
0j k̇0j + {

1

1 − β
xT (t)Qx(t)

−
1 − τ̇

1 − β
xT (t − τ(t))Qx(t − τ(t))}

−2

r∑

i=1

r∑

j=1

wi(x̄)wj(x̄)xT (t)PBik̃0j

After applying the update law (12) and the stability
condition


{P (Ai − BiKj) + (Ai − BiKj)

T P

+
1

1 − β
Q + ρ2PBiB

T
i P}

PAdi

AT
diP −Q


 < 0

the time derivative of V1 satisfies V̇1 ≤ −αxT (t)x(t) +
1
ρ2 ‖ε‖

2
for some α > 0. Accordingly, if the LMI (13)

has a feasible solution, the closed-loop system achieves the
robust criterion (14). In other words, the state error x(t)
can be made arbitrarily small by a proper choose of the
parameter ρ.

5. ROBUST ADAPTIVE TS-RFCMAC CONTROL

This section considers the worst cases of the control prob-
lem — the system matrices and fuzzy sets are unknown in
the TS-RFCMAC model.

5.1 Uncertain system matrices

When the TS-RFCMAC model of the plant (8) has un-
certainty on system matrices (here the fuzzy sets are
exactly known), the controller cannot be designed straight-
forwardly according to the above section. A robust TS-
RFCMAC model-based control is developed here. Assume
that the system matrices can be expressed as Ai = Ani +
∆Ai and Adi = Adni + ∆Adi with the nominal parts
Ani, Adni and uncertain parts ∆Ai,∆Adi. The system has
controllable pairs {Ai, Bj} and {Ani, Bj} for all i, j. To
overcome the uncertainty, the TS-RFCMAC controller is
firstly set with the following rules:

Rule i :

IF x̄1 is F1i and · · · and x̄nx
is Fnxi THEN

u = −(kd1ix1 + kd2ix2 + ... + kdnxixnx
)

−(k0i + ka1ix1 + ka2ix2 + ... + kanxixnx
)

where kd1i ∼ kdnxi are fixed control gains; and k0i, ka1i ∼
kanxi are adaptive parameters. It yields the compact
controller

u(t) = −

r∑

i=1

wi(x̄)[Kdix(t) + Kaix(t) + k0i] (15)

where Kdi = [ kd1i ... kdnxi ] and Kai = [ ka1i ... kanxi ].
The closed-loop controlled system is further written as
follows:

ẋ(t) =
r∑

i=1

r∑

j=1

wi(x̄)wj(x̄)(Ai − Bi(Kdj + K∗

aj))x(t)

+

r∑

i=1

wi(x̄)Adix(t − τ(t)) −

r∑

i=1

wi(x̄)

×
r∑

j=1

wj(x̄)Bi[K̃ajx(t) + k̃0j + ε] (16)

where K̃aj = Kaj − K∗

aj ; and K∗

aj is an unknown optimal
gain to assure the control stability and robust perfor-
mance. Then, the overall adaptive TS-RFCMAC controller
is given below.

Theorem 2: Consider a nonlinear system described by the
TS-RFCMAC model (8) with uncertain system matrices
Ai and Adi (for all i). The asymptotic stability with
uniformly ultimate bound is assured if the TS-RFCMAC
controller (15) using the control gain Kdj satisfying the
LMI (Mdj = KdjX)

X,QX > 0


{AniX + XAT
ni − BiMdj

−MT
djB

T
i +

1

1 − β
QX}

Adni Bi

AT
dni −QX 0

BT
i 0 −

1

ρ2
Inu




< 0 (17)

for given ρ > 0 and all i, j, and the update laws

k̇0j = γwj(x̄)
r∑

i=1

wi(x̄)BT
i Px, (18)

K̇aj = γawj(x̄)

r∑

i=1

wi(x̄)BT
i PxxT (19)

for P = X−1, j = 1, 2, ..., r, and γ, γa > 0.

As similar as the proof of Theorem 1, the proof can be
derived by using the Lyapunov-Krasovskii function

V2 = xT (t)Px(t) +
1

1 − β

∫ t

t−τ(t)

xT (ν)Qx(ν)dν

+
1

γ

r∑

i=1

k̃T
0j k̃0j +

1

γa

r∑

i=1

tr(K̃T
ajK̃aj)

with P = PT = X−1, Q = QT = PQXP , and γ, γa > 0.
For the solution of the LMI (17), i.e., P , Q, and Kdj , there
are ideal control parameters K∗

aj satisfying



{AniX + XAT
ni − BiMdj

−MT
djB

T
i − BiK

∗

ajX

−XT K∗T
aj BT

i +
1

1 − β
QX}

Adi Bi

AT
di −QX 0

BT
i 0 −

1

ρ2
Inu




< 0
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This implies that the closed-loop system is guaranteed
with the robust criterion (14) under the above inequality.
In other words, the asymptotic stability can be achieved
via proper adaptation laws for Kaj and k0j stated as (18),
(19).

5.2 Uncertain system matrices and fuzzy sets

When considering both uncertain system matrices and
fuzzy sets in the TS-RFCMAC model of the plant, the
control problem becomes very difficult. To solve this prob-
lem, we let all fuzzy sets of the controller composed of
Gaussian membership functions in the form

Fℓi(x̄ℓ) = exp

(
−(x̄ℓ − mℓi)

2

σ2
ℓi

)

for i = 1, 2, · · · , r and ℓ = 1, 2, ..., nx, where mℓi is the
center of the Gaussian function; and σℓi is the variance of
the Gaussian function. In other words, the activated level
of the i-th rule is

wi(x̄) =
∏nx

ℓ=1
Fℓi(x̄ℓ)

= exp

(∑nx

ℓ=1

−(x̄ℓ − mℓi)
2

σ2
ℓi

)

Then, the robust adaptive TS-RFCMAC model-based
controller is designed below.

Theorem 3: Consider a nonlinear system described by the
TS-RFCMAC model (8) with uncertain system matrices
Ai, Adi (for all i) and unknown fuzzy sets Fℓi(x̄ℓ). The
asymptotic stability with uniformly ultimate bound is
assured if the TS-RFCMAC controller (15) uses the control
gain Kdj satisfying the LMI (17) and the update laws (18),
(19),

ṁiℓ = γmwi(x̄)

(
2(x̄ℓ − mℓi)

σ2
ℓi

)
ηi

σ̇iℓ = γσwi(x̄)

(
2(x̄ℓ − mℓi)

2

σ3
ℓi

)
ηi

·

ĥℓi = γh

(
2(x̄ℓ − mjℓ)

σ2
ℓi

)
ηi · Fℓi(N − 1)

ηi =−
r∑

j=1

wj(x̄)xT PBj(Kdix+Kaix + k0i)

with update gains γm, γσ, γh > 0.

The above tuning laws are obtained from the gradient
descent method such that the stability property derived
in Theorem 2 is not affected when using the on-line
tuning laws. Moreover, the above adaptive laws cope with
an inappropriate initial selection of fuzzy membership
functions and recurrent weights. Accordingly, the overall
controlled system is illustrated in Fig. 1.

Remark 2: Except for removing complex fuzzy defuzzi-
fication, the proposed TS-RFCMAC controller keeps the
advantage of the TS fuzzy model-based control, including
LMI based gain design and parallel distributed compen-
sation. Moreover, the adaptive algorithm copes with the
uncertainty of fuzzy sets and parameters.

6. SIMULATION RESULTS

Consider the uncertain Duffing system described by the
following dynamics:

ẋ1(t) = x2(t)

ẋ2(t) = 1.1x1(t) − x3
1(t) − 0.4x2(t)

+0.02x1(t − τ(t)) + 1.8 cos(1.8t)

where τ(t) = 0.05. Since the Duffing system has the
nonlinear term x3

1(t), we choose the input variable x1(t)
and a discussion region d = supx∈Ω |x1(t)| = 3 for the TS-
RFCMAC model (8). Set the nominal system matrices:
B1 = B2 = [ 0 1 ]T ,

An1 = An2 =

[
0 1
1 −0.3

]

Adn1 = Adn2 =

[
0 0

0.02 0

]

According to Theorem 3, the TS-RFCMAC model-based
controller is constructed with γ = 500, γa = 500, γm =
γσ = γh = 20, and proper initial conditions. After solving
the LMI (17), we obtain Kd1 = Kd2 = [ 2.3125 0.6375 ]
for ρ = 1.1. The control results are illustrated in Figs. 2
and 3, while the control input is given in Fig. 4. When the
proposed controller is activated at 20 second, the states are
quickly driven to zero. Therefore, the results have shown
expected performances.

7. CONCLUSION

This paper has presented a TS-RFCMAC modeling
method and its application on robust adaptive control.
Based on the proposed TS-RFCMAC, the controller is
designed in a straightforward manner and provides the
same advantages as the TS fuzzy model-based control,
e.g., the control gains are designed from LMI techniques.
Moreover, the uncertain subsystem matrices and fuzzy
membership functions are allowed, i.e., the TS-RFCMAC
model-based control is more robust than the TS fuzzy
model-based control. Different to traditional TS fuzzy
model-based control, the uncertainties are compensated by
the adaptive TS-RFCMAC scheme. As a result, the robust
performance is achieved via the proposed control scheme.
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Fig. 1. The configuration of the TS-RFCMAC control.
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Fig. 2. The phase portrait of the controlled Duffing system.

0 5 10 15 20 25 30 35 40
f2

f1

0

1

2

(a)

0 5 10 15 20 25 30 35 40
f4

f2

0

2

4

(b)

{2(w)

{1(w)

Fig. 3. The control response of (a) the state x1(t), and (b)
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Fig. 4. The control force from the TS-RFCMAC.
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