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Abstract: A new technique named as model predictive spread acceleration guidance (MPSAG) is
proposed in this paper. It combines nonlinear model predictive control and spread acceleration guidance
philosophies. This technique is then used to design a nonlinear suboptimal guidance law for a constant
speed missile against stationary target with impact angle constraint. MPSAG technique can be applied
to a class of nonlinear problems, which leads to a closed form solution of the lateral acceleration (latax)
history update. Guidance command assumed is the lateral acceleration (latax), applied normal to the
velocity vector. The new guidance law is validated by considering the nonlinear kinematics with both
lag-free as well as first order autopilot delay. The simulation results show that the proposed technique is
quite promising to come up with a nonlinear guidance law that leads to both very small miss distance as
well as the desired impact angle.

1. INTRODUCTION

Guidance provides maneuvering commands to a flight vehicle
to follow a desired path. A popular classical guidance law is
the “proportional navigation (PN)” (Zarchan (1997)) (and its
variants), which has been both well studied and successfully
implemented in many flight vehicles. It is also well-known
that the PN guidance law serves as an “optimal guidance law”
(Bryson & Ho (1975)). However, these optimality results come
with certain assumptions like linearized engagement geometry,
proper choice of the navigation constant etc. Modern tech-
niques, on the other hand, formulate the problem in the frame-
work of optimal control theory and attempt to come up with
more powerful guidance laws. For example, in a recent paper
(Ryoo et al. (2006)), the authors have come up with an optimal
guidance law that not only minimizes the miss distance, but also
leads to a desired impact angle (an impact angle constrained
guidance law leads to enhancement of warhead effect for anti-
ship or anti-tank missiles).

In reference (Ryoo et al. (2006)) (as well as in many other liter-
atures), the optimal guidance law available relies on linearized
engagement geometry, which facilitates the usage of “linear
optimal control theory” (Bryson & Ho (1975)). Linear optimal
guidance laws, however, either have limited application domain
or degraded performance (because of the linearized engage-
ment geometry). Both to make the application domain wider as
well as better performance, it is desirable that the nonlinear en-
gagement kinematics is considered in developing the guidance
law itself. A variation of nonlinear optimal control theory which
is widely used in practice (especially in chemical engineering
problems) is model predictive control (Cannon (2004)), where
the idea is to use output dynamics instead of state dynamics (to
reduce numerical complexity). Here the output is predicted for
a finite time window using a guess control and based on the
error in the output the control history is updated by minimizing
a performance index.

Reverting back to the PN guidance law, it is a fact that when the
engagement is far away from the collision triangle, the latax
demand is substantial. However, when the collision triangle
condition is achieved (i.e. the line-of-sight rate is zero), then
the latax demand is also zero. Whereas zero latax is a very
much desirable feature, it may not be feasible for the control
system to meet the initial high latax demand (leading to latax
saturation, and hence, performance degradation). One way to
address this issue is the idea of “spread acceleration guidance”
(Ghose et al. (1989)). This technique uses a predictive guidance
mechanism which projects the position of the target and then
attempts to spread the missile latax (rather uniformly) over the
entire range of time-to-go.

In this paper we attempt to combine the philosophies of model
predictive control and spread acceleration guidance to present
a model predictive spread acceleration guidance (MPSAG) law.
The control variable (latax) is first parameterized as a linear
function of the time-to-go. Because of the parametrization of
the latax requirement and closed form update of these param-
eter values, the computational requirements are much reduced
and the algorithm can be implemented online. Using this newly-
developed MPSAG technique, the impact angle constrained
guidance law design problem addressed in (Ryoo et al. (2006))
is revisited here. However, in contrast to (Ryoo et al. (2006)),
the guidance law is derived here uses the nonlinear engagement
kinematics as such (i.e.without linearizing it). The simulation
results show that the MPSAG technique is quite promising to
address the problem preserving the nonlinear kinematics of
engagement. It is observed that the new nonlinear guidance
law proposed in the paper leads to the following advantages
as compared to the existing linearized optimal guidance law
:(i)Latax calculation is carried out using nonlinear dynamics
and (ii) singularity at the end of guidance command for first
order delay system is completely eliminated.
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2. THE ENGAGEMENT DYNAMICS

Fig. 1 shows the engagement geometry for a stationary and
slowly moving target. The missile is moving with a constant
speed and the target under consideration is assumed to be
stationary. The guidance command is the lateral acceleration
(latax), which is the acceleration normal to the velocity vector
(Ryoo et al. (2005)). The equation of motion for this homing
missile problem is formulated both for lag free and first order
autopilot delay system
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Fig. 1. Engagement Geometry

2.1 Equation of motion for Lag free Autopilot

Impact angle, for a stationary target is the missile flight angle
at the time of interception (Ryoo et al. (2005)). The terms
z,am, Vm, θm and θm f are defined as the missile height,the
acceleration applied normal to the velocity vector, the missile
velocity, the flight path angle and the predetermined impact
angle respectively. Then the equation of motion of lag -free
autopilot is given by (Ryoo et al. (2005))

ż = Vm(t)sinθm(t) (1)

Vm(t)θ̇m(t) = am(t) (2)

System dynamics in normalized form can be written as

żN =
Vm sin(θ ∗

mθmN
)

z∗
(3)

θ̇mN
=

am

Vmθ ∗

m

where zN , z/z∗ and θmN
, θm/θ ∗

m are the normalized state
variables. The symbols z∗ and θ ∗

m represent the normalizing
variables.

2.2 Equation of motion for First order Autopilot

The dynamics of first order autopilot can be written as

(ȧm − ȧc)+
1

τ
(am −ac) = 0 (4)

The closed form solution of (4) is given as

am = ac − e
−t
τ (ac0

−am0
) (5)

where am is the achieved missile latax and ac is the commanded
missile latax. So the latax for first order is replaced by the

closed form solution given by (5). Now the system model can
be written as (Ryoo et al. (2005))

ż = Vm(t)sinθm(t) (6)

Vm(t)θ̇m(t) = ac − e
−t
τ (ac0

−am0
) (7)

System dynamics in normalized form can be written as

żN =
Vm sin(θ ∗

mθmN
)

z∗
(8)

θ̇mN
=

ac

Vmθ ∗

m

−
e
−t
τ (ac0

−am0
)

Vmθ ∗

m

where zN , z/z∗ and θmN , θm/θ ∗

m are the normalized state
variables.

2.3 Problem Objectives

Main objective of the problem is to design a nonlinear subopti-
mal missile guidance law with terminal impact angle constraint
using the newly developed MPSAG technique. The technique
combines model predictive static programming and spread
acceleration guidance. Mathematical formulation of MPSAG
technique is given in detail in the next section in fair detail.

3. MPSAG DESIGN:MATHEMATICAL FORMULATION

In this section, we present the mathematical details of the new
Model Predictive Spread Acceleration (MPSAG) design. In this
design, we consider general nonlinear systems in discrete form,
the state and output dynamics of which are given by

Xk+1 = Fk(Xk,Uk) (9)

Yk = h(Xk) (10)

where X ∈ ℜn, U ∈ ℜm, Y ∈ ℜp and k = 1,2, . . . ,N are the
time steps. The primary objective is to come up with a suitable
control history Uk, k = 1,2, . . . ,N −1, so that the output at the
final time step YN goes to a desired value Y ∗

N , i.e. YN → Y ∗

N .
In addition, we aim to achieve this task with minimum control
effort.

For the MPSAG technique presented here, one needs to start
from a “guess history” of the control solution. With the appli-
cation of such a guess history, obviously the objective is not
expected to be met, and hence, there is a need to improve this
solution. In this section, we present a way to compute an error
history of the control variable, which needs to be subtracted
from the previous history to get an improved control history.
This iteration continues until the objective is met (i.e. the al-
gorithm converges), i.e. YN → Y ∗

N . Note that the technique pre-
sented here comes up with an error history in closed form, and
hence, the computational requirement is less and the algorithm
can be used online.

To meet the objective YN → Y ∗

N , first we define the error in the

output as δYN ,YN −Y ∗

N . Next, using small error approximation
we write

δYN
∼= dYN =

[

∂YN

∂XN

]

dXN (11)

However from (9), we can write the error in state at time step
(k +1) as
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dXk+1 =

[

∂Fk

∂Xk

]

dXk +

[

∂Fk

∂Uk

]

dUk (12)

where dXk and dUk are the error of state and control at time step
k respectively. Expanding dXN as in (12) and substituting it in
(11), we get

dYN =

[

∂YN

∂XN

]([

∂FN−1

∂XN−1

]

dXN−1 +

[

∂FN−1

∂UN−1

]

dUN−1

)

(13)

Similarly the error in state at time step (N −1), dXN−1, can be
expanded in terms of the errors in state and control at time step
(N −2) and (13) can be re-written as

dYN =

[

∂YN

∂XN

][

∂FN−1

∂XN−1

]([

∂FN−2

∂XN−2

]

dXN−2 +

[

∂FN−2

∂UN−2

]

dUN−2

)

+

[

∂YN

∂XN

][

∂FN−1

∂UN−1

]

dUN−1

Next, dXN−2 can be expanded in terms of dXN−3 and dUN−3

and so on. Continuing the process k = 1, we can write

dYN = A dX1 +B1dU1 +B2dU2 + . . .+BN−1dUN−1 (14)

where A =

[

∂YN

∂XN

][

∂FN−1

∂XN−1

]

. . .

[

∂F1

∂X1

]

(15)

Bk =

[

∂YN

∂XN

][

∂FN−1

∂XN−1

]

. . .

[

∂Fk+1

∂Xk+1

][

∂Fk

∂Uk

]

,

k = 1, . . . ,N −1

Since the initial condition is assumed to be specified, there is
no error in the first term; which means dX1 = 0. With this (14)
reduces to

dYN = B1dU1 +B2dU2 + . . .+BN−1dUN−1 =
N−1

∑
k=1

BkdUk(16)

Note that while deriving (16), we have assumed that the control
(decision) variables at each time steps are independent of the
previous values of states or control. At this point, we would
like to point out that if one evaluates each of the Bk, k =
1, . . . ,(N − 1) as in (15), it will be a computationally intensive
tasks (especially when N is high). However, fortunately it is
possible to compute them recursively. For doing this, first we
define B0

N−1 as follows

B0
N−1 =

[

∂YN

∂XN

]

(17)

Next we compute B0
k , k = (N −2),(N −3), . . . ,1 as

B0
k = B0

k+1

[

∂Fk+1

∂Xk+1

]

(18)

Finally, Bk, k = (N −2),(N −3), . . . ,1 can be computed as

Bk = B0
k

[

∂Fk

∂Uk

]

(19)

Equation (17)-(19) provides a recursive way of computing
B0

k , k = (N −1),(N −2), . . . ,1, and hence, it leads to saving of

computational time enormously. With respect to this equation
for error in output (16) the formulation can be extended to linear
parameterizations. In this formulation the control is considered

to be linear function of tgo , t f − t

Uk = atgok
+b (20)

Uk = U0
k −dUk (21)

Therefore the error in control can be given as

dUk = U0
k −Uk (22)

= (a0tgok
+b0)− (atgok

+b)

= (a0 −a)tgok
+(b0 −b)

(23)

Substituting for dUk for k = 1, . . . ,N −1 in (16) we get

Bλ −

(

N−1

∑
k=1

Bktgok

)

a−

(

N−1

∑
k=1

Bk

)

b = dYN

Cya+Dyb = Bλ −dYN (24)

where

Bλ ,
(

B1U0
1 +B2U0

2 + ..BN−1U0
N−1

)

(25)

Cy ,

(

N−1

∑
k=1

Bktgok

)

(26)

Dy ,

(

N−1

∑
k=1

Bk

)

(27)

At this point, we would like to point out that we have used
“small error approximation” in deriving the closed form control
update. The approximation may not hold good in general.
Hence the process needs to be repeated in an iterative manner
before one arrives at the converged (optimal) solution, which is
define as the solution when YN → Y ∗

N . However to minimize
computational time, only one iteration may be carried out
at each instant of time following the principle of “iteration
unfolding” (McHenry et al. (1979)).

3.1 Mathematical Formulation of MPSAG Applied to Lag Free
System

The system dynamics (3) can be discretized using Euler inte-
gration (Atkinson (2001)) as

zN(k +1) = zN(k)+
∆tVmsin(θ ∗

mN
θmN

)

z∗
(28)

θmN
(k +1) = θmN

(k)+
∆tam

Vmθ ∗
mN

(29)

The required expressions to compute dxk+1 from (12) are

∂Fk

∂Xk

=





1
∆tVmθ ∗

mN
cos(θ ∗

mN
θmN

)

z∗

0 1



 ,
∂Fk

∂Uk

=

[

0
1

]

(30)
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Table 1. Parameter Values

Symbol Parameter Name Values

xm0
, zm0

Missile position 0m 0m

xt0 , zt0 Target Position 0m , 4km

θm0
Initial heading angle 900

3.2 Mathematical Formulation of MPSAG Applied to First
Order Autopilot

The system dynamics (8) can be discretized making use of
Euler integration (Atkinson (2001))

zN(k +1) = zN(k)+
∆tVmsin(θ ∗

mθmN
)

z∗

θmN
(k +1) = θmN

(k)+∆t

(

am

Vm

−
e
−t
τ (am0

−ac0
)

Vm

)

The required expressions to compute dxk+1 from (12) are
∂Fk

∂Xk

and
∂Fk

∂Uk
are written as

∂Fk

∂Xk

=

[

1
∆tVmθ ∗

mcos(θ ∗

mθmN)

z∗

0 1

]

∂Fk

∂Uk

=

[

0
∆t

Vm

]

The main goal of the problem is to make YN → Y ∗

N . For this
particular problem YN = [ z θm ] and Y ∗

N = [ 0 θm f ]

4. SIMULATION RESULTS

The main assumptions behind the simulations are

• Missile velocity is assumed as constant
• Target is assumed to be stationary
• The missile trajectory is assumed as a third order polyno-

mial for time-to-go estimation
• Drag and gravity components are neglected

The missile velocity is taken as a constant value of 300m/sec
and the impact angle varies from −90 to 90. The various initial
values used for simulation are tabulated as in Table.1

Accurate estimation of time-to-go is very important because
poor estimation of time-to-go severely degrades the guidance
performance (Ryoo et al. (2006)-Ryoo et al. (2005)). The
conventional method used for calculating time-to-go is the
range over closing velocity. This method is a good estimate for
PNG type guidance law. But for impact angle based guidance
law, this method is not accurate because missile trajectory is
curved in general. One can refer the details of time- to-go
estimation available in the literature (Ryoo et al. (2006)-Song
& Shin (1999)), which is also included as an appendix in
this paper. Time-to-go estimation given in appendix is used for
obtaining the missile optimal trajectories. The time constant(τ)
for first order system is taken as 0.2 sec. The simulation results
are obtained as shown in Fig. 2 and Fig. 3respectively. The
results shows the comparative plot between linearized system
and MPSAG technique for first order delay system at different
impact angles and at a range of 5km (In all comparative plots
solid line is used to represent MPSAG technique and dotted
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Fig. 2. Comparison of optimal trajectories between linearized method and

MPSAG approach for different impact angle of the first order delay

system for a range of 5km
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Fig. 3. Comparison between commanded Latax for linearized method

and MPSAG Approach for different impact angle of first order delay

system for a range of 5km

line for linearized method). The respective plots are drawn for
different impact angles −300,−500,−700,−900. The results
in Fig. 6 represents the comparison plot between linearized
system and the system using MPSAG technique for different
ranges of 5km,6km and7km. These are generated taking an
impact angle of −90degrees. The results in Fig. 7 represents
the comparison plot of guidance command between linearized
system and system using MPSAG technique for different ranges
of 5km,6km and 7km. The singularity at the end of guidance
command is completely avoided by using MPSAG technique.
As it is evident from the latax comparative plot that positive-
negative correction required for guidance command is less for
MPSAG technique compared to the linearized method. The
state responses and engagement responses are as shown in
Fig. 4 and Fig. 5 respectively. The figures are generated for
different initial conditions such as θm0

= 90 and θm0
= 30. It

is clear from the subplot that the goals like miss distance and
impact angle are satisfied and the missile is always hitting the
target at the desired range of 5km, whatever be the heading
angle. Fig. 8 represents the comparison of commanded and
achieved latax for different ranges.
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5. CONCLUSIONS

The paper discusses about the nonlinear optimal guidance law
using MPSAG technique, which is a new technique combining
model predictive control theory and spread acceleration guid-
ance. The paper discusses about stationary target however the
basic philosophy presented here can possibly be extended to
moving target as well. The technique leads to a rapid update of
guidance history, and hence can be implemented online. Opti-
mal guidance law using linearized dynamics is already present
in the literature, where the system dynamics is linearized and
the latax is obtained using the linearized dynamics. However
the guidance law presented here using optimal control theory
without linearizing the system dynamics. The guidance law
is tested by assuming first order autopilot. In the design the
guidance law is able to hit the target at the desired range of
5 km. It is important to note that the approach presented leads
to an approximate closed form sub optimal solution of the guid-
ance history update for the given nonlinear problem. Hence, the
computational requirements are low and it can be implemented
online. The technique does not demand very high latax, and it
is able to meet the required criteria of minimum miss distance.
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6. APPENDIX -REVIEW OF LINEARIZED METHOD

The linearized method proposes an optimal guidance law
with impact angle constraint with linearized dynamics (Ryoo
et al. (2005), Ryoo et al. (2006)). It gives a closed form solu-
tions for controlling the impact angle as well as terminal miss
distance. It also proposes a generalized formulation of energy
minimization optimal guidance law for constant speed missiles
with an arbitrary system order for controlling both impact angle
and miss distance. Optimal guidance law for first order delay
system are derived in this paper for completeness.

6.1 Guidance Law for First order delay System

System dynamics for first order delay system is given by Ryoo
et al. (2005)

ż = Vm(t)sin(θm(t))

Vm(t)θ̇m(t) =−am(t)

ȧm =
u−ac

τ

Optimal guidance law in this case is given as

u = −Vm[−tgow1z+w2θm +w3θm f ]+w4am (31)

The following definitions are used in the optimal guidance law
formulation for a first order delay system

w1 , (1/∆)(s1K4D1 −VmS2K3D2

w2 , (1/∆)(s1D1(tgoK4 −K2)+Vms2D2(K1 − tgoK3)

w3 , (1/∆)(s1K2D1 −VmS2K1D2)

w4 , (1/α∆)(s1D1(K2D2 −K4D1)+Vms2D2(K3D1 −K1D2))

∆ , K1K4 −K2K3

K1 , 1+ s1(1/2(α3)+ tgo/(α2)− t2
go/α + t3

go/3

−2tgoe−αtgo/α2
− e−2αtgo/2α3)

K2 , Vms2(1/2α2
− tgo/α + t2

go/α + t3
go/3−2tgoe−2αtgo/2α2)

K3 , s1K2/Vms2

K4 , 1+Vms2(tgo +2e−αtgo/α −3/2α − e−2αtgo/2α

D1 , tgo −1/α + e−αtgo/α

D2 , (1/Vm)(1− e−αtgo)

α , 1/τ

Note that for the first order lag system the guidance command
goes to zero as tgo → 0. One can refer (Ryoo et al. (2005)) for
more details.

6.2 Time-to-go Estimation

The method of determining time-to-go is to find the range over
average velocity, which denotes the projected velocity on the
line-of-sight (Ryoo et al. (2005)). This method is superior
compared to the other methods available in literatures. The
projected velocity on the line-of-sight is calculated as V̄m cos θ̄m.
Expanding cos θ̄m using binomial expansion, the expressions
for V̄m and tgo are

V̄m =
1

R

∫ R

0
Vm cos θ̄mdx (32)

= Vm

[

1−
θ̄ 2

m + θ̄ 2
m f

15
+

θ̄mθ̄m f

30
+

θ̄ 4
m + θ̄ 4

m f

420

−

θ̄mθ̄m f (θ̄
2
m + θ̄ 2

m f − θ̄mθ̄m f )

840

]

tgo =
R

V̄m

(33)

where θ̄m and θ̄m f are defined as θ̄m , θm +θ and θ̄m f , θm f +
θ , respectively
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