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Abstract: the paper presents a new computational technique for the manufacturing process 
planning in laser cutting robotic systems. It focuses on the optimisation of robot motions 
for continuous contour tracking using the redundancy caused by the tool axial symmetry. 
In contrast to previous works, the developed technique is based on the dynamic 
programming and explicitly incorporates verification of the velocity/acceleration 
constraints. It also takes into account recent advances in robot mechanical design 
allowing unlimited rotations of some manipulator axes. The technique is implemented in 
a CAD package and verified in the automotive industry. Copyright © 2008 IFAC 
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1. INTRODUCTION 
 
Recent advances in laser technology motivate 
amending the existing robot path planning methods, 
which do not allow the complete utilisation of the 
actuator capabilities and neglect some particularities 
in the manipulator mechanical design. At present, the 
cutting speed is comparable with the kinematic 
capabilities of industrial robots (Schlueter, 2005), so 
their performances are becoming a bottleneck in 
enhancing the cutting cells productivity.  
 
A typical robotic laser cutting system consists of a 
laser, a beam-delivery-system and a cutting head 
integrated with a 5- or 6-axis manipulator. One of the 
recent developments in this field, the Robocut system 
(www.rpt.net), is based on a 5-axis anthropomorphic 
manipulator with standard 3-axis forearm 
architecture and a reduced 2-axis wrist with 
endlessly rotating 4th and 5th joints. This special 
design offers essential advantages, since the cycle 

time losses can be avoided for the reverse rotations. 
In spite these benefits, the 5-axis robots possess 
essential disadvantages related to the difficulties to 
solve the inverse kinematic problem. So, most of the 
cutting robotic cells are based on the 6-axis robots 
with the standard 3-axis wrist allowing unlimited 
rotation of the 4th and 6th axes. Obviously, this 
redundancy simplifies robot control and 
programming, and also increases the flexibility of the 
manufacturing cell, while posing another problem: 
optimal utilisation of the kinematic redundancy. 
 
For robotic laser cutting, most of the related research 
focuses on the off-line programming, which allows 
essentially reduce the system down time and make 
economically feasible even very small batch sizes 
(Kaierle, 1999; Mitsi et al., 2005). At the moment, 
there are a number of commercial off-line 
programming systems on the market. However, there 
still exists a considerable gap between their 
capabilities and requirements of a particular 
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application. And up to now, the robot programs for 
many 3D cutting applications are constructed 
interactively. The ultimate goal is the automatic 
generation of robot programs from CAD drawings, 
similar to CNC machining. 
 
For manipulators with six degrees of freedom, the 
motion planning problem was firstly addressed in 
(Abe et al., 1994; Shibata et al., 1997). These authors 
proposed a genetic algorithm that optimises the 
cutting tool orientation using the evaluation function 
extracted from the experience of skilled operators. 
However, they succeeded in the generation of 
manipulator motions for relatively slow cutting 
speed. Some recent techniques that employ the 
general end-effector constraints concept (Yao and 
Gupta, 2007) also suffer from this drawback.  
 
An alternative approach, proposed by the authors of 
this paper (Pashkevich et al., 2004), is based on the 
graph-based search space representation and 
dynamic programming. These yields essential gain in 
computation speed and allowed successfully apply 
the technique in industry. Nevertheless, recent 
advances in technology and the essential increase of 
the cutting speed motivate further improvements. 
 
This paper focuses on the enhancement of our 
method by imposing additional constraints on the 
trajectory smoothness and taking into account the 
ability of some robot axes for unlimited rotations. Its 
remainder is organised as follows. Section 2 is 
devoted to the problem statement, Section 3 presents 
the main theoretical results, Section 4 contains 
simulation and implementation issues, and Section 7 
summarizes the main contributions. 
 
 

2. PROBLEM STATEMENT 
 
2.1 Manufacturing task model 
 
Let us assume that the desired Cartesian path, along 
which the cutting tool is to be moved, is imported 
from a CAD system and is described by two vector 
functions as follows: 

{ ( ), ( ) [0, ]; 0,...t t t k t T k n= = ⋅∆ ∈ =C p n }  (1) 

here t is a scalar argument (time);  p(t)∈R3 defines 
the Cartesian coordinates of the tool tip, and n(t)∈R3 
is the unit vector of the tool axis direction, which 
must be normal to the part surface. These data can be 
directly extracted from the graphical model of the 
part, by defining the processing contour as an 
“augmented line”. The path is assumed to be closed 
and time-uniformly sampled into the sequence of 
nodes , ;{ k k k =p n 0,... }n  , where the first and the 
last coincide ( 0 ;  ), and the time-
interval length is  ∆t . 

n=p p 0 n=n n

To describe the tool spatial location, let us also 
define the Cartesian displacement along the path 

 and introduce a unit 

direction vector 

1 ;k k k+∆ = −p p p 0,... 1k n= −

|| ||k k k= ∆ ∆a p p , which is tangent 
to the part surface and to the direction of the points 
for the tool motion. For the last node, let us define 
this vector as 0n =a a . Then, assuming that the 
vectors ak and nk  are mutually orthogonal, each node 
may be associated with the Cartesian frame in which 
the x-axis is directed along the path, the z-axis is 
directed along the cutting tool, and the y-axis is 
computed in such way that these three axes form a 
right-handed coordinate frame. The corresponding 
homogenous transformation matrix is composed of 
the vectors , , ,k k k k k×a a n n p  and is denoted as kH . 
 
The frame sequence { 0,... }k k =H n  is used as a 
pivot for defining the complete pose of the robotic 
tool, which is usually determined by six independent 
parameters (three Cartesian coordinates and three 
Euler angles). However, since the cutting tool is 
axially symmetric, the frames Hk can be rotated 
around corresponding zk-axes without any influence 
on the technological process. This one-dimensional 
redundancy leads to an infinite set of admissible tool 
locations described by the matrix product 

( ) ( ) , (- , ]k k z k k kγ γ γ π π= ⋅ ∈L R H  ,  (2) 

where γk is an arbitrary scalar parameter and Rz(γ) is 
the standard  z-axis rotation matrix. 
 
Another source of redundancy is related to the 
manipulator posture µ (or the configuration index), 
which is required for the unique mapping from the 
task space to the joint coordinate space. So, in total, 
the robotic task is described by a sequence of 
locations (2), while the design parameters are 
represented by the sequence ,{ . At 
this step, the design problem can be formulated in the 
terms of non-linear programming; however this 
straightforward approach is not prudent because of 
high dimension of the relevant search space. 

0,... }k k k nγ µ =

 
2.2 Constraints 
 
For laser cutting and other curve-tracking 
applications, a designer must take into account three 
types of constraints: task, robot kinematic and 
collision constraints (Hwang et al., 1994). Here, task 
constrains are expressed in the terms of the required 
position/orientation of the tool and are described by 
expression (2). Robot kinematics constraints are 
caused by the manipulator geometry. And collision 
constraints arise from the need to avoid collisions 
between the robot and workcell components. 
 
To define the kinematic constrains more precisely, let 
us express the tool location L corresponding to the 
joint coordinate vector  as  6R∈q

6

1
1

( ) ( )i
tool i i base

i

q−
=

⎛ ⎞
= ⋅ ⋅⎜ ⎟

⎝ ⎠
∏L q T T T  ,  (3) 
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where i-1Ti is the transformation matrix from the 
(i-1)th to the ith link, qi is the corresponding joint 
coordinate, the matrix Ttool defines the tool tip 
location, and the matrix Tbase defines the robot base 
location. Particular expressions for the homogenous 
matrices  i-1Ti  for various manipulators can be found 
in common reference books (Spong et al., 2006). 
 
For the inverse transformation 1 ( , )c µ−=q f L , let us 
introduce the configuration index µ∈Μ that 
determines the manipulator posture, where Μ 
contains all combinations of admissible 
configurations (shoulder right/left, elbow up/down, 
wrist plus/minus). It should be stressed that typical 
robot controllers do not allow changing the 
manipulator configuration while moving between 
successive nodes and using the Cartesian space on-
line interpolation. But for cutting applications, this 
specific kinematic constraint can be released by 
temporarily switching to the joint-space 
interpolation. So, in contrast to our previous work 
(Pashkevich et al., 2004), here we do not use separate 
manifolds for each value of µ. 
 
Using the inverse kinematic transformation, the 
sequence of the admissible tool locations can be 
mapped into the joint coordinate space  

1( , ) ( ( ) , )
(- , ], ,  1

k k k c z k k
Q

k k k n
γ µ γ µ

γ π π µ

−⎧ ⎫= ⋅⎪ ⎪= ⎨ ⎬
∈ ∈ Μ =⎪ ⎪⎩ ⎭…

Q f R H
C  (4) 

taking into account both the workspace dimension 
limits (i.e. inverse kinematics existence) and the joint 
limits , min max

i i iq q q< < i I∈ , . For 
further convenience, the constraint violation case is 
denoted as 

{1, 6}qI = …

( )k kγ = ∅Q . It is also worth mentioning 
that the latest laser-cutting manipulators allow 
unlimited rotation of the 4th and 6th axes, so in this 
case . {1, 2, 3, 5}qI =
 
The collision constraints are managed in a similar 
way, i.e. their violation leads to ( )k kγ = ∅Q  and 
corresponding tool locations are inevitably excluded 
from a feasible set. The collision detection functions 
are standard routines of industrial robotic CAD 
packages, together with the direct/inverse kinematics 
of the robotic manipulators. 
 
From application point of view, the desired path 
planning algorithm should produce “smooth motions 
at reasonable speeds and at reasonable 
accelerations”. Within the frames of the adopted 
path presentation (1), the joint velocity/acceleration 
constraints may be expressed via the finite-difference 
approximation as:  

( )
, , 1

v
i k i k v iq q qη−− < ⋅ ∆  , (5) 

( )
, , 1 , 22 a

i k i k i k a iq q q qη− −− + < ⋅ ∆  , (6) 

 

 
where ( ) maxv

i iq q t∆ = ∆� ( ) max 2aq q t; i i∆ = ∆�� ; the notations 
 and  define the maximum ith joint 

velocity and acceleration; and η

max
iq∆ � max

iq��
v and ηa are the 

scaling factors to be adjusted by the designer. Hence, 
the complete set of constraints arising from the 
technical nature of the problem are summarized in 
inequality  ( )k kγ ≠ ∅Q   and in the expressions (5), 
(6), which ensure the path existence and its 
admissible curvature in the joint coordinate space. 
 
2.3 Design objectives 
 
In the qualitative terms, the desired manipulator 
motion should be as smooth as possible while 
satisfying the contour-tracking and actuator-
dependent constraints. This means that the qualitative 
performance measures should be based on some type 
of the “smoothness/economy” measures applied to all 
manipulator joints (Edan and Nof, 1997). 
 
For the considered problem, which is based on the 
discrete path presentation, the degree of smoothness 
can be evaluated by the following criteria: 

• total displacement 
( )

, , 1 1
1

( , ) ( , )- ( , )
n

s
i i k k k i k k

k

J q qγ µ γ µ− − −
=

= ∑γ µ 1k , (7) 

• maximum increment (speed)  
( )

, , 1 1( , ) max ( , ) - ( , )v
i i k k k i k kk

J q qγ µ γ µ− − −=γ µ 1k , (8) 

• coordinate range 
( )

, ,( , ) max ( , ) min ( , )i i k k k i kkk
J q qγ µ γ µ∆

k k⎡ ⎤ ⎡= − ⎤⎣ ⎦ ⎣γ µ ⎦ , (9) 

where i is the joint number, and γ , µ are the vectors 
composed of the design parameters γ0, γ1, …γn  and    
µ0, µ1, …µn  respectively. 
 
Intuitively, the minimization of each of these criteria 
should lead to a smoother generated path. However, 
as follows from our studies, the objectives (7) – (9) 
may compete with each other. Besides, these indices 
are computed for each joint coordinate. Thus, the 
resulting performance measures form a vector and 
the designer must choose one of the existing multi-
criteria optimisation techniques (Cheng and Shih, 
1997). However, independent of the chosen 
technique, the corresponding vector-optimisation 
engine must include the scalar-optimisation routines 
that are developed below. 
 
 

3. PATH PLANNING ALGORITHM 
 
3.1 Search space presentation 
 
To obtain an optimal solution under the above 
constraints, let us sample the feasible domain for the 
redundant parameter γ. This transforms the continues 
search space into an acyclic directed graph, with the 

     

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14824



vertices uniquely representing the tool location 
matrix L and the vector of joint coordinates Q.  
 
In particular, let us assume that the parameter γ∈[-π, 
π]  is sampled with the step  ∆γ = 2π/m0, m0∈Z and, 
for each discrete value of γ  and each admissible 
configuration  µ∈Μ, the locations (2) are tested for 
the kinematic and collision constraints. Then, the 
admissible locations, which satisfy the constraints, 
are included in the search space in such manner that 
each Cartesian-path node {pk, nk} produces several 
elements of the data structure {L, Q}:  

,
,

,1

{ }
m

k j
k k

k jj

k

=

⎧ ⎫
→ ⎨ ⎬

⎩ ⎭

L
p n

Q∪  (10) 

where mk is the number of the successful locations 
for the kth node. It should be noted that the “path-
smoothness” constraints (5), (6) are not tested at this 
stage yet, since they are associated with several 
successive locations. 
 
Then, the feasible search space can be represented by 
a directed graph with the vertices  

,

,0 1

mn
k j

k jk j

k
V

= =

⎧ ⎫
= ⎨

⎩ ⎭

L
Q∪ ∪ ⎬  (11) 

and edges 

, 1,

, 1,1 1 1

1
,

m mn
k j k l

k j k lk j l

k k
E −

−= = =

− ⎛ ⎞⎧ ⎫ ⎧ ⎫
= ⎜ ⎨ ⎬ ⎨ ⎬⎜ ⎩ ⎭⎩ ⎭⎝ ⎠

L L
Q Q∪ ∪ ∪ ⎟⎟

)

, (12) 

which connect only successive tool locations. Hence, 
the original robot control problem is reduced to a 
specific best-path problem for a graph (11), (12), 
where the performance measure should incorporate 
the design objectives (7)…(9). Besides, both the 
initial and final vertices are not unique, but the 
problem can be transformed to the classical problem 
by adding the virtual start and end nodes.  
 
Since the Cartesian path is sampled uniformly, the 
related distance matrix should be based on a joint 
space metric. Also, it is necessary to take into 
account that the actuator capacities (i.e. maximum 
speed, acceleration, etc.) are different for different 
manipulator axes. So, the displacement components 
∆qi corresponding to the joint displacement vector 

1 6  should be weighted. The most 
prudent is assigning the weights , 
where  is the maximum axis speed specified by 
the manufacturer. And finally, the distance in the 
weighted joint space may be defined using the 
Euclidean, Manhattan or Chebychev metrics because 
their clear physical meaning. 

( ,q q∆ = ∆ ∆…q
max -1( )i iw q t= ∆�

max
iq�

 
While computing these distances, it is also necessary 
to take into account that the 4th and 6th manipulator 
axes may allow unlimited rotation. In this case, the 

differences iq∆  must be pre-processed in accordance 
with the expression: 

{ }min 2 , {4, 6}i ip Z
q q π p i

∈
∆ = ∆ + ∈  (13) 

where p is an integer number. 
 
3.2 Generation of optimal path 
 
Since there is no combinatorial optimisation 
technique, which is able to solve this multi-objective 
problem directly, the vector performance measures 
(7) - (9) should be converted into an aggregate scalar 
criterion. At this step, a relevant metric (Manhattan 
or Chebychev) is applied to the sequence of the path 
segments, while inside the segments the weights are 
altered between optimisation runs to produce a set of 
Pareto-optimal solutions. 
 
Corresponding expressions for the objective 
functions may be written as follows: 

( )( )
1

1
( , ) ( , )- ( 1, )

n
s

a k k
k

J k j kρ −
=

= ∑γ µ Q Q j−  (14) 

( )( )
1( , ) max ( , )- ( 1, )a k kk

J k j kρ∆
−=γ µ Q Q j−  (15) 

where (.), { , , }a a E M Cρ ∈  is the distance 
function,  the notation  jk defines the values of the 
redundant parameters γ, µ at the kth node and, for 
further convenience, the vectors of the joint 
coordinates Qk,j  are denoted as Q(k,j). So, a vertex 
may be coded as pair (k, j), an edge is identified by 
quadruplet (k1, j1, k2, j2), and the solution is defined 
by the array of j-indices {Jopt(k), k=0,1,…n} of the 
sequential visiting vertices. Also, following this 
notation, the cluster sizes are defined in the array 
{Jmax(k), k=0,1,…,n} and the cost of the edges are 
denoted as ρ (k1, j1, k2, j2). 
 
For the the objectives (14) and (15), an optimal path 
can be found by means of dynamic programming. A 
basic expression for the proposed algorithm is 
derived in the following way. Let us consider a 
reduced order sub-problem with k clusters S0, S1, … 
Sk-1, and let  be the length of the shortest path 

0 1 1k

1,k jd ∗
−

S S S −→ → →…  that links a vertex 1, 1k j kv S− −∈  
to the nearest vertex 0u S∈  , assuming that all the 
clusters are visited exactly once. Then, using the 
dynamic programming, the optimal solutions for the 
sub-problem with k+1 clusters  S0, S1, … Sk  can be 
found by choosing the best edge , , ( , )k ju v 1ku S −∈  
that links the vertex  ,k j kv S∈   with the cluster Sk-1 : 

{ }, 1, 1, ,min ( , ) , 1,k j k p k p k jp
d d v v kρ∗ ∗

− −= + = …n

j

 (16) 

Therefore, the desired solution for n+1 clusters S0, … 
Sn can be obtained sequentially, starting from k = 0 
with 0, 0,jd ∗ = ∀  , successively increasing the k-
index up to n, computing , and, finally, choosing 
the smallest . The corresponding 

,k jd ∗

, , 1, 2,n j nd j m∗ = …
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sequence of the j-indices 0 1 , which 
defines the shortest path, is extracted in the reverse 
order, starting from  k = n and ∗ . 

{ nj , j , j∗ ∗ ∗… }

j=

)

)

,arg min{ }n n
j

j d∗

 
An outline of the path planning procedure based on 
this technique is presented below. The procedure 
consists of five basic steps where the first two, (1) 
and (2), implement the recursion (16). These steps 
deal with creating matrices of optimal distances 
Mdist(k,j) and the corresponding matrix Mind(k, j) of 
the optimal j-indices of the preceding clusters. In 
steps (3) and (4), the minimum value in the nth 
column of the distance matrix Mdist(.) is computed, in 
order to select the best vertex in the last cluster. 
Finally, in step (5), the best vertices of the preceding 
clusters are iteratively extracted from the matrix 
Mind(.) to generate the optimal path described by the 
array of the optimal indexes Jopt(.). The procedure 
also uses the array Jmax(.) containing the upper range 
for the j-index and  the vertex distance function ρ(.) 
defined previously. The notation d∞ defines the 
infinity) 

A distinct feature of this procedure is contained in 
sub-steps (2bβ) and (2bγ) that verify the path-
smoothness constraints (5) and (6). Sub-step (2bβ) 
incorporates the function , which evaluates 
the velocity constraints (5) for all manipulator axes 
while the manipulator moves from the location L

(vf k, j, p

k-1,p 
to the location Lk,j (a non-zero value of this function 
corresponds to violating one of the velocity 
constraints). Similarly, at the sub-step (2bγ), the 
function  verifies the acceleration 
constraints (7) for the location sequence L

( ,af k, j, p l
k-2,l , Lk-1,p , 

Lk,j , where the location Lk-2,l   is assumed to be the 
optimal predecessor of Lk-1,p, i.e. . ( 1 )indl M k - , p=

A similar algorithm can be applied for the minimax 
design objective ) . The only modification needed 
deals with the sub-step (2bα). Combining two of the 
path generation options (objectives 

(∆J
( )sJ  and )(J ∆ ) 

and altering the distance metrics weights wi together 
with the constraint weights ηv and ηa (see 
expressions (5) and (6) ), the designer can generate a 
collection of the candidate solutions to be included in 
the Pareto-optimal set.  
 
 

4. IMPLEMENTATION RESULTS 
 
To evaluate efficiency of the proposed technique, 
first it was applied to the planar cutting task 
described in detail in (Pashkevich et al., 2004). For 
this task, two techniques were applied (the known 
and the proposed ones), and a set of solutions was 
obtained that differ by both the optimisation criteria 
and the weights: wi , ηv and ηa. As follows from our 
study, for the previous technique, tuning of the 
weights wi can barely produce acceptable results. 
Most of the solutions have a tendency for undesirable 
oscillations in the orientation axis. In contrast, the 
new technique simplifies obtaining smooth solutions 
with the balanced values of the partial criteria. This 
result is illustrated in Fig. 1 and 2, which contain the 
trajectories generated both methods.  

Procedure: Path_planning  
(1)  For  j = 1 to Jmax(0)  do  
 Set  Mdist(0, j) := 0;   Mind (0, j) := 0 
(2)  For  k = 1  to n  do 
 For  j = 1  to  Jmax(k)  do 
  (a) Set  dmin := d∞

  (b) For  p = 1 to Jmax(k-1)  do 
   (α) Set  dcur :=  Mdist(k-1, p) + ρ(k, j, k-1, p)  
     (β) If  k > 0  &  fv(k, j, p) ≠ 0 
      Set  dcur := d∞

     (γ) If  k > 1  &  fa( k, j, p, Mind(k-1, p) ) ≠ 0 
      Set  dcur := d∞

   (δ) If  dcur < dmin  then  
      Set   dmin := dcur;   jopt := p 
  (c) Set   Mdist(k, j) := dmin ; Mind(k,j) := jopt;  
(3)  Set  dmin := inf; 
(4)  For  j := 1  to  Jmax(n)  do 
 (a)  Set dcur :=  Mdist(n, j)  
 (b)  If  dcur < dmin  then  
  Set  dmin :=  dcur;   jopt := j 
(5)  For  k = 0 to n  do 
 Set   Jopt(n-k) := jopt ;   jopt :=  Mind(n-k, jopt); 

 
The developed algorithms have been also 
implemented on the manufacturing floor, in 
ROBOMAX CAD package, which is already used in 
automotive industry and has been successfully 
applied for the design of a number of manufacturing 
lines. With respect to 3D laser cutting, the 
Robomax/Laser subsystems enable to design a 
workcell layout and optimise robot motion using 
multi-objective optimisation techniques. At the 
beginning, using standard routines of the Autodesk 
Mechanical Desktop (AMD), a mathematical 
description of the cutting contour is presented in the 
form of the “augmented line”. The designer may 
define either the desired distance between vertices or 
their total number. In addition, he/she can estimate 
the minimum number of vertices required keeping 
the accuracy within tolerances. Relevant software 
tools allow also to aggregate separate segments in a 
common cutting contour and perform the unification 
of sampling distances. 
 
 

5. CONCLUSION 
 
This work presents a new computational technique 
for the manufacturing process planning in laser 
cutting robotic systems. Its particular contribution is 
related to the multi-objective optimisation of the 
manipulator motions for the continuous contour 
tracking with an axis-symmetric technological tool. 
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Fig. 1. Optimisation results for the known technique 
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Fig. 2. Optimisation results for the proposed technique 

 
 
In contrast to previous work, this optimisation 
technique explicitly incorporates the verification of 
the velocity/acceleration constrains, enabling the 
designer to interactively define their importance with 
respect to the path-smoothness objectives. In 
addition, the proposed approach takes into account 
the capacity of some wrist axes for unlimited rotation 
in order to produce more efficient motions. The 
technique is implemented in a CAD package and 
verified in the automotive industry. 
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