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Abstract: This work proposes a method for fault isolation by means of the structured model
characterization with isolation capability, and the residual generation through dynamic principal
component analysis. Specifically, the characterization is obtained using graph theory tools, and
is expressed in terms of known variables and subsets of constraints. Thus, in the absence of
analytical explicit models, the fault isolation task can be solved if the structured models satisfy
isolability conditions and a set of nominal historical data from the process is available to carry
out the dynamic principal component analysis based monitoring with adaptive standardization.
Simulation results for the three tanks system show the effectiveness of the solution for fault
isolation tasks.
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Redundancy Relation Evaluation.

1. INTRODUCTION

It is known that the possibilities for solving a fault detec-
tion and isolation (FDI) problem, depend on the structural
properties associated to the relation of internal and exter-
nal process variables, this means that the existence of a
residual generator is determined by the system structure.
The search of conditions to solve a FDI problem has been
tackled with a variety of tools by De Persis and Isidori
[2001], Düstegör et al. [2006], Massoumnia et al. [1989],
Krysander and Nyberg [2002]. In particular, Blanke et al.
[2003], Gentil et al. [2004] proposed the structural analysis
based on graph theory, to obtain redundancy relations be-
tween known variables for structurally equivalent systems.

On the other side, for large scale systems the FDI problem
based in analytical models is not a simple task and requires
a considerable design effort, Isermann [2006]. In these
conditions the data driven based approaches are good al-
ternatives, Chiang et al. [2001]. In particular, the dynamic
principal component analysis (DPCA), which implicitly
describes the linear correlation structure of a multivariate
process from historical data, has been successfully used
to solve fault detection tasks, Kresta et al. [1991], Raich
and Çinar [1996], however, it has limitations for the fault
isolation task. To improve the fault isolation capacity,
Gertler and Cao [2005] propose from partial DPCA models
to generate structured residuals, however, this proposal
does not allow to know, a priori , if there exist a correlation
structure for each partial model. The idea of using a priori
knowledge of the process operation has been considered
by some authors. Wang et al. [2002] propose, by means
of graph tools, to optimize the sensor locations in order
to improve the performance of PCA; Groenewald et al.
[2006] suggest, for the monitoring of a mineral processing
plant, to use statistical analysis together with fundamental
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knowledge of the process operation in order to reduce the
computational load in the data processing. Even when
these methods take into account some functional know-
ledge of the process, they don’t tackle the isolation issue.

The above described facts motivated this paper in which
it is shown that the weakness of DPCA for fault isola-
tion, can be overcome when this method is complemented
with structural information of the redundancy relations
by graph tools. Because the variables associated to a re-
dundancy relation are correlated, the idea is to determine
from the system structure the known variables subsets
which characterize the redundancy relations for an specific
isolation task and from each obtained subset of correlated
variables a DPCA model is performed with adaptive stan-
dardization.

The outline of this paper is as follows. Section 2 describes,
in the framework of structural analysis (SA), how to
determine sets of correlated known variables Zi involved
in the primary redundancy relations considering the fault
isolability. Section 3 is dedicated to describe the method
used to generate residuals for a given set Zi using a
DPCA algorithm with adaptive standardization. Section 4
shows the potentiality of the integration of DPCA with SA
considering an academic example in which the maximum
fault isolability is achieved. Finally, the conclusions are
presented in section 5.

2. SYSTEM STRUCTURE

Two basic concepts in a FDI issue are the redundancy re-
lation and the residual generator. Frisk and Åslund [2005]
use consistency relation instead of redundancy relation,
but the idea in both definitions remains the same.

Definition 1. Let z be a vector of known signals. The
scalar expression RR(z, ż, z̈, . . .) is a redundancy relation
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if for all z consistent with the fault-free model it holds that

RR(z, ż, z̈, . . .) = 0 (1)

Definition 2. Let z be a vector of known signals. A dy-
namic system, with input z and a scalar signal ρ(t) as
output, is a residual generator if z is consistent with the
fault-free model implies lim

t→∞

ρ(t) = 0, where vector z

includes both sensor data and known control signals.

The redundancy relations depend on the system structural
properties and are determined by the equations which
relate internal and external variables. Thus, these relations
can be characterized for a family of systems with the same
structure by graph theory, Blanke et al. [2003].

Definition 3. A dynamic system can be described by a
bipartite graph G = {C,V, E} where C is the set associated
with the system equations or constraints with |C| = nc.
The set of variables in the graph is defined by V = X ∪Z
with |V| = nv; where X is the unknown variables set with
cardinality |X | = n; Z = U ∪Y is the known variables set,
U the exogenous variables set with |U| = l, and the set Y
of endogenous with |Y| = s. Additionally, E is the set of
edges such that

eij =

{
(ci, vj) if vj appears in ci

0 on the contrary

A bipartite graph can be obtained using cause-effect re-
lationships and not necessarily using accuracy explicit
analytical models.

There are different options to take into account the time
derivative or time shift operator in a bipartite graph,
Nyberg [2006]. Here, for each state xi an extra constraint
of the form:

xk = dxi = ẋi

or
xk(t) = qxi(t) = xi(t + 1)

is included for a continuous or discrete variable, respec-
tively.

The basic process to get the structure of G is the matching,
which is based in the calculability property and associates
variables with constraints from which the unknown va-
riables can be eliminated. Once a matching is obtained,
the involved constraints can be interpreted as operators
from one variables set to other generated by constraints
concatenation or as paths which links variables following
the oriented graph.

For example, in the graph of Fig. 1 if {xi, xj , xk} are
known, two relations can be found by eliminating the
internal variable xz in the following way

• Relate xz in terms of measurements {xi, xk} using
{c1, c2} and then determine the measurement xj

through c3.
• Relate xz in terms of xj using c3 and then determine

the two measurements {xi, xk} through c1 and c2,
respectively.

A variety of matching algorithms exist to obtain from G the
possible paths between variables which characterize the

xi

xz xj

xk

c c3 2( )

c1

c2

c3

c c3 1( )

Fig. 1. Elimination of the unknown variable xz

primary redundancy relations as concatenated functions
of known variables, Lorentzen et al. [2003], Gentil et al.
[2004].

Due to the graph bidirectional property, one can redefine
an endogenous variable as exogenous, which is named
pseudo-exogenous; this is the case in the above example
where xj has been considered as exogenous. So, similar
to Definition 1 for an analytical redundancy relation, a
redundant graph can be defined as follows:

Definition 4. Let Zi = Usi ∪ yi be a subset of known va-
riables perfectly matched through the subset of restrictions
Ci, then

GRi(Ci,Usi, yi) (2)

is a redundant graph which establish, by means of Ci, a
consistency between the pseudo-exogenous subset Usi ⊂
Z \ yi and the target variable yi.

This definition together with the concept of pseudo-
exogenous variables, which are assumed independent in
an oriented subgraph, simplifies the analysis of subgraphs
and the search of redundancy relations with short paths or
short constraints concatenations, maximizing the system
fault isolability.

Starting from the bipartite graph G for a given set of
faults F of interest, the following example clarifies how
to obtain and characterize the redundant graphs GRi and
their corresponding subsets Zi = Usi ∪ yi of correlated
variables and subsets of constraints Ci. It is also shown
that GR′s with short paths have more isolation capability.

Consider the dynamic system given by

ẋ1 = −ax1 + x2 + u1 (c1)

x3 = dx1 (c2)

ẋ2 = x1 + bx2 (c3)

x4 = dx2 (c4)

y1 = x1 + x2 (c5)

y2 = 5 + x2 (c6)

with no concurrent faults in sensors, actuator and process;
the latest ones specified as deviations in parameters a
and b. Starting in the control framework, u1 is an exo-
genous signal and {y1, y2} are endogenous signals. Under
these conditions the oriented graph described in Fig. 2 is
obtained, where two paths between known variables are
identified which connect u1 with y1 and y2, respectively:

• GR1(C1,Us1, y1) connects the exogenous variable
Us1 = u1, with the target variable y1, by way of
constraints C1 = {c1, c2, c3, c4, c5}.

• GR2(C2,Us2, y2) connects the exogenous variable
Us2 = u1, with the target variable y2, by way of
constraints C2 = {c1, c2, c3, c4, c6}.
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Fig. 2. Matched Graph with u1 as exogenous variable
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Fig. 3. Matched Graph with the set {u1, y2} as pseudo-
exogenous variables

Taking into account the variables and constrains involved
in each graph, the corresponding fault sensitivity can be
identified and is shown in the following faults signature
matrix where f denotes a fault and the subindex defines
the specific fault.

\ Zi |Ci| fy1 fy2 fu1 fa fb

GR1 Us1, y1 5 1 0 1 1 1
GR2 Us2, y2 5 0 1 1 1 1

Since, GR1 and GR2 respond to all faults except one, their
isolation capability is low; only sensor faults can be iso-
lated considering these graphs. Moreover, since the three
last fault columns have the same signature, the actuator
fault fu1, and process faults {fa, fb} are detectable, but
not isolable with these GR′s.

Considering y2 as pseudo-exogenous in the bipartite
graph, the matching process generates the oriented graph
GR3(C3,Us3, y1) given in Fig. 3 which connects the set
Us3 = {u1, y2} with the target y1 by way of constraints
set C3 = {c1, c2, c5, c6}. Given that c3 is not in the path,
this graph is insensitive to faults in c3; c4 and the dynamic
of x2 are not considered. As result the faults {fu1, fa} can
be isolated of fb. In other words, a correlation between
Us3 and y1 has been detected by GR3 which improves the
isolability with respect to the above cases.

\ Z3 |C3| fy1 fy2 fu1 fa fb

GR3 Us3, y1 4 1 1 1 1 0

Another option is to assume Us4 = {y1} as pseudo-
exogenous resulting the matched graph of Fig. 4. One
path from Us4 to target y2 is identified by way of C4 =
{c3, c4, c5, c6}. The redundant graph GR4(C4,Us4, y2) is
insensitive to fu1 and fa and can also be considered in the
faults signature matrix

\ Z4 |C4| fy1 fy2 fu1 fa fb

GR4 Us4, y2 4 1 1 0 0 1

Since, GR3 and GR4 both isolate fb from {fa, fu1
}, they

have the same isolation capability and one of these can be
eliminated in the fault signature matrix. Considering that

c3

5

y2

x1

x2

y1

c6

c6

c5

c5

dx2

c3

c4

Fig. 4. Matched graph with the set {u1, y1} as pseudo-
exogenous variables

Table 1. Faults Signature for System (c1-c6)

\ Zi |Ci| fy1 fy2 fu1 fa fb

GR1 Us1, y1 5 1 0 1 1 1

GR2 Us2, y2 5 0 1 1 1 1

GR4 Us4, y2 4 1 1 0 0 1

GR3 involves more known variables than GR4, the latest
is selected.

Integrating the selected redundant graphs, the faults sig-
natures matrix of Table 1 is obtained, which characterizes
the isolability structure, where only the actuator fault fu1

and the process fault fa are not isolable.

As conclusion, for a given redundant graph GRi, the
higher is the cardinality of its corresponding restrictions
set Ci, the lower is its isolation capability. The long
paths in the graphs result at considering in Us only
the conventional control inputs {u1, u2, . . . , ul}. On the
other hand, increasing the cardinality of Us with the
elements of Y, the number of constraints involved in the
resulting redundant graphs is reduced, which improves the
isolability. Thus, the maximal isolability is achieved when,
for the selection of any target variable yi, the pseudo-
exogenous set is conformed by Us = U ∪{yk ∈ Y, yk 6= yi}.
Compare the fault signature of GR1 and GR2 with GR4.

It is important to note that this methodology allows
the search of insensitive GR′s to a specific fault fj , by
eliminating the set Cfault associated to fj in the set of
constraints of the bipartite graph.

On the other hand, from the GR′s the analytical redun-
dancy relations (1) can be obtained using symbolic tools
and constraints concatenation, as long as the parameters
of the analytical model be available, this is, for the resi-
dual generation the parameterized models are used, Frisk
and Åslund [2005], Staroswiecki and Comtet-Varga [2001].
However, in large scale process this idea for the residual
generation could be inadequate because the analytical
models are not available or uncertain.

The above described fact suggest the use of data driven
based methods as an alternative for the residual genera-
tion. The argument is that given the structure of the GR′s,
the existence of a correlation between the graph signals,
Zi, is assured. Here, specifically, a DPCA modeling for
each redundant graph is performed and the square predic-
tive error as residual is evaluated for each observation. For
this proposal it is assumed as known the redundant graphs
and the availability of process historical data. The details
of this integration are given in the following section.
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3. RESIDUAL BY DPCA STRUCTURED MODELS

Given a redundant graph

GRi (Ci,Usi, yi) (3)

which is sensitive to faults set Fi, according to the defini-
tion (4), exist a redundancy relation of the form (1) which
is also sensitive to Fi.

If the process under supervision is stable, works around an
operation point and its model is linearizable, exist a linear
redundancy relation

zi(w)(t)ai = 0 (4)

mapped from (3), with ai ∈ ℜm×1 and the vector
zi(w)(t) ∈ ℜ1×m written by

zi(w)(t) =
[usi(t) usi(t − 1) . . .usi(t − w) yi(t) yi(t − 1) . . . y(t − w)]

where: usi(t) ∈ ℜ1×l is associated to the pseudo-exogenous
subset Usi and yi is the target variable; m = (l+1)(w+1).

Under these conditions, the residual generation for (4)
can be tackled by DPCA, taking into account the auto
and cross-correlations of the signals zi(w)(t), which by
simplicity we will rename as z(t).

The starting point to get a DPCA modeling is a set of N
nominal historical data of z(t) which satisfy (4) and are
written as a matrix

Z(t) =




z(t)
z(t + 1)

...
z(t + N − 1)


 ∈ ℜN×m

Usually, data Z(t) are standardized with respect to their
means µz, and standard deviations σz and the resulting

matrix is denoted as Z̃(t).

The DPCA based implicit model is derived from the

eigenstructure of the correlation matrix R = 1
N−1 Z̃

T Z̃,
which can be written by

RQ = QΛ (5)

where Q ∈ ℜm×m is the orthonormal eigenvectors matrix
and Λ ∈ ℜm×m is the diagonal matrix of the correspon-
ding eigenvalues ordered in decreasing form: λ1 ≥ λ2 ≥
· · · ≥ λm with m = p + r.

Following the calculation given by Gertler and Cao [2005],
and considering the linearity of the redundancy relation
(4), p eigenvalues of Λ are significative and r = w + 1 are
close to zero. Thus matrix Q can be decomposed by

Q = [ Qp Qr ] (6)

where Qp ∈ ℜm× p is the eigenvectors subset associated to
the most significative eigenvalues which are a base for the
named principal component subspace; and Qr ∈ ℜm× r is
the complementary eigenvectors subset associated to the
zero eigenvalues which are a base for the named residual
subspace.

Thus, for a given nominal time series vector z(t) satisfying
(4), which is standardized with respect to the historical

means µz, and standard deviations σz, its projection to
the residual subspace yields the residual vector

ri(t) = z̃(t)Qr = 0 ∈ ℜ1×r (7)

This means that consistent observations are orthogonal to
the residual subspace.

On the other side, considering a standardized inconsistent
observation

z̃f (t) = z̃(t) + fz(t) (8)

where ‖fz‖ 6= 0 represents the faults effect. The projection
of (8) to the residual subspace is given by

ri(t) = z̃f (t)Qr = z̃(t)Qr + fz(t)Qr = fz(t)Qr 6= 0 (9)

As conclusion, the projection of any new observation z̃(t)
to the residual subspace can be used as a residual of (4),
even if this explicit relation is unknown.

To generate a scalar residual from the projection ri(t), the
square predictive error is used

ρi = ri(t)r
T
i (t) (10)

Thus, the residual evaluation for each redundancy relation
given in (4) can be carried out by DPCA based implicit
modeling.

Because the redundancy relation (4) is an independent
subsystem and usi(t) is an external signals vector to
(4), which can contain system output variables, then, in
the framework of DPCA it is necessary to consider the
variations of usi(t) as ‘normal’, even if they are induced
by changes in the operating point or by faults in other
subsystems. This consideration prevents false alarms and
allows to carry out the residual generation according
to the fault signature matrix. This means, the DPCA
algorithm, requires a standardization process with on-line
estimated statistical parameters (µz, σz), obtained from
usi(t), instead of fixed statistical values calculated off-line.

Here, it is adopted the adaptive standardization procedure
proposed by Mina and Verde [2007] based in the fact that
the correlation structure R of subsystem (4) is invariant in
nominal conditions. So, the means and variances of usi(t)
are estimated on-line, respectively, using exponentially
weighted moving average and exponentially weighted mo-
ving covariance; and the mean and variance of the target
variable yi is estimated from means and variances of usi(t).
Fig. 5 describes the integration of a GRi with its respective
residual generator based in DPCA with adaptation.

The results of the integration of DPCA and SA are
demonstrated for the residual generation of a three tanks
hydraulic system, in the following section.

4. THREE TANKS SYSTEM

The three tanks hydraulic system, described in Fig. 6,
is composed of cylindrical tanks, interconnected at the
bottom by pipes with valves V1 in the link between tanks
1 and 3, V3 in the link between tanks 3 and 2, and V2

in the link between tank 2 and the outside, which can be
manipulated to emulate faults (e.g. pipe blockage). The
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Fig. 5. FDI based in DPCA Structured Models with
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Fig. 6. Three Tanks System

system is fed by two flows to the tanks 1 and 2; these flows
are controlled by pumps whose respective inputs u1 and u2

are known. The tanks levels y1, y2 and y3 are considered
as measured output variables.

In this system eleven faults are considered: three asso-
ciated with the sensors {fy1

, fy2
, fy3

}; two associated with
the actuators {fu1

, fu2
}; three associated with blockages

in the pipelines between the tanks {fα13
, fα32

, fα20
} and

three associated to leaks in the tanks {ff1, ff2, ff3}. This
FDI problem was tackled by Alcorta and Frank [1999] and
solved using three non-linear observers.

The general mathematical model of this system is given by

ẋ1 = f1 (x1, x3, u1, ff1, α13) (t1)

ẋ2 = f2 (x3, x2, u2, ff2, α32, α20) (t2)

ẋ3 = f3 (x1, x3, x2, ff3, α13, α32) (t3)

x4 = dx1 (t4)

x5 = dx2 (t5)

x6 = dx3 (t6)

y1 = x1 (t7)

y2 = x2 (t8)

y3 = x3 (t9)

where αij is the flow constant for the corresponding pipe
between tanks i and j.

The bipartite graph of model (t1-t9) is represented in Fig.
7. Eliminating the unknown variables {x1, x2, x3, ẋ1, ẋ2, ẋ3}
by means of a matching process for subsets of system
measurable signals, ten graphs GRi are obtained. Due to
space limitations, only the four graphs, which achieve the
maximum isolability, are presented

u1 dx1 x1 y1

dx3 x3 y3

u2 dx2 x2 y2

t1

t1

t1

t4 t7

t2 t5

t2

t2

t8

t3

t3

t3

t6 t9

Fig. 7. Bipartite graph of the system (t1-t9)

Table 2. Faults Signature for the Three Tanks
System

\ GR1 GR2 GR3 GR4

Zi u1, y3, y1 u2, y3, y2 y1, y2, y3 u1, u2, y3

|Ci| 4 4 5 7

fy1
1 0 1 0

fy3
1 1 1 1

fy2
0 1 1 0

fu1
1 0 0 1

fu2
0 1 0 1

ff1 1 0 0 1

ff3 0 0 1 1

ff2 0 1 0 1

fα13
1 0 1 1

fα32
0 1 1 1

fα20
0 1 0 1

GR1(t1, t4, t7, t9, u1, y3, y1)
GR2(t2, t5, t8, t9, u2, y3, y2)
GR3(t3, t6, t7, t8, t9, y1, y2, y3)
GR4(t1, t2, t3, t4, t5, t6, t9, u1, u2, y3)

(11)

According to the graphs in (11), the faults signature ma-
trix, given in Table 2, is obtained. Then the isolable faults
sets are {fy1

}, {fy3
}, {fy2

}, {fu1
, ff1}, {fu2

, ff2, fα20
},

{ff3}, {fα13
}, {fα32

}.

To get the training data to design the DPCA based
residual generator, the system is simulated around the
following operating point:

Values Variance

u1 = 0.03l/s
u2 = 0.02l/s
y1 = 0.310m
y2 = 0.130m
y3 = 0.220m

σ2
u1

= 5 × 10−11

σ2
u2

= 5 × 10−11

σ2
y1

= 5 × 10−4

σ2
y2

= 5 × 10−4

σ2
y3

= 5 × 10−4

with nominal parameters α13 = 1.002 × 10−4, α32 =
1.027 × 10−4 and α20 = 1.360 × 10−4.

Thus, considering the subsets of correlated variables Zi

indicated in Table 2 four residuals ρi are generated using
DPCA according with expressions (9) and (10).

To test the diagnosis system, eight conditions are si-
mulated; a running for each independent fault, which are
activated at 40×103 s. The residual response for the faults
fy1

, fy2
, fy3

, fu1
, fu2

, ff3
, fα13

, fα32
are shown in Fig. 8.

From this figure one verifies that the residuals behavior
corresponds with that indicated in Table 2. Similar results
are obtained with the remaining non isolable faults.
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Fig. 8. Residual response for: fy1
(blue –); fy3

(red –); fy2

(green –); fu1
(cyan –); fu2

(black –); ff3
(magenta

–); fα13
(yellow –); fα32

(blue - -)

5. CONCLUSIONS

This paper proposes, for FDI purposes, to carry out the
a priori analysis of the system structural possibilities by
means of graph theory tools. The resulting redundant
graphs describe the isolation capability of the system and
summarize the information for the implementation of the
corresponding residual generators. In the case that accu-
racy models are not available or have the sparsity property,
as it happens in large scale systems, the correlation be-
tween variables associated to the redundant graphs can be
exploited to generate the residuals. Here, principal compo-
nent analysis is used for the implementation of the residual
generator for each redundant graph. The advantage of
the proposed integration is that it only requires a generic
model of the system in order to obtain the redundant
graphs, and historical data for the implementation of the
residual generators. The simulation results for the three
tanks system benchmark show the effectiveness, for fault
isolation, of the proposed algorithm with similar results to
those obtained using non-linear observers with unknown
inputs, however, with less effort in the design.
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