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Abstract: An optimal control law for a general nonlinear system can be obtained by solving
Hamilton-Jacobi-Bellman equation. However, it is difficult to obtain an analytical solution of
this equation even for a moderately complex system. In this paper, we propose a continuous-
time single network adaptive critic scheme for nonlinear control affine systems where the optimal
cost-to-go function is approximated using a parametric positive semi-definite function. Unlike
earlier approaches, a continuous-time weight update law is derived from the HJB equation. The
stability of the system is analysed during the evolution of weights using Lyapunov theory. The
effectiveness of the scheme is demonstrated through simulation examples.
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1. INTRODUCTION

In case of nonlinear systems, one of the main focus of the
control design processes available in literature is to ensure
stability of the system while achieving good trajectory
tracking accuracy. Many times however, simple stability
of the system is not good enough and optimality issues
should be addressed at so as not to end up with an
impracticable control design. This gives rise to optimal
control methodologies where one tries to design controllers
that minimize certain meaningful performance indices.
While the optimal control theory is quite well-established,
its application to control of nonlinear systems has been
limited owing to the mathematical complexity involved in
finding closed form solutions to the control variable in state
feedback form. Bellman’s dynamic programming [Naidu,
2003, Bryson and Ho, 1975] treats such optimal control
problems as multistage decision making processes, where
a decision is chosen from a finite number of decisions. The
continuous-time analog of Bellman’s recurrence equation
in dynamic programming is called the Hamilton-Jacobi-
Bellman Equation. This equation, in general, is a nonlinear
partial differential equation which is difficult to solve.

⋆ This work was supported by Department of Science and Tech-
nology (DST), Govt. Of India under the project titled “Intelli-
gent Control Schemes and application to dynamics and visual con-
trol of redundant manipulator systems”. The project number is
DST/EE/20050331. Dr. Laxmidhar Behera is an associate professor
at Department of Electrical Engineering, IIT Kanpur. Currently, he
is a reader at School of computing and intelligent systems, University
of Ulster, UK.

In discrete-time, dynamic programming problem is solved
backwards in time. Quite recently, a number of architec-
tures have been reported in literature, collectively known
as ‘Adaptive Critic’ which solves this dynamic program-
ming problem in forward direction of time. It is also
known as forward dynamic programming or Approximate
dynamic programming [Si et al., 2005, Ch. 3]. Adaptive
critic based methods have two components - an actor
which computes the control action and a critic which
evaluates its performance. Based on the feedback received
from the critic, the actor improves its performance in
the next step. Various architectures as well as learning
algorithms for actor and critic have been proposed in last
few years. An interested reader may refer to [Prokhorov
and II, 1997] and [Si et al., 2005] for details. Quite recently,
Padhi et. al. [Padhi et al., 2006] introduced a simplified
version of adaptive critic architecture which uses only one
network instead of two required in a standard adaptive
critic design. This architecture is called “single network
adaptive critic (SNAC)”. This architecture can be applied
to a class of systems where control input can be expressed
explicitly in terms of state and costate variables.

In this paper, we introduce a variant of continuous-time
adaptive critic structure for controlling nonlinear affine
systems. It is well known that the HJB equation is neces-
sary as well as sufficient condition for optimality [Bryson
and Ho, 1975, Naidu, 2003]. However, finding an analytical
solution of HJB equation is usually very difficult even for
a moderately complex system.

We approximate this optimal cost function using a para-
metric positive semi-definite function. This parametric
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function may also be replaced with a suitable neural net-
work. Now, a continuous-time weight update law is derived
so as to satisfy the HJB equation. This gives rise to an
under-determined linear least square problem which can
be solved accurately using standard numerical routines.
It is also shown that the system is stable in the sense
of Lyapunov during evolution of weights. The training
is carried out in an online fashion where weights attain
their final value during the closed loop operation of the
system itself. In that respect, the critic does not require
any separate training phase. The performance of proposed
algorithm is analyzed for both linear and nonlinear affine
systems and various related issues are discussed. In case
of linear systems, it is shown that the solution converges
to that of Algebraic Riccati Equation (ARE), provided
the system parameters are initialized properly. In case of
nonlinear systems, linear optimal controllers are derived
and their performance is compared with those of LQR
controllers for their linearized models. The local optimality
is verified through simulations.

The paper is organized as follows. The proposed scheme is
presented in Section 2 followed by its stability analysis in
Section 3. The simulation results are provided in Section
4 and appropriate conclusions are drawn in Section 5.

2. CONTINUOUS-TIME SINGLE NETWORK
ADAPTIVE CRITIC SCHEME

Consider a nonlinear control-affine system given by

ẋ = f(x) + g(x)u (1)

The task is to find a control input that minimises the
performance index given by

J(x(t0), t0) = S(x(tf ), tf ) +

∫ tf

t0

ψ[x(τ),u(τ)]dτ (2)

along with the boundary conditions

x(t0) = x0 is fixed and x(tf ) is free. (3)

and the utility function ψ is given by

ψ(x,u) ,
1

2
[xTQx + uTRu] (4)

Let us define a scalar function J∗(x∗(t), t) as the optimal
value of the performance index J for an initial state x∗(t)
at time t, i.e.,

J∗(x∗(t), t) = S(x(tf ), tf )+

∫ tf

t

ψ(x∗(τ),u∗(τ), τ)dτ (5)

Consider a Hamiltonian given by

H(x,λ∗,u) = ψ(x,u) + λ
∗T [f(x) + g(x)u] (6)

where λ
∗ = ∂J

∂x

∗

. The optimal control is obtained from the
necessary condition given by

∂H

∂u
=
∂ψ

∂u
+ λ

∗T ∂

∂u
[f(x) + g(x)u] = 0 (7)

This gives the following optimal control equation for
control affine system described in (1):

u = −R−1gT
λ
∗ (8)

Substituting the value of u into (6), we get

H(x∗,λ∗,u∗) =
1

2
x∗TQx∗ +

1

2
λ
∗T gR−1gT

λ+

λ
∗T [f − gR−1gT

λ
∗] (9)

On simplification, we have following optimal Hamiltonian:

H∗ =
1

2
x∗TQx∗ −

1

2
λ
∗T gR−1gT

λ
∗ + λ

∗T f

=
1

2
x∗TQx∗ −

1

2
λ
∗TGλ + λ

∗T f (10)

where G = gR−1gT . We know that the optimal value func-
tion J∗(x∗, t) must satisfy the Hamilton-Jacobi-Bellman
(HJB) equation given by

∂J

∂t

∗

+ min
u

H(x,
∂J

∂x

∗

,u, t) = 0 (11)

with boundary condition given by

J∗(x∗(tf ), tf ) = S(x∗(tf ), tf ) (12)

It provides the solution to the optimal control problem
for general nonlinear dynamical systems. However, the
analytical solution to the HJB equation is difficult to
obtain in most cases. It is well known that the HJB
equation is both necessary as well as sufficient condition of
optimality [Naidu, 2003, ch. 2, pp. 286-287]. Therefore by
combining (10) and (11) we can say that, in case of control
affine systems (1), the optimal value function must satisfy
following nonlinear dynamic equation:

∂J

∂t

∗

+
1

2
x∗TQx∗ −

1

2

(

∂J

∂x

∗
)T

G
∂J

∂x

∗

+

(

∂J

∂x

∗
)T

f = 0

(13)
Since, the analytical solution of the above equation is
difficult, we take a different approach and approximate
the optimal value function as follows:

V (x, t) = h(w,x) (14)

where the approximating function h(w,x) is selected so
as to satisfy certain initial conditions stated in next
section. The parameter t has been put in V (x, t) to show
explicit dependence of value function on time because of
time varying parameters w in the approximating function
h(w,x).

For the value function given in (14) to be optimal, it must
satisfy the HJB equation (13). This gives

∂V

∂t
+ ψ(x,u) +

(

∂V

∂x

)T

[f + gu] = 0 (15)

∂h

∂w
ẇ +

1

2
xTQx −

1

2

(

∂V

∂x

)T

G
∂V

∂x
+

(

∂V

∂x

)T

f = 0

(16)

This gives following weight update law:

∂h

∂w
ẇ = −

1

2
xTQx +

1

2

∂h

∂x

T

G
∂h

∂x
−

(

∂h

∂x

)T

f (17)

The task is to find ẇ so that the above scalar equation
is satisfied. This is an under-determined system of linear
equations with number of equations less than the number
of variables to be estimated. Though, there are infinitely
many solutions for ẇ which would exactly satisfy the above
equation, we seek the one which minimises ‖ẇ‖2. The
problem is referred to as finding minimum norm solu-
tion to an under-determined system of linear equations.
Pseudo-inverse method is used to solve this problem.

Equation (17) may be written as

sẇ = r (18)

where s = ∂h
∂w

is a 1 × Nw a vector and r = − 1
2
xTQx +

1
2

∂h
∂x

T
G∂h

∂x
−

(

∂h
∂x

)T
f is a scalar quantity. The pseudoinverse

solution is given by
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ẇ = sT (ssT )−1r (19)

Note that the term ssT is a scalar quantity and its inverse
is easily computable. The control scheme is shown in
Figure 1. The blocks are self-explanatory.

Plant

Dynamics
Optimal
Control

Critic

x

V

u

HJB

ẇ

weight update

λ

∂

∂x

Fig. 1. Continuous-time single network adaptive critic
scheme

3. STABILITY ANALYSIS

The link between stability and optimality is well known.
The value function for a meaningful optimal stabilization
problem is also a Lyapunov function for the closed-loop
system. In other words, every meaningful value function
is a Lyapunov function [Freeman and Kokotovic, 1996].
In the previous section, we saw that the optimal value
function is approximated using a parametric function
h(w,x). The parametric function is selected so as to satisfy
following initial conditions:

V (0, t) = h(0,w) ≥ 0 ∀t ≥ 0 (20a)

∂V

∂x
(x, t) =

∂h

∂x
= 0, when x = 0 (20b)

The condition (20a) may be replaced by the condition
that the function V (x, t) be lower bounded. Note that the
optimal control is a function of ∂V

∂x
as shown in equation

(8) and the condition (20b) is needed to ensure that the
control input becomes zero only when state x approaches
zero value.

In order to analyze the stability of the scheme, we consider
(14) as a Lyapunov function candidate which satisfies the
conditions given by (20). Because of time-varying weight
parameters, we have a non-autonomous system and thus
the Lyapunov function candidate is considered to have
explicit time-dependence.

The asymptotic stability analysis of non-autonomous sys-
tems is generally much harder than that of autonomous
systems. In order to analyze the stability of the scheme,
we make use of Barbalat’s Lyapunov-like Lemma [Slotine
and Li, 1991] which tells that if a scalar function V (x, t)
satisfies the following conditions:

• V (x, t) is lower bounded

• V̇ (x, t) is negative semi-definite

• V̇ (x, t) is uniformly continuous in time

then V̇ (x, t) → 0 as t→ ∞.

Since the approximating function h(w,x) is chosen so as
to satisfy the condition (20a), the first requirement of
the above lemma is already met by choice. Differentiating
V (x, t) with respect to time, we get

V̇ =
∂V

∂t
+

(

∂V

∂x

)T

ẋ =
∂V

∂t
+

(

∂V

∂x

)T

[f + gu] (21)

Using (15) and (21), we get

V̇ = −ψ(x,u) = −
1

2
xTQx −

1

2

∂V

∂x

T

G
∂V

∂x
(22)

where G = gR−1gT is a positive semi-definite matrix
and V (x, t) is a function of both x and w. V̇ = 0 when

either {x = 0, w = 0} or {x = 0, w 6= 0} and V̇ < 0

whenever x 6= 0. Thus, V̇ is only negative semi-definite.
Differentiating (22) once again with respect to time, we
get

V̈ = −xTQẋ −
∂V

∂x

T

G
∂2V

∂t∂x
−

1

2

∂V

∂x

T ∂G

∂t

∂V

∂x
(23)

By Lyapunov stability theory we know that the negative
semi-definiteness of V̇ ensures boundedness of x as well as
ẋ. The partial derivative ∂V

∂x
is a function of w and x. w(t)

is bounded as long as x is bounded and the norm ‖ ∂h
∂w

‖ in
equation (17) is non-zero and finite. The boundedness of
w and x is guaranteed as long as the first two conditions
of Barbalat’s Lemma are met. Since g is assumed to be a
continuous function of x as well as t, it is bounded as long
as x is bounded. Thus, ∂G

∂t
= 2gR−1ġ is also a continuous

and bounded function. Thus, it can always be ensured that
V̈ is always bounded and finite, at least for quadratic value
functions. Now, by invoking Barbalat’s Lemma, we find
that V̇ → 0 as t→ ∞. This gives,

V̇ = 0 ⇒
1

2
xTQx +

1

2

∂V

∂x

T

G
∂V

∂x
= 0

Since, both terms in the later equation are positive scalars,
the above equation leads to

xTQx = 0 and
∂V

∂x

T

G
∂V

∂x
= 0

Thus, we can conclude that x → 0 and ∂V
∂x

→ 0 as t→ ∞.

This establishes the fact that the approximate value func-
tion (14) is a Lyapunov function and the weight update
law (17) ensures asymptotic stability (x = 0).

3.1 Discussion

Since the HJB equation (11) along with boundary condi-
tion (12) can be solved by backward integration, the weight
vector w is updated as follows:

w(t+ 1) = w(t) − ẇdt (24)

where ẇ is obtained by solving the under-determined
equation (17). It is also possible to integrate the differential
equation (17) by Fourth-order Runge-Kutta method for
better accuracy. The negative sign shows a backward
integration in time. It is to be noted that, even though
above update law represents a back integration process,
it can still be implemented in forward time. The steps
involved are enumerated below:

(1) Values for initial states are selected from the domain
of interest. The weight parameters of value function
are initialized so that the initial control action stabi-
lizes the closed loop system.

(2) The control action is computed using equation (8).
The system response is obtained by integrating the
dynamic equation (1). Using Euler integration, we can
write the state evolution as

x(t+ 1) = x(t) + ẋ dt (25)
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(3) The under-determined equation (17) is solved using
pseudo-inverse method and ẇ is given by (19). Now,
the weights are updated using equation (24).

(4) The time quantity is incremented as t = t+dt and the
above two steps are repeated until the weights attain
their steady state value. For time-invariant systems,
weights should attain constant values.

As one can see, even though the system evolves forward
in time, the weights are updated backwards in time. The
entire training process can be carried out in real-time with
a weight update law given by (24). The nature of weight
update law is such that it solves the HJB equation.

4. SIMULATION AND RESULTS

In this section, we solve optimal control problem for two
control affine systems - a linear and a nonlinear system.
In Linear system case, we show that a quadratic value
function structure gives rise to LQR control using this
method. However in case of nonlinear systems, the optimal
control depends on the structure of the approximating
function. For a quadratic structure for the value function,
we can only get a linear PD type controller. This can be
seen from optimal control equation (8) which depends on
∂V
∂x

. For a quadratic value function, its derivative would be
a linear function of states. Hence in the following examples,
we aim to search for optimal PD controllers corresponding
to the structure of value function selected for the problem.
Through simulation, it is shown that the performance of
proposed controllers are not different from those of LQR
control action derived from their linearized models.

4.1 Linear Systems

Consider a single input linear system of the form ẋ = Ax+
bu given by

[

ẋ1

ẋ2

]

=

[

0 1
0.4 0.1

] [

x1

x2

]

+

[

0
1

]

u (26)

The task is to find a control law u = c(x) that minimizes
the cost function

J =
1

2

∫

∞

0

[xTQx + uTRu] dt (27)

where

Q =

[

1 0
0 1

]

and R = 1

We know that the optimal value function for a linear
system is given by

V =
1

2
xTPx (28)

where P is a symmetric positive definite matrix. It is trivial
to show that the HJB equation (11) for this value function
gives rise to Differential Riccati Equation (DRE), given by

Ṗ = −(PA+ATP ) −Q+ PTBR−1BTP (29)

and for infinite time, Ṗ = 0 and above equation gives rise
to Algebraic Riccati Equation (ARE). In order to solve this
problem using proposed approach, we rewrite the optimal
value function as

V =
1

2
(w1x

2
1 + w2x

2
2 + 2w3x1x2) (30)

where the initial value of weight vector w = [w1 w2 w3]
T

is chosen so that V is at least positive semi-definite in

the beginning. The derivative of the weight vector ẇ is
obtained by solving the under-determined equation (17)
which is reproduced here for convenience

∂V

∂w
ẇ = −

1

2
xTQx +

1

2

∂V

∂x

T

B̄
∂V

∂x
−
∂V

∂x
Ax (31)

where B̄ = bR−1bT and the partial derivatives are given
as follows:

∂V

∂x

T

= [w1x1 + w3x2 w2x2 + w3x1] (32)

∂V

∂w

T

=
[

0.5x2
1 0.5x2

2 x1x2

]

(33)

The control law is given by (8) and for this problem, it is
computed to be

u = −R−1bT ∂V

∂x
= −(w2x2 + w3x1) (34)

The weights are updated by (24). The final values of
weights after training is given below:

w = [2.10456 2.09112 1.4722]
T

The equation (30) may be written as

V =
1

2
xTWx =

1

2
xT

[

w1 w3

w3 w2

]

x (35)

It can be verified that the matrix W is same as the Riccati
matrix P obtained by solving the ARE as shown below.

P =

[

2.10456 1.4722
1.4722 2.09112

]

Discussion:

• Through this example, we show an alternative method
to solve differential Riccati equation and in case of
linear time-invariant systems, it is possible to obtain
optimal control through this scheme.

• Note that the convergence of the weight update law
(31) to Riccati solution depends on proper initializa-
tion of weights and states. Some additional constraint
might be imposed on the weight values so that the
current method always yields Riccati solution.

• The phase during which weights evolve, we call it
a training phase. Testing phase is the one where
weights have settled down to some steady state value.
Evolution of states, weights as well as control during
training phase is shown in Figure 2. In Figures 2(a),
2(b) and 2(d), the performance is compared with
those of LQR controller. The objective is to show that
the performance of the proposed control scheme do
not differ too much from LQR performance during
closed loop operation. Once weights attain their final
value, the performance exactly matches with that of
LQR control scheme. The evolution of weights during
training is shown in Figure 2(c). The weight update
law is given by (24) where ẇ is obtained by solving
equation (31). It is to be noted that weights also
evolve in the forward direction as states do, however
in the process of evolution, it tends to solve HJB
equation in the backward direction.

4.2 Non-linear System

Nonlinear System Consider the following Single Link
manipulator system given by
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Fig. 2. Linear System: Comparison with LQR performance during training

ẋ1 = x2

ẋ2 =−10 sinx1 + u (36)

We seek to find a controller that minimizes following cost
function:

J =
1

2

∫

∞

0

[xTQx + uTRu]dt (37)

where

Q =

[

1 0
0 1

]

R = 1

We consider following structure for the optimal cost-to-go
function:

V =
1

2
(w1x1 + w2x2)

2 +
1

2
(w2

1 + w2
2) (38)

The corresponding derivative terms are given by

dV

dw
= [(w1x1 + w2x2)x1 + w1 (w1x1 + w2x2)x2 + w2]

T

dV

dx
= [(w1x1 + w2x2)w1 (w1x1 + w2x2)w2]

T
(39)

Considering the cost-to-go function (38) as a Lyapunov
candidate and equating its time-derivative to the utility
function, we get following under-determined equation for
ẇ:

V̇ =
∂V

∂w
ẇ +

∂V

∂x
ẋ = −

1

2
[xTQx + uTRu]

∂V

∂w
ẇ = −

1

2
xTQx −

1

2
uTRu−

∂V

∂x
ẋ (40)

The control input is given by (8) and is computed to be:

u = −R−1gT ∂V

∂x
= −(w1x1 + w2x2)w2 (41)

The corresponding the system response during training
as well as testing phases are shown in Figures 3 and 4
respectively.

Discussion:

• Training is carried out as per steps enumerated in
Section 3.1 and final values of weights are used to
control the plant. Figure 3 shows the evolution of
states as well as weights during training. It is to be
noted that the training is not carried out for all initial
conditions in a domain of interest. The training is
carried out only for a single set of initial conditions
of states and weights until weights settle down to
their steady state values as shown in Figure 3(b). The
initial values of weights must be chosen so as to render
the system stable at the start of training phase.

• Figure 4 shows the system behaviour during testing
phase where the weights have already attained their
steady-state value. Here, its performance is compared
with that of LQR control action and its seen that
the performances are quite similar to each other.
Note that we are using LQR control action for the
nonlinear plant and the comparison is provided to
show that the proposed control’s behaviour is not
different from that of LQR control action.

• In order to judge the local optimality of the controller,
we perturb the final weights by ±0.5 and compute the
total cost over a time-interval of 20 seconds. For two
weights, nine (3 × 3) such combinations are possible.
The corresponding cost curves are plotted in Figure
5. The curve for unperturbed weights is represented
by the label ’C’ while the cost for LQR control
is labelled as ’CLQR’. The curves with perturbed
weights are labelled as C1, . . . , C9. As can be seen, the
original weights incur minimum cost among all other
combinations. This is of course higher than that of
cost for LQR control.
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Fig. 3. Nonlinear System 2: Training phase
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Fig. 4. Nonlinear System 2: Testing phase

• Since the choice of optimal cost function is a quadratic
one, we get a linear (PD) control action for the
system. Figure 5 at least establishes local optimality
for the given controller. The controller is optimal with
respect to the structure of optimal value function
chosen.
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Fig. 5. Cost comparison for perturbed weights

5. CONCLUSION

In this paper, a new approach to single network adaptive
critic (SNAC) is presented where optimal cost-to-go func-
tion is approximated using a quadratic polynomial func-
tion of states as well as weights. Unlike earlier approaches,

a continuous-time weight update law is derived using HJB
equation and stability is analyzed during evolution of
weights. The training is carried out in an online fashion
where states and weights evolve forward in time. The con-
troller attains its optimal value as training proceeds. The
performance of the proposed scheme is analyzed through
simulations on second order linear and nonlinear control
affine systems. The local optimality of the controller is
verified through simulation plots.
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