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Abstract: This paper proposes a fault diagnosis method using a timed discrete-event approach based on 
interval observers which improves the integration of fault detection and isolation tasks. The interface 
between fault detection and fault isolation considers the degree of fault signal activation and the 
occurrence time of the diagnostic signals using a combination of several theoretical fault signature 
matrices which store the knowledge of the relationship between diagnostic signals and faults. As a 
novelty, this paper proposes to implement the fault isolation module using a timed discrete event 
approach in spite of using an analytical fault detection model. In this way, the diagnosis result will be 
enhanced since the occurrence of a fault generates a unique sequence of observable events (fault signals) 
that will be recognized by the isolation module implemented as a timed discrete event system. The states 
and transitions that characterize such a system can be inferred directly from the relation between fault 
signals and faults. The proposed fault diagnosis approach is applied to detect and isolate faults of the 
Barcelona’s urban sewer system limnimeters (level meter sensors). 

 

1. INTRODUCTION 
When classifying models applied to the diagnostics of 
processes (systems), it is possible to distinguish between 
models applied to fault detection and models used for fault 
isolation (or system state recognition) (Kościelny et al. 
2004a). Models used for fault detection (either qualitative 
used by DX community or analytical used by FDI 
community) describe relationships existing between the 
system inputs and outputs, and allow detecting 
inconsistencies caused by faults generating fault diagnostic 
signals (fault signals). A fault signal appears when the 
residual evaluation stage associated to the fault detection task 
concludes that the residual time evolution is caused by the 
effect of a fault (Chow et al., 1984). Thus, although the fault 
signal is characterized by a given dynamics, it can be 
considered as a discrete event caused by the fault effect on 
the monitored system. The goal of the fault detection model 
is to generate fault signals so that the fault can be isolated. 
The type of the model used in fault detection (qualitative or 
quantitative) in general depends on the system knowledge 
and the effort required to obtain an accurate model. If an 
accurate analytical model can be obtained using a reasonable 
effort, this type of models seems to be a better choice than the 
qualitative models. Otherwise, qualitative models seem to be 
better in fault detection. 
On the other hand, models used for fault isolation (qualitative 
or analytical) define the relationship existing between 
observed diagnostic signals and faults. The basic idea of a 
fault diagnostic system is that the occurrence of a fault will 
generate a unique sequence of observable fault signals 
(events) that will establish the presence of a given fault. In 
general, the model type (qualitative or quantitative) used in 
fault isolation depends on the type of the fault detection 
model.  However, since a fault signal can be seen as a 
discrete-time  event with a given occurrence time instant, 
dynamics and duration, the use of those qualitative models 
known as timed discrete events models (Daigle et al, 2007) 
(Lunze et al. 2005) follows naturally. However, this kind of 
models is not very common when fault detection stage is 

modelled using an analytical model. In this paper, the 
proposed fault diagnosis approach will combine a qualitative 
timed discrete event model with an analytical model used in 
fault detection. The proposed method can be considered as a 
BRIDGE approach that tries to benefit from the best of the 
two fault diagnosis communities (FDI and DX): Fault signals 
are represented as a temporal sequence of discrete events 
using a qualitative DX approach while fault detection is 
based on an analytical model, as usual in FDI, which takes 
account of the model uncertainty using an interval associated 
to the parameter vector. In this way, it will be shown that all 
available and useful information for the fault detection and 
isolation tasks is considered. Normally, when a pure FDI or 
DX scheme is used, there is a loss of useful information 
either in the fault isolation or in the fault detection as a 
consequence of the type of model/representation used. 
The aim of this paper is to show the fault isolation module 
can naturally be represented as a timed discrete event model 
in spite the monitored system is modelled analytically. This 
paper continues the research developed in  (Puig et al., 2005), 
(Meseguer et al., 2006) and (Meseguer et al., 2007). (Puig et 
al, 2005) shows that the typical binary interface proposed in 
(Gertler, 1998) between fault detection and fault isolation can 
lead to inaccurate fault isolation results and shows that it can 
be improved when other fault signal properties are 
considered: the sign of the fault signal, the static fault 
residual sensitivity, the order occurrence of the fault signal 
and the fault signal occurrence time instant. In (Meseguer et 
al., 2006), the interface presented in (Puig et al., 2005) is 
used and the monitored system is modelled using an interval 
observer model. This last paper characterizes the influence of 
the fault detection stage on the fault isolation result. Thus, the 
observation gain matrix can be designed to enhance the fault 
detection and isolation results. (Meseguer et al., 2007) 
continues the work developed in both previous papers 
showing that the relationship between faults and the 
properties of the temporal sequence of fault signals can be 
obtained analytically using the interval observer model and it 
is stored in several fault signature matrices: one matrix for 
each property.  
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Following the results obtained in the papers mentioned 
previously, this paper shows how it is possible to build a fault 
isolation model based on a timed discrete event system using 
the fault signatures matrices mentioned above which are 
obtained using the interval observer. Regarding this type of 
fault isolation model, (Daigle et al, 2007) uses a temporal 
labelled transition system which is built on the grounds of a 
temporal causal graph that models the behaviour of the 
monitored systems. Conversely, T-DTS method (Kościelny et 
al., 2004b) models the relationship between fault signals and 
faults using the called Fault Information System (FIS). The 
fault isolation algorithm used by this method is based on 
series inference where the occurrence of a new fault signal let 
narrow the possible fault hypothesis checking its observed 
properties and the information stored in the FIS.  
Regarding the structure of the remainder, in next section, the 
passive robust fault detection using interval observers is 
recalled. Then, (Section 3) the interface between fault 
detection and fault isolation is also recalled showing how to 
obtain the theoretical fault signature matrices. In Section 4, 
the fault isolation algorithm based on a timed discrete event 
system is presented. Finally, in Section 5 the interval 
observer-based fault diagnosis algorithm will be applied to 
the limnimeters of Barcelona’s urban sewer system to assess 
the validity of the derived results..  

2. FAULT SIGNAL GENERATION 

2.1 Fault Detection Interval Observer 

Considering that the system to be monitored can be described 
by a MIMO linear uncertain dynamic model in discrete-time 
and in state-space form as  

( k 1) ( ) ( k ) ( ) ( k )
( k ) ( ) ( k )

+ = +
=

x A θ x B θ u
y C θ x

               (1) 

without considering faults, disturbances and noise and where 
A(θ), B(θ), C(θ) are the state, the input and the output 
matrices respectively, ( ) nuk ∈ℜu  and ( ) nyk ∈ℜy  are the 
system input and output vectors, respectively. Θθ∈  is a set 
of interval bounded parameters representing the model 
uncertainty: { }nθ= ∈ℜ ≤ ≤Θ θ θ θ θ . This type of model is 
known as an interval model. 
Instead of using directly the system model given by (1) to 
detect faults, the following state observer will be used: 

ˆ ˆ( 1) ( ( ) ( )) ( ) ( ) ( ) ( )
ˆ ˆ( ) ( ) ( )

k k k k
k k

+ = − + +
=

x A θ WC θ x B θ u Wy
y C θ x

       (2) 

where W is the observer gain, designed to stabilize the matrix 
0

( ) ( )= −A A θ WC θ  and to guarantee a desired fault detection 
performance for all Θθ∈ . The effect of the uncertain 
parameters θ on the observer temporal response will be 
bounded using an interval: [ ˆ ( )ky , ˆ ( )ky ], where:  

ˆ ˆ( ) min( ( , ))i iy k y k
∈

=
θ Θ

θ , ˆ ˆ( ) max( ( , ))i iy k y k
∈

=
θ Θ

θ              (3) 

This interval can be computed using the algorithm presented 
in (Puig et al. 2003). 

2.2 Fault Signal Generation Using Interval Observers  

Model-based fault detection is based on generating a residual 
comparing the measurements of physical variables ( )ky  of 
the system with their estimation ˆ( )ky  provided by a model: 

ˆ( k ) ( k ) ( k )= −r y y                                     (4) 

Then, when considering model uncertainty located in 
parameters, the residual generated by (4) will not be zero 
even in a non-faulty scenario. Then, the possible values of 
this residual could be bounded using an interval (Puig et al. 
2002) 

( ) [ ( ), ( )]
ooo
ii ir k r k r k∈                              (5) 

where:        ˆ ˆ( ) ( ) ( )o o
i iir k y k y k= −  and ˆ ˆ( ) ( ) ( )o o

i i ir k y k y k= −       (6) 
are computed considering the nominal observer output 
prediction ˆ ( )koy  obtained using o= ∈θ θ Θ  and the 
[ ˆ ( )ky , ˆ ( )ky ] given by (3). This residual interval provides an 
adaptive threshold. When condition (5) is not fulfilled, a 
fault is indicated by the interval observer. 
As it is proposed in (Puig et al. 2005), the fault diagnostic 
signal (fault signal) for each residual is calculated as in the 
DMP-approach (Petti et al., 1990) using the Kramer function: 

4
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≥
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  (7) 

In this way, residuals are normalized to a metric between -1 
and 1, [ ]( ) 1,1i kφ ∈ − , which indicates the satisfaction degree 
of every equation: 0 for perfectly satisfied, 1 for severely 
violated high and -1 for severely violated low. When there is 
no fault affecting to the monitored system, the values 
obtained using Eq. (7) satisfy the expression |φi(k)|<0.5. 
Otherwise (|φi(k)|≥0.5), these normalized residuals becomes 
fault signals indicating that a given fault is affecting the 
monitored system. 
Because the occurrence of a fault signal can be caused by 
different faults, what let distinguish one fault from another 
are the fault signal dynamic properties since they should be 
different for each different fault. The theoretical dynamic 
properties of a fault signal φi(k) caused by a given fault fj are 
set by the sensitivity of the associated residual ri(k) to this 
fault fj. The concept of residual sensitivity to a fault (Gertler, 
1998) is given by  

1 1( q ) ( q )− −∂
= =

∂f f
rS G
f

     (8) 

where Gf(q-1) is the transfer function that describes the effect 
on the residual, r, of a given a fault, f. The residual sensitivity 
to fault is a dynamic time function that indicates how a fault 
is affecting the residual from its occurrence time instant. In 
(Meseguer et al. 2007) and (Meseguer et al. 2007b), this 
concept is obtained when using interval observers models and 
it is demonstrated its key influence on fault detection and 
isolation tasks. 
3. FAULT DETECTION AND ISOLATION INTERFACE 

3.1 Description 

The used interface in this paper derives from the one used in 
(Puig et al., 2005). It is based on the concept of the 
theoretical fault signature matrix (FSM) which was 
introduced by (Gertler, 1998) considering only a binary 
interface between fault detection and fault isolation modules. 
This matrix has as many rows as residuals (ri(k)) and as many 
columns as considered faults (fj) to isolate. Thus, an element 
FSMij  of this matrix is ‘1’ when the sensitivity of the 
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residual ri(k) to fault fj is not null, otherwise, this element is 
‘0’. In (Puig et al., 2005), the fault signature matrix concept is 
generalized since the binary interface is extended taking into 
account more fault signal properties. In this approach, there 
are as many FSM matrices as different properties are taken 
into account: Boolean property (FSM01), sign property 
(FSMsign), fault residual sensitivity property (FSMsensit), 
occurrence order property (FSMorder) and the occurrence 
time instant (FSMtime). Those matrices store the influence of 
the considered faults on the residual set: the element FSMij of 
a matrix contains the expected influence of fault fj on ri

0. 
(Meseguer et al, 2007) shows how to obtain matrices 
FSMsensit and FSMtime using the interval observer model 
of the monitored system while the other three matrices can 
clearly be derived from them. In the next two sections, it is 
recalled the way to obtain both FSM matrices. 

3.1 FSMsensit: Evaluation of Fault Sensitivities 

The element FSMsensitij (Meseguer et al, 2007) of matrix 
FSMsensit considers the time evolution of the sensitivity of 
residual ri

0 to a fault fj once the fault has occurred what 
determines the capacity of the residual to indicate the fault. 
This property can be computed as it follows: 

1
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0

0
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0
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( )
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<

FSM  (9) 

where η(k) is an unitary abrupt step input,
ijfS  is the 

sensitivity of the nominal residual ( )o
ir k  regarding the fault 

hypothesis fj and t0 is the fault occurrence time instant. When 
t0 is unknown, it must be estimated using the occurrence time 
instant kφi of the first fault signal. Conversely, it must be 
taken into account that FSMsensit matrix has a time 
evolution once the fault occurs at t0 time instant. Besides, 
according to the definition of FSM01 and FSMsign, both 
matrices can be derived from FSMsensit. 
The consistency between the observed fault signals φi(k) and 
the stored information in FSMsensit for the jth-fault 
hypothesis can be evaluated computing factorsensitj 
(Meseguer et al, 2007) as it follows: 

( )
1

1

( )
( )

n

i ij
i

j jn

ij
i

k sensit
sensit k

sensit

φ
=

=

=
∑

∑

FSM
factor zvf

FSM

 (10) 

{ }0,        if  1,...,  with  sensit 0 and ( ) 0.5

1,  otherwise                                                                         
ij i

j
i n kφ ∃ ∈ = ≥= 



FSM
zvf  (11) 

3.2   FSMtime: Evaluation of Fault Signal Occurrence Time 
Instant 

The element FSMtimeij (Meseguer et al., 2007) of matrix 
FSMtime contains the time interval [

ijϕ ,
ijϕ ] in which the 

fault signal φi caused by the fault fj is expected to appear.  
This time interval is referred to the occurrence time instant of 
the first fault signal according to the fault hypothesis fj as in 
most of the cases, the fault occurrence time instant t0 is 

unknown. (Meseguer et al., 2007) shows the interval [
ijϕ ,

ijϕ ] 

basically depends on the sensitivity of the residual ( )o
ir k  to 

fault fj ( ijfS ), on the adaptive threshold [ ( ), ( )]
oo
iir k r k  related 

to this residual and on t0. Thus, the elements of matrix 
FSMtime are given by 

1

1

[ , ]   ( ) 0

[ 1, 1]  ( ) 0
ij

ij

ij ij f
ij

f

if S q
time

if S q

ϕ ϕ −

−

 ≠= 
− − =

FSM    (12) 

 
Derived from FSMtime, one of the most important 
parameters of the fault isolation algorithm can be obtained. 
This is the time window Tw which determines the maximum 
period of time required once the first fault signal is observed 
so that all fault signals can appear. In other words, Tw is the 
period of time needed, once the first fault signal is detected, 
to give an accurate fault diagnosis result unless there were 
only one fault hypothesis left supporting the observed fault 
signal temporal sequence before Tw would have elapsed. 
Thereby, Tw can be obtained as it follows: 

,
max( )w iji j

T ϕ
∀

=      (16) 

Besides, according to the own definition of matrix FSMtime, 
the fault signal occurrence order matrix FSMorder can also 
be derived. Each element FSMorderij of FSMorder contains 
the theoretical occurrence order of fault signal φi when fault fj 
occurs regarding all fault signals that will be caused by this 
fault. When for a given fault hypothesis, a fault signal is 
unaffected, then, FSMorderij=0.  

4. TIMED DISCRETE EVENT FAULT ISOLATION 
ALGORITHM 

4.1 Fault isolation Algorithm: Initial Version 

  
Fig. 1. Block diagram of the fault isolation algorithm initial version 
 
In the original algorithm (see Fig. 1) proposed in (Puig et al., 
2005), the first component between fault detection and fault 
isolation modules is a memory. Once the first fault signal is 
observed, for each fault signal φi(k), the occurrence time 
instant (kφi) and the fault signal value (φimax) whose absolute 
value is maximum are stored in this memory along the time 
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window Tw. Then, at the end of this time window, the pattern 
comparison component compares the memory information 
with the theoretical one stored for each fault hypothesis in the 
different fault signature matrices FSM mentioned previously. 
This comparison allows computing the fault isolation factors 
factorsensitj, factortimej factororderj, factor01j and 
factorsignj for each fault hypothesis fj. Then, the last 
component of the algorithm, the decision logic component, 
computes for each fault hypothesis a fault occurrence 
probability dj using the previous factors, Thereby, the fault 
hypothesis with the highest occurrence probability dj will be 
the given diagnostic.  
Once the first fault signal is observed, this algorithm requires 
the occurrence of all fault signals before an accurate fault 
diagnostic can be given. Otherwise, wrong diagnosis results 
can be obtained. In this initial version, the value of the time 
window Tw (Eq. (16)) was not calculated. 

4.2 Fault isolation Algorithm based on a Timed Discrete 
Event Model 

The algorithm proposed here is an evolution of the one 
presented in the previous section. The main idea is that a 
given fault affecting to the monitored system will cause a 
unique temporal sequence of fault signals. This allows 
obtaining a diagnostic result comparing their observed 
dynamic properties with the ones stored for each fault 
hypothesis in the fault isolation matrices.  
The fault isolation algorithm starts with the occurrence of the 
first fault signal (|φi(k)|≥0.5) and ends when there is only one 
fault hypothesis supporting the observed temporal sequence 
of fault signals or when the diagnosis time window Tw has 
ended. Thereby, the first element of this algorithm is also the 
memory component (Section 4.1). The second element is the 
timed series inference component which compares the stored 
information of the new observed fault signal with the 
information stored in matrices FSM01, FSMtime, and 
FSMorder for the non-rejected fault hypothesis. The result of 
this series inference component is the rejection of those fault 
hypotheses that do not support the observations. When there 
is only one fault hypothesis left, the algorithm ends giving 
that hypothesis as the fault diagnostic result. Otherwise, when 
the time window Tw has ended, the third element, the pattern 
comparison component, computes factorsensitj for those 
non-rejected fault hypotheses. Then, the last element, the 
logic decision component, gives as a diagnostic result the 
fault with the biggest factorsensitj. 
The main difference of this algorithm regarding the one 
presented in Section 4.1 is based on the timed series 
inference component inspired in the T-DTS method 
(Kościelny et al., 2004b) and on the fact that each new fault 
signal allows rejecting those hypotheses that do not support 
the observations and in consequence, a diagnostic result can 
be given before the time window Tw ends. 

4.3 Fault isolation algorithm based on a Timed LTS model 

Analyzing the fault isolation algorithm presented in Section 
4.2 from a DX point of view, this algorithm can be seen as a 
Labelled Transition System (Daigle et al., 2007) model 
where the input is the fault signal temporal sequence, the 
states are given by the non-rejected fault hypotheses at each 
time instant and the transitions are given by the comparison 
of the fault signal observed properties with the information 
stored in FSM01, FSMorder and FSMtime. Analyzing the 
structure of the FSM matrices and the information they store, 
a LTS model as the presented in (Daigle et al., 2007) could 

be build. Thereby, while the transitions between states 
proceed from a Temporal Causal Graph in (Daigle et al., 
2007), they proceed from the FSM matrices obtained from 
the interval observer model in the approach presented in this 
paper,. Regarding the fault isolation algorithm presented in 
Section 4.2, the only logic which is not considered by a pure 
fault isolation Timed LTS model is the one included in the 
comparison and logic decision components. In Section 5.3 
the equivalent fault isolation model based on a Timed LTS 
model is obtained using the example application and then, a 
fault scenario case is considered. 

5. CASE OF STUDY 

5.1 Description 
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Water level sensor               Lxx

 
Fig. 2. Model of the considered part of the Barcelona’s sewer network 
To illustrate the approach proposed in this paper, a real case 
of study based on the Barcelona urban drainage system is 
used. In particular, the main focus is on detecting and 
isolating faults in the limnimeters used to measure the sewer 
levels. The sewer network is modelled using a simplified 
graph relating the main sewers and a set of virtual and real 
reservoirs (Cembrano, 2002). A virtual reservoir is an 
aggregation of a catchment of the sewer network which 
approximates the hydraulics of rain, runoff and sewage water 
retention using a mass balance: 

S)t(I)t(Q)t(Q
dt

)t(dV
downup +−=                (17) 

where: V is the volume of water accumulated in the 
catchment, Qup and Qdown are flows entering and exiting the 
catchment, I is the rain intensity falling in the catchment and 
S its surface. Input and output sewer levels are measured 
using limnimeters and they can be related with flows using a 
linearised Manning relation: ( ) ( )up up upQ t M L t=  and 

( ) ( )down down downQ t M L t= .   Moreover, it is assumed that: 
( ) ( )down vQ t K V t= . Then, substituting those relations in Eq. 

(17) and considering that the measurement sampling time is 
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Ts = 300 s, the following discrete-time model for each 
limnimeter can be obtained: 

))k(cI)k(bL)k(aL)1k(L updowndown ++=+        (18) 

where: )tK1(a v ∆−= , /up v downb M K t M= ∆  
and /v downc SK M= .  
Using this modelling methodology, the model of the 
considered part of the Barcelona’s sewer network is 
presented in Fig. 2. Thereby, this methodology let diagnose 
faults of a set fL composed by 14 limnimeters (L03, L07, L08, 
L09, L16, L27, L39, L41, L45, L47, L53, L56, L80 and L54) modelling 
(Eq. (17)) a set L of 12 limnimeters (L03, L07, L08, L09, L16, L27, 
L39, L41, L45, L56, L80 and L54). The fault detection model for 
each limnimeter of the set L is given by an interval observer 
whose general expression is given by Eq. (2). As a example, 
the interval observer model associated to L03 is given by    

03 03 03 03 03 27 03 07

03 03 03

ˆ ˆ( ) (1 ) ( 1) ( 1) ( 1)
( 1)

L k a L k b L k c I k
a L k

λ
λ

= − − + − + − +

+ −
 (19) 

where λ03 is the associated observer gain using the 
parameterization w03=λ03a03 (λ03 =0, simulation; λ03 =1, 
prediction). I07 is the rain intensity measured by the rain 
gauge P14. The model parameters are obtained using 
parameter estimation from experimental data. Considering 
that the uncertainty associated to the following intervals 
describes the possible values of each parameter: a03=[0.8816, 
0.9084], b03=[0.0381, 0.0393] and c03=[1.4469e4, 
1.4910e4]. 
According to Eq. (4), the estimations given by limnimeter 
observer models of the set L allow obtaining a set r of 12 
residuals which let obtain a diagnosis result. As example, the 
expression of the residual associated to L03 is given by 

1 1
o
03 03 271 1

1

071

o o
03 03

o o o o
03 03 03 03

o
03

o o
03 03

L L

I

1 a q b qr (k ) (k ) (k )
1 a ( 1)q 1 a ( 1)q
c q (k )

1 a ( 1)q

λ λ

λ

− −

− −

−

−

−
= −

+ − + −

−
+ −

         (20) 

Each residual of the set r determines a fault signal according 
to Eq. (7) being φ the set of all possible fault signals caused 
by the fault set fL. Then, a fault affecting a limnimeter of the 
set fL will cause a temporal sequence of fault signals (a subset 
of φ) whose properties will let detect and isolate the fault 
using the new fault isolation algorithm presented in Section 
4.2 or its equivalent fault isolation model based on a Timed 
LTS model (Daigle et al, 2007) (see Section 4.3).  

5.2 Fault Signature Matrices: FSMsensit and FSMtime 

In this section, the value of the fault signature matrices 
FSMsensit and FSMtime associated to the considered case of 
study is given. These matrices are computed as shown in 
(Meseguer et al., 2007) assuming the observer gains λi of all 
interval observers associated to the limnimeter set L are equal 
to 0.01 and the occurrence of the first fault signal is detected 
at time instant t0=4000 s.  
These matrices show the relationship between the limnimeter 
fault set fl and the properties of the fault signal temporal 
sequence φ originated by these faults and consequently, they 
let isolate limnimeter faults using either the fault isolation 
algorithm shown in Section 4.2 or its equivalent one shown in 
Section 4.3. As mentioned in Section 3, the other three 
matrices (FSM01, FSMsign and FSMorder) of the interface 
presented in this section are not given here because the lack 

of space but they can be easily obtained from FSMsensit and 
FSMtime (Meseguer et al., 2007). 
Regarding FSMsensit (see Section 3.1), it must be taken into 
account that each element of this matrix is a time function 
mainly based on the sensitivity of the fault signal associated 
residual to a given fault hypothesis (Eq.(9)). Thus, in the 
following, the elements of FSMsensit matrix showed in 
Table 1 are just the fault residual sensitivity steady-state 
values instead of the ones derived from the use of Eq. (9). 
Thus, fLj is a fault affecting the limnimeter Lj while φLi is the 
fault signal associated to the residual rLi obtained using the 
interval observer model of Li.  

Table 1.  FSMsensit 
f L03 f L07 f L08 f L09 f L16 f L27 f L39 f L41 f L45 f L47 f L53 f L56 f L80 f L54

φ L03 0.921 0 0 0 0 -0.340 0 0 0 0 0 0 0 0

φ L07 0 0.933 0 0 0 0 0 0 0 0 -0.150 0 0 0

φ L08 0 0 0.951 0 -0.752 0 0 0 0 0 0 -0.406 0 -5.162

φ L09 0 0 0 0.946 0 0 0 0 0 0 0 0 0 0

φ L16 0 0 0 0 0.977 0 0 0 0 0 0 0 -0.255 0

φ L27 0 0 0 0 0 0.789 0 0 0 0 0 0 0 0

φ L39 0 0 0 0 0 0 0.964 0 0 0 0 0 0 0

φ L41 0 0 0 0 0 0 -0.908 0.955 0 0 0 0 0 0

φ L45 0 0 0 0 0 0 0 -57.243 0 97.484 0 0 0 0

φ L54 0 0 0 0 0 0 0 0 0 0 0.265 -0.183 0 1

φ L56 0 0 0 0 0 0 0 0 0 0 0 0.802 0 0

φ L80 0 0 0 0 0 0 0 0 0 -14.085 0 0 1 0

FSMsensit Matrix

 
Concerning FSMtime (see Section 3.2), its value is given by 

Table 2.  FSMtime 
f L03 f L07 f L08 f L09 f L16 f L27 f L39 f L41 f L45 f L47 f L53 f L56 f L80 f L54

φ L03 [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [900,6300] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1]

φ L07 [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [2100,5400] [-1,-1] [-1,-1] [-1,-1]

φ L08 [-1,-1] [-1,-1] [0,0] [-1,-1] [600,4200] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [900,4200] [-1,-1] [300,4200]

φ L09 [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1]

φ L16 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [300,2400] [-1,-1]

φ L27 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1]

φ L39 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1]

φ L41 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [300,3900] [0,0] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1]

φ L45 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [300,1800] [0,0] [300,30600] [-1,-1] [-1,-1] [-1,-1] [-1,-1]

φ L54 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [0,0] [-1,-1] [0,0]

φ L56 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1]

φ L80 [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1] [0,0] [-1,-1] [-1,-1] [0,0] [-1,-1]

FSM time Matrix

 
where the fault occurrence time intervals are expressed in 
seconds and abrupt limnimeter faults have been considered. 
According to the previous value of FSMtime and Eq. (16), 
the value of the diagnosis time window for this scenario is Tw 
= 30600 s. 

 5.3 Fault isolation Timed LTS model 

In this section and for the considered case of study, a fault 
isolation algorithm based on a Timed LTS model as the one 
presented in (Daigle et al., 2007) will be obtained using 
FSM01, FSMorder and FSMtime (see Section 4.2). In this 
kind of model, the initial state is the non-faulty state, then, 
each fault hypotheses (set fl) have a Timed LTS 
representation which are connected to this initial state. The 
LTS representation related to a given fault hypothesis shows 
the fault signal temporal sequence caused by this fault.  In 
each state transition, the properties of the new observed fault 
signal are compared with those stored in FSM01, FSMorder 
and FSMtime for this fault hypothesis. The present state of a 
fault hypothesis LTS representation just indicates that this 
fault hypothesis is still supporting the observed fault signal 
temporal sequence. When a new fault signal occurs, for each 
non-rejected fault hypotheses, the state transition starting in 
the present state is evaluated. If this evaluation fails, the fault 
hypothesis is rejected. At the end of the diagnosis time 
window Tw, those non-rejected fault hypotheses will 
determine the final fault diagnosis result. If there is more than 
one, a FDI logic as the implemented in the comparison and 
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decision logic components (see Section 4.2) should be used in 
order to find the most probable fault hypothesis.  
In Figure 3, the Timed LTS model associated to a subset (L16, 
L27, L39, L41, L03 and L54) of the limnimeter fault set fl is 
given. In this figure, the transition logic between two states is 
noted as φLiFSMLj indicating the result of comparing the 
binary property, the occurrence time instant and the 
occurrence order of the new observed fault signal φLi 
(associated to the residual rLi obtained using the interval 
observer model of Li) with the information stored in matrices 
FSM01, FSMorder and FSMtime for the fault hypothesis fLj 
(fault affecting limnimeter Lj) and for this fault signal.    

Non-faulty state

fL16 fL27

fL39 fL41

fL03

fL54

fL16 fL27

fL39 fL41

fL54

φL16FSML16 φL27FSML27 φL39FSML39

φL41FSML41

φL03FSML03

φL54FSML54

φL08FSML16 φL03FSML27 φL41FSML39
φL45FSML41

φL08FSML54

 
Fig. 3. Limnmeter fault isolation based on a Timed LTS model 
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Fig. 4.Time evolution of the residuals and their adaptive thresholds. 
The associated representation to this Timed LTS model can 
be seen as the integration of all the information stored in 
FSM01, FSMorder and FSMtime in the same structure.  
Focusing on a fault scenario where an abrupt fault affecting 
limnimeter L27 occurs at t0= 4000s, the time evolution of the 
affected residuals and their associated adaptive thresholds 
(Eq.(5)) are plotted in Figure 4. 
Analyzing the time evolution of those residuals and 
according to Eq. (5) and Eq. (7), the first observed fault 
signal will be φL27 (fault signal related to limnimeter L27 
observer model) since time instant t=t0. This event, according 
to the fault isolation model given by Figure 3 and the 
information stored in FSM01, FSMorder and FSMtime for 
this fault signal, will let reject all fault hypotheses except fL27 
(fault affecting L27). Afterwards, the fault signal φL03 is 
observed supporting the LTS representation associated to fL27 

Non-faulty state

fL16 fL27

fL39 fL41

fL03

fL54

fL16 fL27

fL39 fL41

fL54

φL16FSML16 φL27FSML27 φL39FSML39

φL41FSML41

φL03FSML03

φL54FSML54

φL08FSML16 φL03FSML27 φL41FSML39
φL45FSML41

φL08FSML54

 
Fig. 5. Isolation of a fault affecting L27 using a Timed LTS model 
Focusing on the BRIDGE approach presented in Section 4.2, 
there is not the need to use the structure of a LTS model as all 
the information needed to run the timed discrete event fault 

isolation algorithm is already structured in the different 
Fault Signature Matrices. Although the difference of 
structures between both approaches, the final result should be 
similar when the system model (Qualitative: DX approach; 
Quantitative: FDI approach) estimates accurately the system 
behaviour assuming the fault detection and isolation interface 
are taking into account the same fault signal properties. 

6. CONCLUSIONS 

This paper proposes a fault diagnosis method using a timed 
discrete-event approach. The novelty is that this approach is 
based on interval observers instead of using qualitative 
models. The interface between fault detection and fault 
isolation considers the degree of fault signal activation and 
the occurrence time of the diagnostic signals using a 
combination of several theoretical fault signature matrices 
which store the knowledge of the relationship between 
diagnostic signals and faults. This paper focuses on the 
discrete-time event nature of the fault signals generated by 
the fault detection module, what has led to the use of a timed 
discrete event model.  In this way, the diagnosis result has 
been enhanced since the occurrence of a fault generates a 
unique sequence of observable events (fault signals) that can 
be recognized by the isolation module implemented as a 
timed discrete event system. The states and transitions that 
characterize such a model can be inferred directly from the 
relationship between fault signals and faults. 
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