
     

 
 
 

 Robust Fault Detection Linear Interval Observers Avoiding the Wrapping Effect   
 

Jordi Meseguer, Vicenç Puig, Teresa Escobet 
 

Automatic Control Department (ESAII) - Campus de Terrassa  
Universidad Politécnica de Cataluña (UPC) 

Rambla Sant Nebridi, 10. 08222 Terrassa (Spain) 
vicenc.puig@upc.edu 

Abstract: In model based fault detection is very important to analyze how the effect of model 
uncertainty is considered when determining the optimal threshold to be used in residual evaluation. In 
case of model uncertainty is located in parameters (interval model), an interval observer has been shown 
to be a suitable strategy to generate this adaptive threshold. However, interval observers can be affected 
by the wrapping effect when low computational algorithms, such as region-based approaches coming 
from the interval community, are used to determine the predicted output interval. This paper shows that 
the wrapping effect might be avoided forcing the observer gain to satisfy the isotonicity condition. Then, 
the effect of this observer condition on the time evolution of the residual sensitivity to a fault and the 
minimum detectable fault is analyzed in order to see whether the fault detection performance is enhanced 
or not. Finally, an example based on an industrial servo actuator will be used to illustrate the derived 
results. 

 

1. INTRODUCTION 

Most of the robust residual evaluation methods are based on 
an adaptive threshold changing in time according to the plant 
input signal and taking into account the model uncertainty. 
These last years the research of adaptive thresholding 
algorithms that use interval models for FDI has been a very 
active research area since the seminal work (Horak, 1988): 
(Armengol et al, 2000), (Puig et al, 2002), (Fagarasan el al, 
2004) and (Ploix et al,  2006). In (Puig et al, 2003a) interval 
observers applied to robust fault detection have been 
introduced and in (Puig et al, 2003b), an interval simulation 
algorithm based on optimization through the set of possible 
real trajectories contained in the interval model is proposed. 
However, this trajectory based approach has a very high 
computational complexity. On the other hand, region (or set) 
based algorithms coming from the interval analysis (Kühn, 
1998) are much less computational demanding but interval 
observers can suffer from the wrapping effect, if the model 
matrix does not fulfil the isotonicity property (Cugueró et al, 
2002).  The aim of this paper is to show how the wrapping 
effect can be avoided when an interval observer model is 
considered in spite a low computational algorithm is used to 
estimate the output interval time evolution.  This will only be 
possible if the observer gain matrix satisfies a key condition. 
On the other hand, the effect of this condition on the observer 
fault detection performance is also analyzed to see whether it 
is enhanced or not. This paper continues the work developed 
in (Meseguer et al., 2007) which is focused on fault detection 
based on intervals observers. It shows the influence of the 
observer gain on the residual sensitivity to a fault and on the 
minimum detectable fault (Gertler, 1998) since, such as it 
was noticed by (Chen and Patton, 1999), the observer gain 
plays an important role in fault detection because it 
determines the time evolution of those fault detection 
properties.  

The structure of the paper remainder is the following: in 
Section 2, fault detection concepts using interval observers 
are recalled and besides, the observer gain matrix design to 
avoid the wrapping effect is discussed. Then, (Section 3) the 
influence of avoiding the wrapping effect using the observer 
gain matrix on the observer fault detection performance is 
analyzed. In Section 4, an example based on an industrial 
smart actuator is used to illustrate the derived results. Finally,  
Section 5 describes the paper conclusions. 

2.  FAULT DETECTION USING LINEAR INTERVAL 
OBSERVERS 

2.1 Interval Observer Expression 

Considering that the system to be monitored can be described 
by a MIMO linear dynamic model in discrete-time, its state-
space form including faults is 

0 a a

y y

( k 1) ( ) ( k ) ( ) ( k ) ( ) ( k )

( k ) ( ) ( k ) ( ) ( k )

+ = + +

= +

x A θ x B θ u F θ f

y C θ x F θ f
      (1) 

where y(k)∈ℜny, u0(k)∈ℜnu, x(k)∈ℜnx  are the system output, 
input and the state-space vectors respectively; A( θ ), B( θ ), 
and C(θ ) are the state, the input and the output matrices 
respectively; θ  is the system parameter vector; fy(k)∈ℜny and 
fa(k)∈ℜnu represent faults in the system output sensors and 
actuators respectively being Fy(θ ) and Fa(θ ) their 
associated matrices. The system in Eq. (1) can be expressed 
in its input-output form using the shift operator, q-1, and 
assuming zero initial conditions: 

1 1
0( ) ( ) ( , ) ( ) ( , ) ( )fa a fy yk k q k q k− −= + +y y G θ f G θ f     (2) 

where y0(k) (Eq. (3)) is the system output when the system is 
unaffected by faults, disturbances and noises. 

1
0 0( ) ( )( ( )) ( ) ( )k q k−= −y C θ I A θ B θ u           (3) 
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Besides, Gfa and Gfy are the system transfer functions 
regarding the system faults (fa , fy )  

1 1( , ) ( )( ( )) ( )fa aq q− −= −G θ C θ I A θ F θ              (4) 
1( , ) ( )fy yq− =G θ F θ                        (5) 

The system described by Eq. (1) is monitored using a linear 
observer with Luenberger structure based on an interval 
model. This type of model considers that model parameters θ 

are bounded by an interval set { }nθ= ∈ℜ ≤ ≤Θ θ θ θ θ . This 

set represents the uncertainty about the exact knowledge of 
real system parametersθ . The resulting interval observer can 
be written as: 

ˆ ˆ( 1) ( ( ) ( )) ( ) ( ) ( ) ( )
ˆ ˆ( ) ( ) ( )

k k k k
k k

+ = − + +
=

x A θ LC θ x B θ u Ly
y C θ x

       (6) 

where u is the measured system input vector, x̂  is the 
estimated system space-state vector and ŷ  is the estimated 
system output vector. The observer gain matrix L is designed 
to stabilise the matrix ( ) ( ) ( )o = −A θ A θ LC θ  and to guarantee 
a desired performance regarding fault detection for all ∈θ Θ . 
The effect of the uncertain parameters θ on the observer 
temporal response will be bounded using an interval: 
[ ˆ ( )ky , ˆ ( )ky ], where for each output:  

ˆ ˆ( ) min( ( , ))i iy k y k
∈

=
θ Θ

θ  and ˆ ˆ( ) max( ( , ))i iy k y k
∈

=
θ Θ

θ     (7) 

Considering u might be affected by an input sensor fault, it 
can be expressed as: 

0( ) ( ) ( ) ( )u uk k k= +u u F θ f             (8) 
where ( ) nuk ∈ℜuf  is the input sensor fault while Fu(θ) is its 
associated matrix. Conversely, u0(k) (Eq. (1)) is the real 
system input unaffected by faults and nuisance inputs. Thus, 
the observer given by Eq. (6) can be expressed in input-
output form using the q-transform and considering zero initial 
conditions as it follows:  

1 1 1
0 fu uˆ ( k ) ( q , ) ( k ) ( q , ) ( k ) ( q , ) ( k )− − −= + +y G θ u H θ y G θ f  (9) 

where:     1 1
o( q , ) ( )( q ( )) ( )− −= −G θ C θ I A θ B θ         (10) 

1 1
o( q , ) ( )( q ( ))− −= −H θ C θ I A θ L       (11) 

1 1
fu u( q , ) ( q , ) ( )− −=G θ G θ F θ      (12) 

2.2 Fault Detection Using Interval Observers  

Fault detection is based on generating a residual comparing 
the measurements of physical variables ( )ky  of the process 
with their estimation ˆ( )ky  provided by the associated system 
model: 

ˆ(k ) (k ) ( k )= −r y y                           (13) 
where: r(k)∈ℜny is the residual set. According to (Gertler, 
1998), a generic form of a residual generator is given by  

1 1( , ) ( , ) ( ) ( ( , )) ( )k q k q k− −= − + −r θ G θ u I H θ y       (14) 
Eq. (14) is known as the computational form of the residual 
which can be also expressed in terms of the effects caused by 
faults using Eq. (2) and Eq. (8). The resulting residual 
expression is known as the internal or unknown-input-effect 
form (Gertler, 1998): 

1 1
0

1 1 1

( , ) ( , ) ( ( , )) ( , ) ( )

( ( , )) ( , ) ( ) ( , ) ( ) ( )
fa a

fy y u u

k k q q k

q q k q k

− −

− − −

= + − +

+ − −

r θ r θ I H θ G θ f

I H θ G θ f G θ F θ f   
     (15) 

where  1 1
0 0 0( , ) ( , ) ( ) ( ( , )) ( )k q k q k− −= − + −r θ G θ u I H θ y                (16) 

would be the expression of the residual if the system were 
unaffected by faults and nuisance inputs being only caused by 
the parameter structured uncertainty. When considering 
model uncertainty located in parameters, the residual 
generated by Eq. (13) will not be zero even in a non-faulty 
scenario. Then, the fault detection test is based on 
propagating the parameter uncertainty to the residual (Puig et 
al, 2002) and checking if 

[ ] [ ]ˆ( ) ( ) ( )k k k∈ = −0 r y y  or [ ]ˆ( ) ( )k k∈y y         (17) 
holds or not. In case it does not hold, a fault can be indicated. 

2.3 Designing the Observer Gain to Avoid the Wrapping 
Effect 

In (Puig et al. 2005), a classification of the algorithms used to 
compute the output predicted interval is given according to if 
they are based on: one step-ahead iteration based on previous 
approximations of the estimated state set (region based 
approaches) or on a set of point-wise trajectories generated 
by selecting particular values of Θθ ∈  using heuristics or 
optimisation (trajectory based approaches). But, when the 
undesired wrapping effect wants to be avoided, (Puig et al, 
2005) shows the trajectory based approach must be used in 
spite of its high computational cost. However, if the observer 
matrix ( ) ( )o = −A A θ LC θ  is isotonic (Cugueró et al, 2002), 
the interval observer does not suffer from the wrapping effect 
when using the region-based approach, in spite of the non-
isotonicity of ( )A θ  because of the existence of some 
negative elements of this matrix: 0ija < . Therefore, the clue 
to avoid this undesired problem is to design properly the 
observation gain matrix (L) so that ( )oA θ  becomes isotonic. 
Thus, the observer matrix ( )oA θ  achieves isotonicity only if 
the corresponding element aoij of this matrix is zero-valued. 

( ) 0 , where 0oij ij ij ija a i j a= − = ∀ <LC            (18) 
where (LC)ij is the element of the resultant matrix LC placed 
in the ith-row and jth-column. Conversely, condition given by 
Eq. (18) can be also expressed as it follows: 

1
, where 0

ny

ij i j ija l c i j aα α
α =

= ∀ <∑              (19) 

where liα are the ith-row  elements of the observation gain 
matrix L and cαj are the jth-column elements of the output 
matrix C(θ) associated to the observer model. Regarding the 
other elements 

,
( )mn m i n j≠ ≠
LC , they do not have any effect on 

the isotonicity property of the observer matrix ( )oA θ  and  
consequently, the elements lmα (1≤α≤ny) associated to the 
observation gain matrix L might be chosen freely to achieve 
the desired fault detection performance.  
Regarding the observation gain L, this matrix can be 
partitioned in a matrix L- whose elements determine the 
observation gain values needed to force the isotonicity 
condition (19) and a matrix L+ whose elements can be chosen 
freely to enhance the observer fault detection performance 
and to guarantee the observer stability. In line with the 
definition of matrices L- and L+, the next expressions can be 
set: 

+ −= +L L L        (20) 
( ) ( ) ( ) ( )o + −= − −A θ A θ L C θ L C θ      (21) 
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( ) 1
, where 0

( )
0 , where 0

ny

m n mn
mn

ij

l c m i n j a

m i n j a

α α
α =+


∀ ≠ ≠ >= 

 ∀ = = <

∑L C θ
   

               

  (22) 

( )
0 , where 0

( )
, where 0

mn
mn

mn ij

m i n j a
a m i n j a−

∀ ≠ ≠ >=  ∀ = = <
L C θ

        
     

   (23) 

Thus, the elements of matrix L+C are positive or zero-valued 
while those elements of matrix L-C are negative or zero-
valued. Then, comparing the norm of the observer gain 
matrix ( )oA θ  (Eq. (21)) when the isotonicity condition (19) 
is forced or not, the next relation is set 

( ) ( )o o= ≠≥
- -L C 0 L C 0A θ A θ     (24) 

In spite of the previous relation (Eq. (24)), it must be taken 
into account that condition (19) forces the negative elements 
of ( )oA θ  to be null what let also establish the next relation: 

( ) ( )o o= ≠− ≥ −
- -L C 0 L C 0I A θ I A θ    (25)  

Alternatively, analyzing the non-zero-valued elements of 
matrix L-, they must fulfil the relation given by condition 
(19). Thereby, when all non-zero-valued elements of C(θ) are 
positive, the non-zero-valued elements of  L- must be 
negative while the non-zero-valued elements of  L+ must be 
positive. In general, neither all elements of matrix L- have to 
be negative nor all elements of matrix L+ have to be positive 
when forcing condition (19). 

3. INFLUENCE OF THE ISOTONICITY CONDITION ON 
FAULT DETECTION  

3.1 Influence on the Residual Sensitivity to a Fault 

The residual sensitivity (Gertler, 1998) to a fault is given by 
1( q )− ∂

=
∂f

rS
f

                           (26) 

which is a transfer function that describes the effect on the 
residual, r, of a given fault f.  Thereby, taking into account 
Eq. (26), the residual internal form (Eq. (15)) can be written 
in terms of the residual sensitivities to an output sensor fault 
fy, Sfy; to an input sensor fault fu, Sfu; and to an input sensor 
fault fa,Sfa: 

1 1 1
0( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , ) ( )fa a fy y fu uk k q k q k q k− − −= + + +r θ r θ S θ f S θ f S θ f  (27) 

where      1 1 1( , ) ( ( , )) ( , )fa faq q q− − −= −S θ I H θ G θ                  (28) 
1 1 1( , ) ( ( , )) ( , )fy fyq q q− − −= −S θ I H θ G θ                  (29)  

1 1( , ) ( , ) ( )fu uq q− −= −S θ G θ F θ          (30)   
In the following, the effect of condition (19) on these fault 
residual sensitivity time functions is analyzed. In this manner, 
according to Eq. (29), the residual sensitivity to an output 
sensor fault fy is given by 

1 1 1

1

( , ) ( ( , )) ( , )

( ( )( ( )) ) ( )
fy fy

o y

q q q

q

− − −

−

= −

= − −

S θ I H θ G θ

I C θ I A θ L F θ
           (31) 

Eq. (31) is a time function whose dynamics and steady-state 
gain are influenced by the observer gain L. Thereby, when 
condition (19) is forced, the residual sensitivity time 
evolution is deeply affected. Its initial value at time instant 
k=0, i.e., when fault occurs, is 

1(0) lim ( , ) ( )fy fy yq
q−

→∞
= =s S θ F θ      (32) 

independently of the observer gains and thus, it is unaffected 
by condition (19). Conversely, the steady-state value for an 
abrupt fault modelled as a unit-step function is given by  

1 1

1
( ) lim ( , ) ( ( )( ( )) ( )) ( )fy fy o yq

q− −
+ −→

∞ = = − − +s S θ I C θ I A θ L L F θ   (33) 

Consequently, when forcing condition (19) and assuming that 
the non-zero valued elements of C(θ) are positive, the steady-
state value of the output sensor residual sensitivity matrix 
(Eq.(33)) norm increases regarding the case where that 
condition is not forced. 

( ) ( )fy fy= ≠
∞ ≤ ∞

- -L C 0 L C 0
s s      (34) 

In a general case where the elements of the output matrix 
C(θ) are not assumed to be positive, the relation given by Eq. 
(34) might be satisfied when the elements of the observation 
gain matrix L are required to be negative by the interval 
observer structure to place the model poles to obtain a proper 
fault detection performance or by the isotonicity condition 
(19) to avoid the wrapping effect. Concerning the residual 
sensitivity function to an input sensor fault and to an actuator 
fault, the same analysis could be done obtaining similar 
conclusions regarding the influence of the isotonicity 
condition (30) on their time evolution. 

3.2 Influence on the Residual 

Analyzing the residual computational form given by Eq. (14) 
and taking into account Eq. (29) and Eq. (30), it is seen that 
the residual expression can be also written in terms of the 
output and input sensor fault residual sensitivity matrices (Sfy, 
Sfu) assuming Fy and Fu are equal to the identity matrix 
(Meseguer et al, 2007). 

1 1( , ) ( , ) ( ) ( , ) ( )fu fyk q k q k− −= +r θ S θ u S θ y            (35) 
Then, derived from the conclusions obtained in Section 3.1, 
the time evolution of the residual is clearly influenced by 
condition (19). In this case, the next relation can be 
established assuming condition (19) forces the non-zero-
valued elements of L- to be negative: 

( , ) ( , )k k
= ≠

   ⊆   - -L C 0 L C 0r θ r θ     (36) 

Thus, according to Eq. (36) and the residual definition given 
by Eq. (13), when condition (19) is forced to avoid the 
wrapping effect, the output interval [y(k)] encloses the one 
generated if that condition would not be forced. 
Consequently, according to the fault detection condition 
given by Eq. (17) (Section 2.2), the interval observer will 
need bigger faults so that they can be detected. 

3.3 Influence on the Minimum Detectable Fault Function 

According to (Meseguer et al., 2007) and derived from the 
”triggering limit” concept given by (Gertler, 1998), the 
minimum detectable fault is a fault, min

f ( k )f , whose residual 
disturbance counteracts the interval observer adaptive 
threshold from its apparition time instant. Recalling shortly 
how the expression of min

f ( k )f  was obtained in (Meseguer et 
al., 2007), the expression of the residual disturbance 
associated to min

f ( k )f  is given by 

0min

0 0
( )

( )f
if k t

k
k if k t

<
= − ≥

0
d

r
    (37) 

where t0 is the fault occurrence time instant and r0(k) is the 
interval adaptive threshold whose expression is given by Eq. 
(16). Then, according to the fault residual sensitivity concept 
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(Eq. (26)), the residual disturbance caused by a fault f(k) can 
be written as  

0t1
f f( k , ) ( q , ) ( k )q−−=d θ S θ f                     (38) 

where Sf(k) is the residual sensitivity to that fault. Then, the 
minimum detectable fault function min

f ( k )f  can be written as: 
min 1 1
f 0 f 0( k t ) ( q ) ( k )− −− = −f S r        (39) 

where k≥t0 and assuming Sf
-1exists because of the clearness 

of the derived conclusions. Thus, a fault f(k) producing a 
residual disturbance, f ( k )d , bigger than the associated to 

min
f ( k )f , min

f ( k )d , is always detected (strong fault detection) 
while a fault producing a smaller residual disturbance is 
never detected (Meseguer et al., 2007).  
In the following, the effect of forcing the isotonicity 
condition (19) on the minimum detectable function is 
analyzed considering the cases of an output sensor fault fy, an 
input sensor fault fu and an actuator fault given by fa. 
Considering that the output sensor fault residual sensitivity, 
Sfy, is given by Eq. (31), the minimum detectable fault 
function specified by Eq. (39) can be particularized for the 
output sensor fault case as: 

( )( )
min 1 1
fy 0 fy 0

11
y 0

( k t ) ( q ) ( k )

( ) ( ) q ( ) ( ) ( k )

− −

−−
+ −

− = − =

− + − +

f S r

F θ I C θ I A θ L L r
   (40) 

where k≥t0 and Sfy
-1 is obtained using the matrix inversion 

lemma. Besides, it must be taken into account that r0(k) given 
by the Eq. (16) is affected by condition (19) such as it is r(k) 
(Section 3.2) according to their expressions. At time instant 
k=t0 when the fault occurs, the value of Eq. (40) is given by 

min 1
0 0(0) ( ) ( )fy y t−= −f F θ r         (41) 

Then, given that forcing condition (19) widens the interval 
adaptive threshold regarding the case this condition is not 
used (Eq. (36)), the initial value of the minimum output 
sensor fault will increase its absolute value. 

min min(0) (0)fy fy= ≠
≤

- -L C 0 L C 0
f f     (42) 

Regarding the steady-state value of this minimum fault 
function (Eq.(40)), it can be demonstrated (Meseguer et al, 
2007) that its expression, using some matrix product 
properties, is given by 

( ) 1min 1
fy y 0 0( ) ( ) ( ( ) ( ) ( ) ( ) ( ))−−∞ = − − ∞ + ∞f F θ C θ I A θ B θ u y -  (43) 

which does not depend on L and thus, it is unaffected by 
condition (19). Concerning the minimum detectable input 
sensor fault and the minimum detectable actuator fault, the 
same analysis could be done obtaining similar results.  
In conclusion, when forcing the isotonicity condition, the 
minimum detectable fault functions are only affected during 
their transient-state and not once they reach their steady-state 
values. The transient-state values of these functions are 
bigger than the ones obtained when this condition is not used 
and consequently, this fact means that the interval observer 
requires a bigger fault during the residual transient state 
caused by the fault to start indicating the faulty situation. 

3.4 Influence on the Fault Detection Persistency 

Derived from the minimum detectable fault concept, a fault is 
detected while its effect on the residual (residual disturbance 
df(k) given by Eq. (38)) surpasses the interval observer 
threshold r0(k) which is originated by the effect of the model 

structured uncertainty on the residual (Meseguer et al, 2007). 
This condition can be written using the following equation: 

[ ]0 0( , ) ( , )f k k k t − ⊄ ≥ d θ r θ         (44) 
Conversely, when condition (19) is forced, both the interval 
observer threshold r0(k) (Section 3.2) and the residual 
disturbance df(k) (Section 3.1) are affected increasing its 
values regarding the case where that condition is not used. 
However, it must be taken into account that r0(k) is affected 
since k=0 while df(k) is from the fault occurrence time instant 
k=t0 and is not fully affected until it reaches its steady-state. 
In consequence, the fault indication might be affected 
negatively during the transient-state caused by the fault 
requiring more time instants to start indicating the fault 
or/and indicating the fault during less time instants. 
 

4. APPLICATION EXAMPLE 

4.1 Description 

The application example proposed to illustrate the obtained 
results deals with an industrial smart actuator proposed as an 
FDI benchmark in the European DAMADICS project. Using 
physical modelling (Bartys, 2002) linearising around the 
operating point and a mixed optimization-identification 
algorithm as in (Ploix, 1999) the following linear interval 
model has been derived: 

3

ˆ ˆ( k 1) ( ) ( k ) ( ) ( k )
ˆ ˆ( k ) x ( k )

+ = +
=

x A θ x B θ u
y

   (45) 

with: [ ]1 2 3
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) tk x k x k x k=x , 

3 2 1

0 1 0
( ) 0 0 1θ

θ θ θ

=
 
 
 
  

A , 

4

0
( ) 0θ

θ

=
 
 
 
  

B  and ( ) ( 2)k CVP k= −u  

where: 3ˆ ( )x k  is the valve position estimation, ˆ ( )ky  is the 
estimation of this position measured by the displacement 
transducer (in Volt), CVP(k) is the command pressure (in 
Pascal) measured by a given input sensor and the uncertain 
parameters are bounded by their confidence intervals 
according to: θ1=[1.1417 1.1471], θ2=[0.3995 0.4103], θ3=[-
0.5537 -0.5484], and θ4=[2.180e-4 2.183e-4]. In this 
application example, a constant command pressure whose 
value is ( ) 1u k Pa=   has been considered. Regarding the 
isotonicity property, ( )θA  does not satisfy it because some of 
their elements are negative and consequently, this model 
suffers from wrapping effect.  

4.2 Input-Output Observer Expression 

Following from Eq. (45), the expression of the interval 
observer associated to the output is given by   

4

1 1 2 2 3 3

1 2 3

1 1 2 2 3 3

1

1 2 3

1 2 3

1 2 3

( )
1 ( ) ( ) ( )

( )
1 ( ) ( ) ( )

ˆ( )
q

k
k q k q k q

k q k q k q
k

k q k q k q

k
θ

θ θ θ

θ θ θ

−

− − −

− − −

− − −

+ − + − +

+ +

+ − + − +

= +

+

−

−

u

y

y
  (46) 

where k1, k2 and k3 are the observer gains used to avoid the 
wrapping effect and to enhance fault detection performance 
regarding the needed requirements. Conversely, in line with 
the actuator model (45), the isotonicity condition (19) is 
satisfied whether 
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3 3k θ=        (47) 

Considering the parameterisation i i ik l θ= , Eq. (47) implies l3 
= 1. Concerning l1 and l2, the next values are used in this 
application example in order to guarantee the model stability:  

1 2
0.5l l= =       (48) 

Regarding the observer residual, its expression is given by 
4

1 1 2 2 3 3

1 2 3

1 1 2 2 3 3

1

1 2 3

1 2 3

1 2 3

q

1 (k )q (k )q (k q

1 q q q

1 (k )q (k )q (k q

(k, ) (k )

(k )

)

)

θ

θ θ θ

θ θ θ

θ θ θ

−

− − −

− − −

− − −

+ − + − +

− −

+ − + − +

=− +

+

−
−

−

r θ u

y

 
   (49) 

4.3 Avoiding the Wrapping Effect Using the Observer Gain 

The goal of this Section is to show how the output interval 
modelled by Eq. (46) is affected by the wrapping effect when 
it is computed using the region-based approach and the 
isotonicity condition given by Eq. (47) is not satisfied. 
 Thus, in Figure 1, the time evolution of the estimated output 
interval, its nominal value and the system output are plotted 
between the time instants t1=190 and t2=220 using 
l1=l2=l3=0.5 and considering the region-based approach. 
Besides, a constant additive fault affecting the system output 
sensor occurring at time instant t0=200 and whose value is 
given by f= 0.01 Volt has been considered.  In this figure, it is 
seen that the estimated output interval is useless to indicate 
the fault because it suffers from unstable wrapping effect. 
Conversely, when the isotonicity condition is applied (l3=1) 
without changing the value of the others observer gains (Fig. 
2), the region-based approach avoids the wrapping effect 
estimating the same output interval than the trajectory-based 
approach.  

4.4 Influence of the Isotonicity Condition on the Sensitivity of 
the Residual to an Output Sensor Fault  

Taking into account Eq.(31) and considering the example 
application residual expression (Eq. (49)), the residual 
sensitivity to an output sensor fault associated to the example 
application is given by the following expression 
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1 2 3
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1 2 3

1
1 ( ) ( ) (
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)fy

q q q
k q k q k q

q
θ θ θ

θ θ θ

− − −
−

− − −

− −

+ − + − +
=

−
−

S θ   (50) 

where Fy  is assumed to be the identity matrix. 
In this Section, the time evolution of the residual sensitivity 
to an output sensor fault (Eq. 50) is plotted in Fig. 3 
assuming an abrupt fault modelled as a unit-step function and 
considering an observer gain set that satisfies the isotonicity 
condition (l1=l2=0.5 and l3=1) and another that does not 
(l1=l2=0.5 and l3=0). Besides, for the clearness of the plot, 
instead of using the interval parameters θi, their associated 
lower bounds iθ  are used. Thereby, Fig. 3 shows that when 
the isotonicity condition (l3=1) is forced, the absolute value 
of the residual sensitivity steady-state value increases (Eq. 
(34)). Regarding its dynamics, this is deeply affected but it is 
difficult to say anything in general since it also depends on 
the system model. 

4.5 Influence of the isotonicity condition on the observer 
adaptive threshold 

Following from Eq. (16), the interval observer threshold can 
be obtained from Eq. (49) assuming there are no faults 

affecting the input and output sensors. In Fig. 4, the time 
evolution of that threshold is plotted considering the two 
observer gain sets, (l1=l2=0.5 and l3=1) and (l1=l2=0.5 and 
l3=0) and using also the parameters iθ . When the isotonicity 
condition is forced (l3=1), the interval observer threshold 
increases its absolute value, such as it was indicated by Eq. 
(36), worsening the fault detection as bigger faults will be 
required in order to detect them. 
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Fig. 1 Time evolution of the estimated interval output, its nominal value and 
the output sensor measurement. 
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Fig. 4 Time evolution of the observer adaptive threshold. 

4.6 Influence of the isotonicity condition on the minimum 
detectable output sensor fault 

The minimum detectable output sensor fault is given by Eq. 
(39) using the residual sensitivity (50) and the interval 
observer threshold given by Fig. 4. Thus, the considered 
function can be expressed as it follows: 
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where k≥t0. Considering the two observer gain sets and 
assuming the fault occurrence time instant, t0, is 400, the time 
evolution of the minimum detectable fault function using the 
parameters iθ  is drawn in Fig. 5. In this Figure, it is seen that 
forcing the isotonicity condition has no effect on the steady-
state value of this function (Eq. (43)). In opposition, it is 
affected during its transitory-state as consequence of the 
influence on the interval observer threshold (Eq. (41) and Fig. 
4) such as it was indicated in Section 4.5. 

4.7 Influence of the Isotonicity Condition on Additive Output 
Sensor Fault Detection 

In this case, a fault occurring at time instant t0=400 and 
whose value is given by f= -0.06 Volt is considered. In Fig. 6, 
the time evolution of the estimated interval output, its 
nominal value and the system output is plotted considering an 
observer gain set which does not satisfy the isotonicity 
condition (l1=l2=0.5 and l3=0) and using the trajectory-based 
approach to avoid the wrapping effect. Besides, at the bottom 
of the figure, a fault indicator activated when the fault is 
detected is also plotted. On the other hand, in Fig. 7, the same 
faulty scenario is plotted but using an observer gain set which 
fulfils the isotonicity condition (l1=l2=0.5 and l3=1). 
Comparing both cases, it is seen that the observer fault 
detection performance is worsened when the isotonicity 
condition is forced. 
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5. CONCLUSIONS 

This paper shows a method to avoid the wrapping effect that 
is affecting an interval model when it is computed using a 
low computational algorithm (“region-based approach”). It is 
demonstrated that it is not necessary to use a high 
computational algorithm (“trajectory-based approach”) to 
avoid this effect but it is enough to consider an interval 
observer model and to design properly the observation gain 
matrix L. In fact, this method is only based on turning the 

non-isotonic model matrix into an isotonic one using the 
mentioned matrix L- (L= L++L-). This paper also shows that 
designing L to avoid the wrapping effect worsens apparently 
the observer fault detection performance. However, analyzing 
the main observer fault detection properties, it can be seen 
that a proper design of L+ might counteract the negative 
effect of L- regarding fault detection performance.  This task 
is planned to carry out as a further research. 
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