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Abstract: In this paper, a new fault detection (FD) scheme is studied for non-Gaussian
stochastic dynamic systems using output probability density functions (PDFs). Different from
the classical FD problems, the measured information is the PDFs of system output rather
than its value, where the B-spline expansion technique is applied so that the considered FD
problem is transformed into a nonlinear FD problem. In this context, feasible FD method is
presented by combining linear matrix inequality (LMI) technique with augmented Lyapunov
functional, which involves a tuning parameter and a slack variable. Furthermore, in order to
improve the detection sensitivity performance, an optimal algorithm is applied to minimize the
threshold by tuning the parameter. Simulation for a model in the paper-making process is given
to demonstrate the efficiency of the proposed approach.

1. INTRODUCTION

The fault detection (FD) is important topics in systems
engineering from the viewpoint of improving system reli-
ability. In past two decades many significant approaches
have been presented and applied to practical processes
successfully (P. M. Frank, S. X. Ding [1997], W.T.Chen, M.
Saif [2006]). In general, the FD results can be classified into
three types. The first type is the filter-or observer-based
approaches, where filters are used to generate residual
signals to detect and estimate the fault in R.H.Chen et al
[2003]. The second type is the identification-based FD
scheme, where the identification technique is applied to
estimate the model parameter changes of system in M.
Basseville, I. Nikiforov [2002]. The third type is the sta-
tistic approach, where the Bayesian theory and likelihood
methods can be used to evaluate and fault signals in P.
Li [2001]. For the dynamic stochastic systems, the filter-
based FD approach has been shown as an effective way
where generally the variables are supposed to be Gaussian
in R.H.Chen et al [2003] and J. Liu et al [2003]. However,
in many practical processes, non-Gaussian variables exist
in many stochastic systems due to nonlinearity, which may
posses asymmetric and multiple-peak stochastic distribu-
tions.

On the other hand, along with the development of
advanced instruments and data processing technique, the
measurements for feedback can be the stochastic infor-
mation (which can be described by PDFs) of the system
output rather than the output itself (H. Wang [2000]).
Typical examples include the retention of paper making,
particle distribution, combustion process with flame grey-
level distribution in H. Wang [2000]. Fig. 1 shows the
combustion process, where the remote monitoring and
control of combustion systems are mainly based on the
image analysis of flame characteristics or temperature dis-
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Fig. 1. Grey-level distribution of the flame image

tribution. The flame geometry and intensity can thus be
considered as stochastic processes, whose distributions are
obtainable by modern infrared sensors and signal process-
ing techniques (see H. Wang, W. Lin [2000]). The shape of
the grey-level distribution of the flame image is the control
and detection target, and the control can be completed
through a networked system. Motivated by such typical
examples, a new group of strategies that control the shape
of PDFs for stochastic systems have been developed in the
past a few yeas (see H. Wang [2000], M. Karny [1996]).
Different from any other previous stochastic control ap-
proaches, the stochastic variables are not confined to be
Gaussian and the output PDFs of the stochastic system is
concerned rather than the mean or variance of the output.

In output PDFs shape control, B-spline expansion tech-
nique has been introduced in the output PDFs modeling
in L. Guo, H. Wang [2004], L. Guo, H. Wang [2005].
The motivation of FD via the output PDFs from the
retention system in papermaking was first studied in H.
Wang, W. Lin [2000], where the weight dynamical system
was supposed to be a precise linear model. However, lin-
ear mappings cannot change the shape of output PDFs,
which implies that the fault cannot be detected through
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the shape change of the PDFs. To meet the requirement
in complex processes, nonlinearity should be considered
in the weighting dynamic behavior. Recently, a kind of
observer-based FD algorithm has been established in L.
Guo, H. Wang [2005], where the nonlinear weighting
system was considered. However, for some cases, the fault
can’t be detected by using the algorithms in L. Guo, H.
Wang [2005] since the threshold is larger than residual
evaluation function. To improve the previous results, in
this paper, firstly, square root B-spline expansion tech-
nique is applied to model the PDFs so that the concerned
problem is transformed into a nonlinear FD problem.
Secondly, LMI-based solution is presented such that the
estimation error system is stable and the fault can be
detected through a threshold. Moreover, the threshold
can be minimized by introducing the tuning parameter
and slack variable, which leads to less conservative FD
algorithms than ones in L. Guo, H. Wang [2005]. Finally,
paper-making process example is given to demonstrate the
applicability of the proposed approach.

2. PROBLEM FORMULATION

In this section, firstly, we briefly review square-root B-
spline approximation technique presented in L. Guo, H.
Wang [2005], which is used to formulate the output PDFs
with the dynamic weight and is essential in solving our FD
problem.

For a dynamic stochastic system, its output PDFs is
defined by γ(z, u(t), F ), where u(t) ∈ Rm is control input,
F is the fault vector to be detected, a typical example
of which is an actuator fault. In L. Guo, H. Wang [2005],
Y. M. Zhang et al [2006], some B-spline models have been
used to approximate γ(z, u(t), F ). In this paper, we use the
following square root B-spline model

√

γ(z, u(t), F ) =
n

∑

i=1

vi(u, F )bi(z) (1)

where bi(z)(i = 1, 2, ..., n) are pre-specified basis functions
defined on [a, b], and vi(u(t), F )(i = 1, 2, ..., n) are the
corresponding weights of such an expansion. Denote

B0(z) = [b1(z) b2(z) · · · bn−1(z)]τ

V (t) := V (u(t), F ) = [v1 v2 · · · vn−1]
τ

and let

Λ1 =

b
∫

a

B0(z)Bτ
0
(z)dz, Λ2 =

b
∫

a

Bτ
0
(z)bn(z)dz,

Λ3 =

b
∫

a

b2

n(z)dz 6= 0, Λ0 = Λ1Λ3 − Λ2Λ
τ
2

Furthermore, it can be verified that (1) can be rewritten
as (see L. Guo, H. Wang [2005] for details)

√

γ(z, u(t), F ) = Bτ (z)V (t) + h(V (t))bn(z) (2)

where

Bτ (z) = Bτ
0
(z) − Λ2

Λ3

bn(z),

h(V (t)) =

√

Λ3 − V τ (t)Λ0V τ (t)

Λ3

(3)

Different from the linear or rational B-spline model in H.
Wang [2001], the following square root B-spline model
with an approximation error will be adopted

√

γ(z, u(t), F ) = Bτ (z)V (t) + h(V (t))bn(z) + ω(z, u, F )

(4)

ω(z, u, F ) represents the model uncertainty or the er-
ror term on the approximation of PDFs and satisfies
| ω(z, u, F ) |≤ δ, for all {z, u(t), F}, where δ is assumed to
be a known positive constant.

Secondly, we find the relationship between the input and
the weights related to the PDFs, which corresponds to a
further modeling procedure. Apart from several systems
in the wet end of paper machines studied in H. Yue, H.
Wang [2003], H. Wang [2001], an example is the particle
size distribution control in chemical engineering, where the
product quality is characterized through the PDFs of par-
ticle size. However, most published results only concerned
linear precise models, while practically the relationships
from control input u(t) to weight vector V (t) should be
nonlinear dynamics and subjected to some uncertainties.
As such, the following nonlinear dynamic model will be
considered in this paper

{

ẋ(t) = Ax(t) + Gg(x(t)) + Hu(t) + JF (t)
V (t) = Ex(t)

(5)

where x(t) ∈ Rm is the unmeasured state, F (t) is the fault
to be detected. A, G, H, J and E represent the known
parametric matrices of the dynamic part of the weight
system. In fact, these matrices can be obtained either
by physical modeling or the scaling estimation technique
described in H. Wang [2001]. in addition, similarly to L.
Guo, H. Wang [2005] and L. Guo, H. Wang [2005], the
following assumptions are needed

Assumption 1. For any x1(t) and x2(t), g(x(t)) satisfies
g(0) = 0 and

‖ g(x1(t)) − g(x2(t)) ‖≤‖ U2(x1(t) − x2(t)) ‖ (6)

where U2 is a known matrix.

Assumption 2. There is a known matrix U1, for any V1(t)
and V2(t), h(V (t)) denoted by (3) satisfies the followng
condition

‖ h(V1(t)) − h(V2(t)) ‖≤‖ U1(V1(t) − V2(t)) ‖ (7)

where ‖ · ‖ is denoted as the Euclidean norm.

Remark 1. Inequalities (6) and (7) actually can be guaran-
teed by the property of functions h(V (t)) and g(x(t)) and
the boundedness of V (t), which is typically required in
the literature on FD for nonlinear systems, e.g., B. Jiang,
F. N. Chowdhury [2005], B. Jiang, F. N. Chowdhury
[2005]. The assumptions condition will be help to simply
the design algorithms later on.

Generally speaking, a fault-detection system consists of
a residual generator, and a residual evaluator including an
evaluation function and a threshold.
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Fig. 2. The classical residual generator

2.1 residual generator

For the purpose of residual generation, we construct the
following nonlinear filter























˙̂x(t) = Ax̂(t) + Gg(x̂(t)) + Hu(t) + Lξ(t)

ξ(t) =

b
∫

a

σ(z)
(

√

γ(z, u(t), F ) −
√

γ̂(z, u(t))
)

dz

√

γ̂(z, u(t)) = Bτ (z)Ex̂(t) + h(Ex̂(t))bn(z)

(8)

where x̂(t) is the estimated state, L ∈ Rm×p is the gain
to be determined and σ(z) ∈ Rp×1 can be regarded as a
pre-specified weighting vector defined on [a, b].

Remark 2. The classical residual generator design meth-
ods (such as J. Stoustrup, N. N. Niemann [2002], Q. Zhao,
Z. Xu [2004], M.Y. Zhong et al [2003]) is formulated
in Fig. 2. Different from the classical residual generator,
residual ξ(t) in (8) is formulated as an integral with respect
to the difference of the measured PDFs and the estimated
PDFs.

By defining e(t) = x(t)−x̂(t), the estimation error system
can be described

ė(t) = (A − LΓ1)e(t) + G[g(x(t)) − g(x̂(t))]

−LΓ2[h(Ex(t)) − h(Ex̂(t))] + JF (t) − L∆(t)(9)

where

Γ1 =

b
∫

a

σ(z)Bτ (z)Edz, Γ2 =

b
∫

a

σ(z)bn(z)dz,

∆(t) =

b
∫

a

σ(z)ω(z, u, F )dz (10)

It can be seen that

ξ(t) = Γ1e(t) + Γ2(h(Ex(t)) − h(Ex̂(t))) + ∆(t) (11)

From | ω(z, u(t), F ) |≤ δ , it can be verified that

‖ ∆(t) ‖=‖
b

∫

a

σ(z)ω(z, u, F )dz ‖≤ δ̂, δ̂ = δ

b
∫

a

σ(z)dz(12)

Thus, the problem of designing filter-based fault detec-
tion, which is one of the main objectives of this work, can
be described as designing matrix L such that

• the error system (9) is asymptotically stable;
• The generated residual ξ(t) is as sensitive as possible

to fault F (t).

2.2 residual evaluator

After designing of FD filter, the remaining important
task for FD is the evaluation of the generated residual. One
of the widely adopted approaches is to choose a so-called
threshold Jth > 0 and, based on this, use the following
logical relationship for fault detection

||ξ(t)|| > Jth ⇒ faults ⇒ alarm,
||ξ(t)|| ≤ Jth ⇒ no faults

From the above logical relationship, it is clear that the
fault detection sensitivity performance may be improved
by minimizing the threshold Jth.

3. MAIN RESULT

Theorem 3. For the parameters λi > 0(i = 1, 2) and
ε, if there exist matrices P1 > 0, P2, R and constants
η1 > 0, η2 > 0 satisfying

Π =







Π1 + η1I Π2 Π3 0
∗ −εP τ

2
− εP2 + η2I 0 Π4

∗ ∗ −I 0
∗ ∗ ∗ −I






< 0 (13)

where

Π1 = P τ
2
A−RΓ1+AτP2−Γτ

1
Rτ +

1

λ2

1

EτUτ
1
U1E+

1

λ2

2

Uτ
2
U2

Π2 = εAτP2−εΓτ
1
Rτ+P1−P τ

2

Π3 = [λ1RΓ2 λ2P
τ
2
G], Π4 = [ελ1RΓ2 ελ2P

τ
2
G]

then in the absence of F , the error system (9) with gain
L = P−τ

2
R is stable and satisfies

||e(t)|| ≤ α = max
{

||e(0)||, (
√

η1η2)
−1(1 + |ε|)||R||δ̂

}

(14)

||ξ(t)|| ≤ β = α(||Γ1|| + ||Γ2||||U1||||E||) + δ̂ (15)

for t ∈ [0, ∞), where δ̂ is defined by (12).

Proof. Denote

Π0 =

[

Π1 + Πτ
3
Π3 Π2

∗ −εP τ
2
− εP2 + Πτ

4
Π4

]

Using the Schur complement, it can be shown that Π <
0 ⇔ Π0 + diag{η1I, η2I} < 0. Define g̃ := g(x(s)) −
g(x̂(s)), h̃ := h(Ex(s)) − h(Ex̂(s)) and denote the Lya-
punov function candidate as follows

Φ(t) = ēτ (t)SP ē(t) +
1

λ2

1

t
∫

0

[‖ U1Ee(s) ‖2 − ‖ h̃ ‖2]ds

+
1

λ2

2

t
∫

0

[‖ U2e(s) ‖2 − ‖ g̃ ‖2]ds (16)

where

S =

[

I 0
0 0

]

, P =

[

P1 0
P2 εP2

]

, ē(t) =

[

e(t)
ė(t)

]

P1 > 0, SP = P τSτ ≥ 0
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Following (6) and (7) yields Φ(t) ≥ 0 for all arguments. It
is noted that ēτ (t)SP ē(t) is actually eτ (t)P1e(t). Hence,
differentiating ēτ (t)SP ē(t) with respect to t gives

d

dt
{ēτ (t)SP ē(t)} = 2eτ (t)P1ė(t) = 2ēτ (t)P τ

[

ė(t)
0

]

On the other hand, in the absence of F (t), the state
equation (9) ensures that

α(t) := −ė(t) + (A − LΓ1)e(t) + Gg̃ − LΓ2h̃ − L∆(t) = 0

Then along the trajectory of (9) in the absence of F , it
can be shown that

Φ̇(t) = 2ēτ (t)P τ

[

ė(t)
α(t)

]

+
1

λ2

1

[‖ U1Ee(t) ‖2 − ‖ h̃ ‖2]

+
1

λ2

2

[‖ U2e(t) ‖2 − ‖ g̃ ‖2]

≤ 2eτ (t)P1ė(t) + 2eτ (t)(P τ
2
A − RΓ1)e(t)

−2eτ (t)P τ
2
ė(t) − 2eτ (t)R∆(t)

−2εėτ (t)P τ
2
ė(t) − 2εeτ (t)R∆(t)

+2εėτ (t)(P τ
2
A − RΓ1)e(t)

+eτ (t)[
1

λ2

2

Uτ
2
U2 +

1

λ2

1

EτUτ
1
U1E]e(t)

+eτ (t)[λ2

2
P τ

2
GGτP2 + λ2

1
RΓ2Γ

τ
2
Rτ ]e(t)

+ėτ (t)[ε2λ2

2
P τ

2
GGτP2 + ε2λ2

1
RΓ2Γ

τ
2
Rτ ]ė(t)

≤
[

e(t)
ė(t)

]τ

Π0

[

e(t)
ė(t)

]

− 2eτ (t)R∆(t) − 2εėτ (t)R∆(t)

≤−η1||e(t)||2 − η2||ė(t)||2 + 2||e(t)||||R||δ̂
+2|ε|||ė(t)||||R||δ̂

≤−2
√

η1η2||e(t)||||ė(t)|| + 2(||e(t)|| + |ε|||ė(t)||)||R||δ̂
where R = P τ

2
L. When ||e(t)|| ≥ ||ė(t)||, if ||ė(t)|| ≥

(
√

η1η2)
−1(1 + |ε|)||R||δ̂, we have Φ̇(t) < 0 . When

‖|e(t)|| ≤ ||ė(t)||, if ||e(t)|| ≥ (
√

η1η2)
−1(1+ |ε|)||R||δ̂, then

Φ̇(t) < 0. Thus, if ||e(t)|| ≥ (
√

η1η2)
−1(1+|ε|)||R||δ̂ occurs,

then Φ̇(t) < 0 holds.
Furthermore, from (11), it can seen that

ξ(t)≤ ‖ Γ1 ‖‖‖ e(t) ‖ + ‖ Γ2 ‖‖ h̃ ‖ + ‖ ∆(t) ‖
≤ ‖ e(t) ‖ (‖ Γ1 ‖ + ‖ Γ2 ‖‖ U1 ‖‖ E ‖)+ ‖ ∆(t) ‖
≤ α(‖ Γ1 ‖ + ‖ Γ2 ‖‖ U1 ‖‖ E ‖) + δ̂

where α is defined by (14). Therefore, it can be claimed
that (14), (15) always holds and the estimation error
system is stable. Q.E.D.

Remark 4. Theorems 3 is based on a newly proposed aug-
mented Lyapunov functional of form (16), which contains a
structure more general than the traditional ones as those in
L. Guo, H. Wang [2005] for involving ė(t) in the first term
of (16). This new type of Lyapunov functional is beneficial
for minimizing the threshold later on.

By Theorem 3, we can obtain the following result, which
has been reported in L. Guo, H. Wang [2005] recently.

Corollary 5. For the parameters λi > 0(i = 1, 2), if there
exist matrices P > 0, R and constant η > 0 satisfying

[

Π1 + ηI Π̂3

∗ −I

]

< 0 (17)

where Π̂3 = [λ1RΓ2 λ2P
τ
2
G] then in the absence of F ,

the error system (9) with gain L = P−1R is stable and
satisfies

||e(t)|| ≤ α = max
{

||e(0)||, 2η−1||R||δ̂
}

(18)

||ξ(t)|| ≤ β = α(||Γ1|| + ||Γ2||||U1||||E||) + δ̂ (19)

for t ∈ [0, ∞), where δ̂ is defined by (12).

Remark 6. It is obvious that Corollary 5 is recovered by
setting η1 = 2nη, η2 = 2

n
η P2 = P1 = P, ε = 0 in

Theorem 3, where n is any positive constant. So, Theorem
3 in this paper is an extension of the result in L. Guo, H.
Wang [2005].

In this case, we choose ||ξ(t)|| and β as residual evalu-
ation function and the threshold respectively. From The-
orem 3, it is shown that the threshold β depends on the

value of δ̂ and α, where α can be tuned by the parameter
ε. The sensitivity of the fault detection can be improved
through the following optimization problem:

min
P1, P2, R, η1, η2

β (20)

subjected to (13)

Remark 7. Very recently, L. Guo, H. Wang [2005] pro-
vided a new fault detection criterion by using PDFs and
nonlinear filter. Compared with the threshold in L. Guo,
H. Wang [2005], the advantage in our note is that the
threshold β involve the tuning parameter ε and slack
variable P2. By tuning the parameter ε and matrix P2,
the fault detection criterion in this note can provide less
conservative algorithm than the Theorem 1 in L. Guo,
H. Wang [2005], which can be seen from the numerical
example in section 4.

4. SIMULATION

An application of paper making process is given to
demonstrate the applicability of the proposed approach.
The basis functions are selected similarly to Y. M. Zhang
et al [2006] as follows:

B(z) = [b1(z), b2(z), ..., b9(z)]τ ,

bi(z) = exp(−(z − zi)
2σ−2

i ), (i = 1, 2, ..., 10)

zi = 0.003 + 0.006(i − 1), σi = 0.003 (i = 1, 2, ..., 10)

Consider the following weighting system
{

ẋ(t) = Ax(t) + Gg(x(t)) + Hu(t) + JF (t)
V (t) = x(t)

where

A = diag{−0.83, −0.83, ...,−0.83} ∈ R9×9,

G = diag{1, 1, ..., 1} ∈ R9×9,

H = [0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0]τ ,

J = diag{1.18, 0, 0.56, 0, 0.56, 0, 0.56, 0.56, 0.56}
g(x(t)) = sin(x(t)) and u(t) is random number. Different
from Reference H. Wang, W. Lin [2000], it is assumed
that the model error exists and satisfies ||ω(z, u, F )|| ≤
0.001. By setting σ(z) = 1, then the following parametric
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matrices related to the B-spline approximation can be
obtained:

Λ0 = 10−5 ×






















2.400 0.956 0.048 0 0 0 0 0 0

0.956 2.607 0.959 0.047 0 0 0 0 0

0.048 0.959 2.605 0.956 0.049 0.001 0 0 0

0 0.047 0.956 2.601 0.960 0.048 0 0 0

0 0 0.049 0.960 2.605 0.958 0.048 0.001 0

0 0 0.001 0.048 0.958 2.605 0.960 0.049 0

0 0 0 0 0.048 0.960 2.601 0.956 0.047

0 0 0 0 0.001 0.049 0.956 2.604 0.939

0 0 0 0 0 0 0.047 0.939 2.226























Λ1 = 10−3 ×

























4.9 2 0.1 0 0 0 0 0 0
2 5.3 2 0.1 0 0 0 0 0

0.1 2 5.3 2 0.1 0 0 0 0
0 0.1 2 5.3 2 0.1 0 0 0
0 0 0.1 2 5.3 2 0.1 0 0
0 0 0 0.1 2 5.3 2 0.1 0
0 0 0 0 0.1 2 5.3 2 0.1
0 0 0 0 0 0.1 2 5.3 2
0 0 0 0 0 0 0.1 2 5.3

























,

Λ2 = [ 0 0 0 0 0 0 0 0.0001 0.0020 ] ,Λ3 = 0.0049

It can be verified that U1 = diag{0.05, 0.05, ..., 0.05} ∈
R9×9 and it can be supposed that U2 = diag{1, 1, ..., 1} ∈
R9×9. Corresponding to (10), it can be calculated that
Γ1 = 10−3 × [ 6.3 7.5 7.5 7.5 7.5 7.5 7.5 7.4 5.0 ] , Γ2 =
0.0063, ||∆(t)|| ≤ 0.001. In this case, the initial value
of observer (8) is selected as x̂(t) = 0 ∈ R9 for all
0 ≤ t ≤ +∞, while the initial value of (5) is selected as
x0 = [0.3 0.05 0 0.1 0 0.1 0 0.01 0]. The fault is supposed
as

F (t) =

{

0, t < 20
[0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2], 20 ≤ t ≤ 40
0, t ≥ 40

To detect the presence of fault, theorems 3 is used where
λ1 = 1, λ2 = 1. By using theorem 3, it can be obtained
that η1 = 0.0321, η2 = 383.1007 and

P1 =























2.33 0.42 0.42 0.42 0.42 0.42 0.41 0.42 0.28

0.42 2.48 0.50 0.50 0.50 0.50 0.49 0.50 0.33

0.42 0.50 2.48 0.50 0.50 0.50 0.49 0.50 0.33

0.42 0.50 0.50 2.48 0.50 0.50 0.49 0.50 0.33

0.42 0.50 0.50 0.50 2.48 0.50 0.49 0.50 0.33

0.42 0.50 0.50 0.50 0.50 2.48 0.49 0.50 0.33

0.41 0.49 0.49 0.49 0.49 0.49 2.47 0.49 0.33

0.42 0.50 0.50 0.50 0.50 0.50 0.49 2.48 0.33

0.28 0.33 0.33 0.33 0.33 0.33 0.33 0.33 2.20























P2 =






















0.62 −0.02 −0.02 −0.02 −0.02 −0.02 −0.02 −0.02 −0.01

−0.02 0.61 −0.02 −0.02 −0.02 −0.02 −0.02 −0.02 −0.01

−0.02 −0.02 0.61 −0.02 −0.02 −0.02 −0.02 −0.02 −0.01

−0.02 −0.02 −0.02 0.61 −0.02 −0.02 −0.02 −0.02 −0.01

−0.02 −0.02 −0.02 −0.02 0.61 −0.02 −0.02 −0.02 −0.01

−0.02 −0.02 −0.02 −0.02 −0.02 0.61 −0.02 −0.02 −0.01

−0.02 −0.02 −0.02 −0.02 −0.02 −0.02 0.61 −0.02 −0.01

−0.02 −0.02 −0.02 −0.02 −0.02 −0.02 −0.02 0.61 −0.01

−0.01 −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 0.63























R = [25.95 30.89 30.89 30.89 30.89 30.89 30.48 30.89 20.59]

L = [60.65 72.20 72.20 72.20 72.20 72.20 71.24 72.20 48.13]

The threshold can be calculated β = 0.0029, which is
obtained as 0.2586 in L. Guo, H. Wang [2005]. In Fig. 3,
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Fig. 3. 3-D mesh plot of the measured output PDFs
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Fig. 4. The response of the residual when the fault occurs

the three-dimensional (3-D) mesh plot shows that changes
of the measured output PDFs. Fig. 4 demonstrates the
residual signal, when the fault occurs from 20s to 40s. Fig.
5 shows the evolution of residual evaluation function and
the threshold. From Fig. 5, it can be seen that the fault
can be detected 7s after its occurrence, but it can’t be
detected by the result in L. Guo, H. Wang [2005] since
the threshold in L. Guo, H. Wang [2005] is larger than
the evaluation function ||ξ(t)||. Thus, the less conservative
FD algorithms can be obtained in this note.

5. CONCLUSION

In this paper, the FD problem is investigated for non-
Gaussian stochastic systems using only the output PDFs
and nonlinear filters, where the output PDFs can be
measured rather than an output signal. Based on LMI
techniques, a new criterion is obtained to detection the
fault with a threshold. Moreover, by introduced the tuning
parameter and slack variable, the detection sensitivity
performance is improved by minimizing the threshold.
Simulation is given to demonstrate the efficiency of the
proposed approach.
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