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Abstract: This paper presents a novel fault detection and isolation (FDI) architecture applied
to the lateral-directional axis of an F-14 aircraft during powered approach to landing under
sensor failures. The fault-tolerant architecture employed is based on the so-called “Robust
Multiple-Model Adaptive Control” (RMMAC) and hence is referred to as “RMMAC/FDI”. The
results demonstrate successful stability and performance of the RMMAC/FDI architecture.

1. INTRODUCTION

In recent years, “fault detection and isolation” (FDI)
strategies and “health monitoring control systems” (HMCS)
for air vehicles have attracted considerable attention due
to an increasing demand for appropriate technologies, sys-
tems, facilities, and procedures that will allow air vehicles
to operate safely and routinely.

The main purpose of an FDI scheme is to generate an
alarm when a fault occurs (detection), and then to deter-
mine the location of the fault (isolation), so that corrective
action or preventive measures can be taken to eliminate or
minimize the effect of the fault; see Patton et al. [1989].

Control systems designed for aircraft must be capable of
tolerating normal as well as failure conditions whilst still
maintaining guaranteed stability-robustness and desirable
performance robustness. Fault tolerance is of particular
importance in realistic applications where the environ-
ment, system parameters, and failure parameters change
abruptly or incipiently and hence there is a requirement
on the system to be robust to these uncertainties, see e.g.
Barrett et al. [1996].

Control reconfiguration is a building block towards an
increasing dependability of feedback control systems and
an active approach to achieve fault-tolerant control for
dynamic systems; it is used when severe faults, such as
actuator or sensor outages, cause a break-up of the control
loop, which must be restructured to prevent failure at the
system level and hence must be robust to accommodate
changed plant dynamics; see Patton [1997].

⋆ This work was co-funded by the Technology Strategy Board’s
Collaborative Research and Development programme (following an
open competition), BAE Systems and EPSRC, UK.
The Technology Strategy Board is an executive body established
by the Government to drive innovation. It promotes and invests in
research, development and the exploitation of science, technology
and new ideas for the benefit of business - increasing sustainable
economic growth in the UK and improving quality of life.

If system faults are ignored for a long time, they may
cause catastrophic and disastrous effects, such as loss of
human life, economic collapse, environmental pollution,
and so on. Therefore, it would be of great interest to
detect such faults immediately. In cases the consequences
of a fault are not very severe, early detection of faults can
help improve efficiency, productivity, reliability, and cost
financial; see Tan [2002].

There are two main methods for FDI: hardware redun-
dancy and analytical redundancy. In FDI schemes based
on hardware redundancy, most flight control laws are im-
plemented with a redundant set of computers in such a
manner that the control system is fault tolerant. Fault
tolerance implies that one or more of the channels can
fail with no degradation in control system performance.
However, such FDI methods may not always be physically
and financially feasible; additional sensors incur additional
costs, occupy more space, and cause the system to be
heavier; see U.S. National Research Council [2006].

An analytical redundancy based FDI scheme requires a
model which is usually a linear approximation of the actual
system about a certain operating point, and therefore, is
not a completely accurate representation of the system.
In obtaining the model, some of the dynamics could have
been neglected, approximations will have been used and
estimates of certain parameters made. This results in a
mismatch between the model and the actual system. In
modelling terms this discrepancy is accounted for by the
introduction of a class of uncertainty. An advantage of
such FDI method is that a minimal number of sensors
are needed. However, a good model of the system (de-
scribing the input-output relationship) is required– hence,
an analytical redundancy FDI is also known as “model
based FDI”. What if the model dynamics are not described
precisely or include large uncertain real parameters due to
physical changes in the plant and occurrence of failures?
The answer is to use an FDI scheme that is robust to model
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uncertainty by producing residuals which are sensitive to
the faults but insensitive to the uncertainties.

If the plant under investigation is subject to the time-
varying parameters due to the failures, the performance
achieved by any “robust non-adaptive FDI design” may be
abysmal. In such cases, we must use some sort of “robust
adaptive FDI design” to obtain a “graceful performance”.

In this paper, we shall focus upon “robust performance”
requirements on the “robust adaptive” FDI design im-
plemented by one of the available multiple-model meth-
ods. We follow the recent research on “Robust Multiple-
Model Adaptive Control (RMMAC)”, see Athans et al.
[2005], Fekri [2006], and extend it to a new analytical
redundancy robust FDI scheme, which is referred to as
“RMMAC/FDI” design, to study a preliminary design
and testing of a “self-repairing robust multivariable FDI
method” focusing on an F-14 aircraft. The fault scenarios
under consideration are sensor faults. Actuator faults will
not be discussed in this paper due to space limitations.

The rest of the paper is organized as follows. Some of
the concepts and outstanding issues of RMMAC and
RMMAC/FDI methodologies are overviewed in Section
2. In Section 3 we describe the dynamics of the lateral-
directional axis of an F-14 aircraft during powered ap-
proach to landing and in Section 4 we consider the design
of robust controllers. Simulation results are presented in
Section 5. Section 6 summarizes our conclusions.

2. THE RMMAC/FDI METHODOLOGY

The general philosophy of the RMMAC introduced in
Fekri et al. [2004] was to tackle the problem of stability-
and performance-robustness for LTI uncertain plants sub-
ject to uncertain real parameters (possibly large) and un-
modelled dynamics. Space limitations preclude including
the details– more technical detail on the general RMMAC
structure are found in Athans et al. [2005], Fekri [2006],
Fekri et al. [2006].

Similarly, the RMMAC/FDI architecture integrates robust
controller synthesis, using the mixed-µ synthesis method
(Balas et al. [2007]), with dynamic hypothesis-testing con-
cepts using explicit robust-performance requirements for
the adaptive design that quantifies the adaptive perfor-
mance improvement.

The RMMAC based fault-tolerant architecture (RM-
MAC/FDI) is shown in Figure 1 which represents a
new variant in the class of multiple-model adaptive
fault-tolerant schemes. The RMMAC/FDI architecture,
as shown in Figure 1, is based on a bank of N + 1
steady-state discrete-time Kalman filters (KFs) where
KF#0 is associated with normal operation (no failure) and
KF#1, . . . ,KF#N are associated with particular status of
the system failures, to ensure that the identification sub-
system converges to the “nearest probabilistic neighbour”
in order to detect fault occurrence correctly. These Kalman
filters are part of the “failure identification subsystem”.

The number of models employed in the RMMAC/FDI
architecture (N + 1) is a natural byproduct of perfor-
mance requirements imposed on this “self-repairing adap-
tive system”. Once the number of models is fixed, N + 1
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Fig. 1. The RMMAC/FDI architecture

compensators of the RMMAC/FDI, which are so-called
“Local Non-Adaptive Robust Compensators (LNARCs)”,
are designed using the mixed-µ synthesis methodology,
see Fekri [2006]. LNARC#0 (or K0(s)) is, in essence,
a robust compensator designed for the normal opera-
tion model (Model#0) and K1(s), . . . ,KN (s) are robust
compensators designed for failure models, all with the
best possible (and guaranteed) stability- and performance-
robustness albeit with an “inherent degradation in perfor-
mance” for failure models Model#1, . . . ,Model#N.

The KF residuals drive the “Posterior Probability Evalu-
ator (PPE)” that generates a set of posterior probabilities
that indicate which failure model is the “closest” model
to the actual system in the probabilistic sense. Under
suitable assumptions, one of the posterior probabilities
will converge to unity, i.e. detect the most likely failure
model. The overall adaptive FDI is then generated by the
probabilistic weighting of the local controls generated by
the bank of compensators, see Fekri [2006].

An advantage of the RMMAC/FDI architecture is that
its FDI asymptotic performance can be predicted, either
in the frequency domain (using sensitivity singular value
plots) or in a stochastic setting (using RMS values).

3. F-14 LATERAL DYNAMICS

In this section, we discuss the modelling of the lateral-
directional axis of an F-14 aircraft during powered ap-
proach to landing. The RMMAC/FDI designed for this air-
craft includes nine models, one model for normal operation
and eight models for sensor failures on the roll rate and the
yaw rate measurements, as well as nine robust controllers
designed using mixed-µ synthesis for the normal operation
model and eight failure models, respectively.

3.1 Nominal F-14 Aircraft Model

The linearized lateral F-14 model is derived at an angle-of-
attack of 10.5 degs and airspeed of 140 knots; the reader is
referred to G.J. Balas et al. [1996] for a detailed derivation
of this model. The pilot commands the lateral-directional
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response of the aircraft with the lateral stick and rudder
pedals. The aircraft has the following attributes:

I) Two control inputs: differential stabilizer deflection
(δdstab, degs) and rudder deflection (δrud, degs).

II) Three measured outputs: roll rate (p, deg/sec), yaw
rate (r, degs/sec), and lateral acceleration (yac, g’s).

III) One calculated output: side-slip angle (β).

The nominal lateral directional F-14 model has four states:
lateral velocity (v), yaw rate (r), roll rate (p), and roll
angle (φ). These variables are related by the continuous-

time model Ḡ =

[

A B
C D

]

, described by the following

state space equations:

ẋ(t) = Ax(t) + Bu(t)

y(t) = (I + ∆S)Cx(t) + Du(t) + θ(t)
(1)

where

A =





−0.116 −227.3 43.02 31.63
0.00265 −0.259 −0.1445 0
−0.02114 0.6703 −1.365 0

0 0.1853 1 0





B
T =

[

0.062205 −0.005252 −0.046664 0
0.101265 −0.011212 0.003644 0

]

C =





0.2469 0 0 0
0 0 57.3 0
0 57.3 0 0

−0.002827 −0.007877 0.05106 0





D
T =

[

0 0 0 0.002886
0 0 0 0.002273

]

and xT = [v r p φ] is the state vector, uT =
[δdstab δrud] is the control vector, and yT = [β p r yac]
is the measurement vector. ∆S = diag(0, σp − 1, σr −
1, 0);σp, σr ∈ [0.5, 1.5] is the sensor fault uncertainty
block.

It is worthwhile to emphasize again that failures are
considered only at one or two sensors (on the roll rate
and the yaw rate measurements). Note that under normal
operation ∆S = 04×4 but, for the failure models, the values
of σp and σr are considered as in Table 1.

The performance of the control system are taken to be
zT = [β p] variables as

z(t) = Cpx(t) (2)

where

Cp =

[

0.2469 0 0 0
0 0 57.3 0

]

Without loss of generality, plant disturbances in the F-
14 dynamics concatenated with the aircraft model are not
considered. Such disturbance modelling might consider or
be similar to a Dryden gust model to quantify the impact
of gusts on aircraft performance; see Barrett et al. [1996].

The frequency range is selected as ω ∈ [0.01, 100] rad/sec
which captures all the dynamics of the weighted intercon-
nection structure.

The complete airframe model also includes actuator mod-
els AS = diag( 25s

s+25 , 25
s+25 ) and AR = AS . The actuators

outputs are their respective rates and deflections. The
actuator rates are used to penalize the actuation effort.
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Fig. 2. Robust Control Design for F-14 Lateral Axis

Since the nominal F-14 model, Ḡ, only approximates true
airplane behaviour (there are usually approximations in
the nonlinear equations from which the linear equations
are derived), we shall introduce a relative term or mul-
tiplicative uncertainty Win∆G at the plant input, to ac-
count for unmodelled dynamics, so that the true airplane
dynamic would be

G = (I + Win∆G)Ḡ (3)

The set of such models selected for control design could
represent uncertainties associated with the approximations
in aerodynamics, structural dynamics, and actuator and
sensor dynamics. Here, the error dynamics ∆G have gain
less than 1 across frequencies, and the weighting function
Win reflects the frequency ranges in which the model is
more or less accurate. There are typically more modelling
errors at high frequencies so Win is high pass and selected

as w1 = 2.0(s+4)
s+160 and w2 = 1.5(s+20)

s+200 .

By quantifying modelling errors as above, we can now
build an uncertain model of the aircraft dynamics using
the nominal airframe model and the actuator models AS

and AR, as shown in Figure 2 with the dashed box.

3.2 F-14 Sensor Faults

The lateral F-14 control system includes three measured
outputs on roll rate p, yaw rate r, and lateral acceleration
yac. The most important measurements which are dom-
inant when a sensor fault occurs, and considered in this
paper, are the measurements on roll rate and yaw rate.

The nine models were employed in the RMMAC/FDI
design including the ”no failure” model (Model#0), as
shown in Table 1. In this table, “NO” stands for no failure
i.e. σp = σr = 1, “UE” stands for faults with 50%-
100% loss of measurement accuracy (under-estimated) i.e.
σp, σr ∈ [0.5, 1], and “OE” stands for faults with 100%-
150% loss of measurement accuracy (over-estimated), i.e.
σp, σr ∈ [1, 1.5].

4. ROBUST LATERAL-AXIS CONTROLLERS

Next we shall proceed with designing controllers that
robustly achieve the specifications, where robustly for
the nominal operation controller, K0(s), means for any
perturbed aircraft model consistent with the modelling
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Table 1. Normal operation (no failure) and
sensor failure parameters

M# 0 1 2 3 4 5 6 7 8

σp NO NO NO UE UE UE OE OE OE
σr NO UE OE NO UE OE NO UE OE

NO (Normal Operation): σp = σr = 1

UE (Under-Estimated measurements): σp, σr ∈ [0.5, 1]

OE (Over-Estimated measurements): σp, σr ∈ [1, 1.5]

error bounds Win, see Balas et al. [2007]. For the failure
operation controllers, K1(s), . . . ,K8(s), robustly means
modelling error bounds Win as well as uncertain real
parameters σp and σr due to the sensor failures.

The block diagram of the closed-loop system, as shown
in Figure 2, includes the nominal aircraft model, the
controller K(s), as well as elements capturing the model
uncertainty and performance objectives.

The control system design goal is to have the “true”
airplane respond effectively to the pilot’s lateral stick
and rudder pedal inputs. These performance specifications
include:

1) Decoupled responses from lateral stick to roll rate p and
from rudder pedals to side-slip angle β. The lateral stick
and rudder pedals have a maximum deflection of ±1 inch.

2) We judge handling qualities (HQ) by comparing closed-
loop-system frequency responses with those of low-order
transfer functions. Here, the aircraft handling quality
response from lateral stick to roll rate p should match the
first-order response hqp = 5.0 2.0

s+2.0 . The aircraft handling
quality response from the rudder pedals to the side-slip
angle β should match the damped second-order response

hqβ = −2.5 1.252

s2+2.5s+1.252 .

3) The stabilizer actuators have ±20 degs and ±90
degs/sec limits on their deflection and deflection rate.
The rudder actuators have ±30 degs and ±125 degs/sec
deflection and deflection rate limits.

4) The three measurement signals ( roll rate p, yaw rate r,
and lateral acceleration yac) are filtered through second-
order anti-aliasing filters AFp(s) = 1300.72

s2+36.06s+1300.72 ,

AFr(s) = 6168.5
s2+78.54s+6168.5 , and AFl(s) = 6168.5

s2+78.54s+6168.5 .

4.1 Weighting functions

To apply the mixed-µ synthesis tool, we first must recast
our design tradeoffs and frequency-dependent specifica-
tions as constraints on the closed-loop gains. We shall
use weighting functions to “normalize” our specifications
across frequency and to weight each requirement ade-
quately for all controllers of Figure 1. We shall express
the F-14 specifications in terms of weighting functions:

a) To capture the limits on the actuator deflection mag-
nitude and rate, pick a diagonal, constant weight, such as
Wact, corresponding to the stabilizer and rudder deflection
rate and deflection limits, i.e. Wact = diag( 1

90 , 1
20 , 1

125 , 1
30 ).

b) We can use a 3 × 3 diagonal, high-pass filter Wn to
model the frequency content of the sensor noise in the
roll rate, yaw rate, and lateral acceleration channels, i.e.

Wn(s) = diag(0.025, 0.0125(s+1)
s+100 , 0.025).

c) The lateral stick-to-|p| and rudder pedal-to-|β| re-
sponses should match the handling quality targets hqp

and hqβ . This is a model-matching objective i.e. to min-
imize the difference (peak gain) between the desired and
actual closed-loop transfer functions. Performance is lim-
ited due to a right-half plane zero in the model at
0.0246 rad/sec, so accurate tracking of sinusoids below
0.0246 rad/sec is not possible. Accordingly, we shall weight
the first handling quality spec with a bandpass filter

Wp(s) = 0.06s4+3.42s3+125s2+7.28s+0.188
s4+9.19s3+30.80s2+18.83s+3.95 that emphasizes

the frequency range between 0.06 and 30 rad/sec; we prefer
a roll rate tracking error of less than 6%. Figure 3 shows
the “best” performance weight in the frequency domain
that we used for the normal operation model.

Similarly, for the second handling quality specifications we
choose Wβ = 2Wp.

The above weights will be considered in the subsequent
controller design using mixed-µ synthesis for the “no fail-
ure” model (normal operation) as the reference. After
occurrence of a fault, it is important to know if the original
system performance can be recovered or we should accept
some degree of performance degradation. Towards this
end, we shall introduce a performance gain, Ap, for all
failure models so that the new performance weights are
considered as

W f
p = Ap · Wp

W f
β = Ap · Wβ

(4)

where the performance gain, Ap, would take such perfor-
mance degradation into account in the design process.

4.2 Design of lateral-axis controllers using µ -synthesis

By constructing the weighting functions Wact,Wn,Wp,
and Wβ according to the previous section, a µ controller
for normal operation meets the specifications whenever the
upper bound of µ satisfies

µu.b. ≤ 1.0 (5)

at all frequencies and for any I/O directions. When design-
ing the µ controllers we have used 0.99 ≤ µu.b. ≤ 1.0 so
that whenever, at the “best” iteration among all iterations,
this condition is satisfied, we have reached the “best” local
µ controller associated with the specific failure scenario.

Next, using mixed-µ synthesis, eight “local” robust com-
pensators, K1(s), K2(s), . . . ,K8(s), are designed for eight
failure models defined in Table 1. In mixed-µ synthesis,
the weights Wact and Wn are similar to those used in the
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normal operation design. However, for each failure control
system design, the performance gain (Ap) in eq. (4) is
decreased until the µ upper-bound in eq. (5) is achieved.

Table 2 shows the “best” performance gains for the normal
operation and eight failure models illustrating how much
the level of flight performance will degrade from that of
normal operation if sensor faults occur in sensors. Hence,
in the presence of fault, how system sacrifices performance
to yield an “acceptable performance degradation” to guar-
antee its stability, becomes a predominant issue. This
“performance degradation” due to the loss of measurement
accuracy is very important for implementing any fault-
tolerant control system.

4.3 Design of discrete-time Kalman filters

The bank of discrete-time Kalman filters in the RM-
MAC/FDI structure is required as the fault identification
subsystem and is designed next. The reader is referred to
e.g. Gelb [1974] for a detailed derivation of the Kalman
filter. The nine models for the Kalman filters (KFs) are
chosen based on nominal points as shown in Table 3.

It is emphasized that the “fake plant white noise”, Ξf , is
included for the purpose of preventing the fault identifi-
cation subsystem of the RMMAC/FDI from being over-
confident in its estimates and not switching to a different
model rapidly due to the occurrence of different faults.
In fact, the need for such fake-plant-white-noise is to com-
pensate for the (large) unknown failure parameters, σp, σr,
within each KF so as to increase the KFs gains to pay more
attention to the information contained in residual signal.

The following fake-white-noise intensities were found suit-
able for the failure models considered here:

Ξf = diag{5×10−4 , 0 , 2×10−3 , 0 , 0 , 0 , 0 , 0 , 0} (6)

The non-zero disturbance intensities in eq. (6) appear
upon the equations ẋ1(t) and ẋ3(t) that are essential due
to the sensor fault uncertainties at failure models.

5. SIMULATION RESULTS

In this section, we present some stochastic simulations
using the complete RMMAC/FDI architecture. Of course,
testing such a robust adaptive FDI technique requires
significant computations using multiple Monte Carlo (MC)
runs under different fault scenarios. Due to space lim-
itations, only representative plots are shown; however,
our conclusions are based on many other MC runs not
explicitly shown in this paper.

Here, the normal operation design is briefly called “non-
adaptive” while the RMMAC/FDI design is called “adap-
tive”. We shall compare the performance achieved by
the non-adaptive design with that of the RMMAC/FDI
design. Recall that the performance specifications are
achieved when inequality (5) is satisfied at every frequency.

Table 2. Best performance gains under nor-
mal/failure operations

Model# 0 1 2 3 4 5 6 7 8

Ap 1 0.34 0.33 0.22 0.1 0.1 0.23 0.1 0.1

Table 3. The nominal parameters of Kalman
filters (KFs) used in the RMMAC/FDI

KF# 0 1 2 3 4 5 6 7 8

σ∗
p 1.00 1.00 1.00 0.75 0.75 0.75 1.25 1.25 1.25

σ∗
r 1.00 0.75 1.25 1.00 0.75 1.25 1.00 0.75 1.25

σ∗
p(i) and σ∗

r (i) are the nominal failure parameters used in
Model#i associated with KF#i.

In all the responses below, the stick/rudder input is a 1.0
inch doublet pair as shown in Figure 4.

Also, in this set of simulations, we have assumed that
the sequences of sensor faults (due to loss of accuracy
arising from over- and under-estimated measurements)
occur sinusoidally on the roll rate and the yaw rate sensors
as shown in Figure 5.

Figure 6 show the time-evolution of the posterior probabil-
ities P0(t), P1(t), P6(t), and P7(t) generated by the PPE.
All probabilities were initialized by Pk(0) = 1/9, k =
0, 1, . . . , 8. These probabilities have followed the “correct”
failure sequences of Figure 5; see Table 1. The other five
probabilities (not shown) decay rapidly from their initial
values of 1/9 to zero. Figure 7 shows the aircraft perfor-
mance output under the sensor failure sequences shown
in Figure 5. Both the closed-loop responses are almost
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identical, for the non-adaptive and the RMMAC/FDI de-
signs before about t = 14 secs. However, after t = 14 secs,
the non-adaptive design is unstable while RMMAC/FDI
remains stable albeit with a degraded performance, as
expected in Table 2.

The control signals (differential stabilizer and rudder de-
flections) are shown in Figure 8. It is worthwhile to note
that, before occurrence of sensor faults starting at t =
10 secs (see Figure 5), both control signals used by non-
adaptive and adaptive designs are identical. However, after
occurring faults, the RMMAC/FDI design stabilizes the
aircraft and outperforms the non-adaptive FDI design.

Similar stochastic Monte Carlo simulations (not shown)
were made for a variety of cases including constant and
time-varying sensor failures in which RMMAC/FDI was
able to detect them and reconfigure the aircraft control
system successfully. Besides, all those results were consis-
tent with the reduced performance implied by Table 2.

6. CONCLUSIONS

How an aircraft survives with an acceptable performance
degradation and how to explicitly incorporate allowable
system performance degradation in the design process in
the event of faults are very important issues.

This paper explains the importance of an adaptive FDI
scheme by presenting a novel “Robust FDI scheme” us-
ing “RMMAC/FDI”. The RMMAC/FDI architecture uses
frequency domain tools providing system designers clear
rules for establishing when robust adaptive FDI archi-
tectures are required and, if required, how to design
them by resorting to techniques that are extremely useful
to the FDI problems. The RMMAC/FDI architecture is
very flexible and hence increasingly can be applied in
many reconfigurable FDI applications. The simulation re-
sults used several different fault scenarios including time-
varying fault consequences demonstrating stability and
performance properties of the RMMAC/FDI design as
compared to the “best non-adaptive robust FDI scheme”.
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