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Abstract: This paper presents the stability analysis of a hierarchical controller for an
Unmanned Aerial Vehicle, using singular perturbation theory. Position and attitude control
laws are successively designed by considering a time-scale separation between the translational
dynamics and the orientation dynamics of a six degrees of freedom Vertical Take Off and Landing
UAV model. In addition, for the design of the position controller, we consider the case where the
linear velocity of the vehicle is not measured. A partial state feedback control law is proposed,
based on the introduction of virtual states in the translational dynamics of the system.

1. INTRODUCTION

Miniature Unmanned Aerial Vehicles (UAV) are prone to
be useful for numerous military and civil applications.
Especially, thanks to features such as Vertical Take Off
and Landing and hover capability, rotorcraft-based minia-
ture UAVs are particularly well suited for missions such
as video inspection of buildings for maintenance, victims
localization after natural disasters, fire detection, etc. To
make autonomous flight of such vehicles possible, control
laws must be developed to replace the action of a human
pilot.

Input-output linearization is one of the nonlinear control
schemes that has been proposed for rotary wings UAVs.
Since that method can only be applied to minimum phase
systems, and since, generally, helicopters have unstable
zero dynamics, an approximate input-output linearization
has been proposed in [12]. Another solution consists in
the application of backstepping techniques, by considering
the model used for control design as a chain of integra-
tors. Backstepping has been widely applied to different
miniature vehicles such as conventional helicopters [6, 13],
coaxial birotor helicopters [3] or four-rotor vehicles [2].
These two control strategies lead to a dynamical extension
of the controller and make it difficult to use in practice,
since measurements on the control inputs and their time-
derivatives are not easy to obtain. In addition, measure-
ments on the translational dynamics and on the orienta-
tion dynamics of the vehicle cannot be achieved in practice
at the same sampling rate. Moreover, time-scale separation
cannot be taken into account by the aforementioned con-
trol strategies.

⋆ This work was partially funded by ONERA and by ANR project
SCUAV (ANR-06-ROBO-0007).

For practical use, a more suitable approach is the hierar-
chical control. In that case, separate controllers can be de-
signed to successively stabilize the translational dynamics
and the orientation dynamics of the vehicle. This method,
classically known in aeronautics as guidance and control,
can handle time-scale separation. Considering miniature
UAVs, a hierarchical control strategy has been applied,
for example, to a ducted fan miniature UAV [16].
In hierarchical control, the time-scale separation between
the translational dynamics (slow time-scale) and the ori-
entation dynamics (fast-time scale) can be used to design
position and orientation controllers under simplifying as-
sumptions. Although reduced-order subsystems can hence
be considered for control design, the stability must be
analyzed by considering the complete closed loop system.

A theoretical background for time-scale separation ap-
proaches and stability analysis is provided by the singular
perturbation theory [10, 11]. Aerospace applications of
that theory can be found in [14]. In [9, 15], a time-scale
separation is considered for helicopter control design, but
stability issues are not considered. A theoretical stability
analysis is provided in [5] using singular perturbation
theory, for the altitude dynamics of a miniature VTOL
UAV. As a complementary work of [4], closed loop stability
is analyzed by considering a three time-scale model of a
miniature helicopter mounted on a stand, incorporating
collective pitch actuator dynamics. To our knowledge, this
is the only work that theoretically addresses stability issues
for VTOL UAVs using singular perturbation theory. How-
ever, it only focuses on the vertical motion of the vehicle,
and full state measurement is assumed to be available.

In this paper, we present the stability analysis of a VTOL
UAV hierarchical controller using singular perturbation
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theory. A six degrees of freedom model is considered, based
on a simplified rigid body representation of miniature
VTOL UAV dynamics. The kinematic representation that
we use exploits the SO(3) group and its manifold. For con-
trol design, we assume that no measurement of the linear
velocity of the vehicle is available. This case corresponds
to the practical use of an UAV equipped with a inertial
measurement unit and a video camera that respectively
provides measurements on attitude angles and rotation
velocities, and measurement of the relative position of the
vehicle with respect to the environment.

The paper is organized as follows. In the next section,
we introduce notations and identities that will be used
in the rest of the paper. In section 3, the UAV model and
the hierarchical control strategy are presented. In section
4, a partial state feedback position controller is designed,
based on previous results [1], by introducing virtual states
in the translational dynamics, and without requiring an
observer. The design of the attitude controller is presented
in section 5, and stability of the complete closed loop
system is analyzed in section 6. Concluding remarks are
finally given at the end of the paper.

2. NOTATIONS

Let SO(3) denote the special orthogonal group of R
3×3

and so(3) the group of antisymmetric matrices of R
3×3.

We define by (.)× the operator from R
3 → so(3) such

that

∀b ∈ R
3, b× =

[

0 −b3 b2
b3 0 −b1
−b2 b1 0

]

(1)

where bi denotes the ith component of the vector b.

Let V(.) be the inverse operator of (.)×, defined from
so(3) → R

3, such that

∀b ∈ R
3,V(b×) = b ∀B ∈ so(3),V(B)× = B (2)

For a given vector b ∈ R
3 and a given matrix M ∈ R

3×3,
let us consider the following notations and identities:

Pa(M) =
M −MT

2
Ps(M) =

M +MT

2
(3)

tr(Pa(M)Ps(M)) = 0 (4)

1

2
tr(b×M) = −bT V(Pa(M)) (5)

The following identity will also be used:

∀Aa ∈ so(3),
1

2
tr(AT

aAa) = ‖V(Aa)‖2
(6)

Denote by (γR, nR) the angular-axis coordinates of a given
matrix R ∈ SO(3), and by Id the identity matrix of R

3×3.
One has:

∀R ∈ SO(3), tr(Id −R) = 2(1 − cos(γR)) (7)

∀R ∈ SO(3), ‖V(Pa(R))‖ = cos(
γr

2
)
√

tr(Id −R) (8)

Finally, for a given positive definite matrix M ∈ R
3×3, we

denote by λi(M) its ith eigenvalue and introduce

λmin(M) = min {|λi(M)| , i = 1, 2, 3} (9)

λmax(M) = max {|λi(M)| , i = 1, 2, 3} (10)

3. UAV MODEL AND CONTROL STRATEGY

3.1 VTOL UAV model

The VTOL UAV is represented by a rigid body of mass
m and of tensor of inertia I. To describe the motion of
the UAV, two reference frames are introduced: an iner-
tial reference frame (I) associated with the vector basis
(e1, e2, e3) and a body frame (B) attached to the UAV
and associated with the vector basis (eb

1
, eb

2
, eb

3
). The

position and the linear velocity of the UAV in (I) are

respectively denoted ξ = [x y z]
T

and v = [vx vy vz]
T
.

The orientation of the UAV is given by the orientation
matrix R ∈ SO(3) from (I) to (B), usually parameterized
by Euler’s pseudo angles ψ, θ, φ (yaw, pitch, roll). Finally,

let Ω = [Ω1 Ω2 Ω3]
T

be the angular velocity of the UAV
defined in (B).

We assume that a translational force F and a control
torque Γ are applied to the UAV. The translational force
F combines thrust, lift, drag and gravity components.
For a miniature VTOL UAV in quasi-stationary flight we
can reasonably assume that the aerodynamic forces are
always in direction eb

3
, since the lift force predominates

the other components [7]. The gravity component mge3
can be separated from other forces and the dynamics of
the VTOL UAV are written as:



















ξ̇ = v

mv̇ = −T Re3 +mge3

ǫṘ = RΩ×

ǫIΩ̇ = −Ω × IΩ + Γ

(11)

where the parameter 0 < ǫ ≪ 1 is introduced for time-
scale separation.
The control inputs that will be considered are the scalar
T ∈ R representing the magnitude of the external forces
applied in direction eb

3
, and the control torque Γ =

[Γ1 Γ2 Γ3]
T

defined in (B).

3.2 Control Strategy

Let us consider a hierarchical control strategy for stabiliza-
tion of model (11). Position and attitude controllers will
be successively designed, as presented below.

For the translational dynamics of (11), the full vectorial
term T Re3 will be considered as the position control vec-
tor. We will assign its desired value 1 (T Re3)d = f(ξ, v).
Assuming that actuator dynamics can be neglected before
the rigid body dynamics of the UAV, the value T d is
considered to be instantaneously reached by T . Therefore,
we have (T Re3)d = T Rde3, where Rd is the desired
orientation of the vehicle. That vector can be split into its
magnitude, T = ‖f(ξ, v)‖, representing the first control
input, and its direction

Rde3 =
1

T f(ξ, v) (12)

1 In this paper, the function f will not depend on v, since only po-
sition measurements are available for the control of the translational
dynamics.
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representing the desired orientation 2 .

For the orientation dynamics of (11), we will assign the
control torque Γ such that the orientation R of the UAV
converges to the desired orientation Rd, and such that the
angular velocity Ω converges to Ωd defined by:

Ṙd = RdΩd
× (13)

The computation of that desired angular velocity Ωd is
presented in Appendix A.

4. POSITION CONTROLLER

Consider the translational dynamics of (11). We assume for
control design, that only measurements on the position ξ
are available. Let us introduce two virtual states q, w ∈ R

3

and a virtual control δ ∈ R
3 such that:























ξ̇ = v

v̇ = − T
m
Rde3 + ge3 −

T
m

(R−Rd)e3

q̇ = − w

ẇ = δ

(14)

We define the position control law

T Rde3 =
m

kv

{kx ξ + k1(ξ − q) + k1(ξ − q + w)} +mge3

(15)
and the virtual control

δ = −w − (ξ − q) − (ξ − q + w) (16)

where kx, kv, and k1 are strictly positive scalar gains.

Remark 1. Note that the controller (15) and the virtual
input (16) do not use measurements on the linear velocity
v of the vehicle.

Remark 2. The control laws (15) and (16) have been de-
signed by considering the translational dynamics of (11)
under the assumption R = Rd. That assumption corre-
sponds to a time-scale separation between the transla-
tional dynamics and the orientation dynamics.

Introducing the notations

α = ξ − q, β = ξ − q + w (17)

u = −T
m
Re3 + ge3, ud = −T

m
Rde3 + ge3, ũ = u− ud

(18)
the system (14) controlled by (15) and (16) can be written
as



























ξ̇ =v

v̇ = − kx

kv

ξ − k1

kv

α− k1

kv

β + ũ

α̇ =v + β − α

β̇ =v − α− β

(19)

Defining the vectors X =
[

ξT vT αT βT
]T

and Ũ =
[

0T
3

ũT 0T
3

0T
3

]T
, with 03 = [0 0 0]

T
, the system

(19) can be represented by:

Ẋ = AX + Ũ (20)

2 The desired orientation Rd can then be deduced from (12), using
the pseudo Euler angle parametrization of Rd and solving for (ψd,
θd, φd) for a given specified constant yaw ψd(t) = ψd(0) [8].

where the matrix A ∈ R
12×12 is Hurwitz 3 . Therefore, the

system (20) is exponentially stable for Ũ = 0. In that case,
there exist two positive definite symmetric matrices P and
Q verifying the Lyapunov equation

1

2
(ATP + PA) = −Q (21)

and such that we can define a Control Lyapunov Function

S =
1

2
XTPX (22)

which verifies
1

2
λmin(P ) ‖X‖2 ≤ S ≤ 1

2
λmax(P ) ‖X‖2

(23)

Ṡ = −XTQX ≤ −λmin(Q) ‖X‖2
(24)

Consider now the case Ũ 6= 0. The time derivative of S
along the trajectories of (20) becomes

Ṡ = −XTQX + ŨTPX (25)

That expression can be bounded by

Ṡ ≤ − λmin(Q) ‖X‖2

+ λmax(P ) ‖ũ‖ {‖ξ‖ + ‖v‖ + ‖α‖ + ‖β‖} (26)

To determine an upper bound on ‖ũ‖ we compute

‖ũ‖ =
T
m

∥

∥(R−Rd)e3
∥

∥ =
T
m

∥

∥(RdRT − Id)Re3
∥

∥

≤ T
m

√

tr((RdRT − Id)T (RdRT − Id)) ‖Re3‖

≤ T
m

√

2tr(Id − R̃)

(27)

Let (γR̃,nR̃) denote the angular-axis coordinates of R̃.
Using identity (8), we get

‖ũ‖ ≤
√

2

m

T
cos(

γ
R̃

2
)

∥

∥

∥
V(Pa(R̃))

∥

∥

∥
(28)

From (26), we finally get:

Ṡ ≤ −λmin(Q)
{

‖ξ‖2
+ ‖v‖2

+ ‖α‖2
+ ‖β‖2

}

+ (
√

2
T
m

λmax(P )

cos(
γ

R̃

2
)

)
∥

∥

∥
V(Pa(R̃))

∥

∥

∥
{‖ξ‖ + ‖v‖ + ‖α‖ + ‖β‖}

(29)

5. ATTITUDE CONTROLLER

Let us now consider the orientation dynamics of (11) and
define

R̃ = (Rd)TR (30)

The orientation dynamics can be rewritten as
{

ǫ
˙̃
R = − ǫΩd

×R̃+ R̃Ω×

ǫIΩ̇ = − Ω×IΩ + Γ
(31)

We introduce

Ω̃ = Ω − l1V(Pa(R̃)T ) (32)

where l1 is a strictly positive scalar gain. With that
notation, the kinematic relation can be transformed into

˙̃
R = −Ωd

×R̃+
1

ǫ
R̃Ω̃× +

l1

ǫ
R̃Pa(R̃)T (33)

3 Using the fact that the gains kx, kv and k1 are strictly positive,
it can be easily checked that the matrix A is Hurwitz, by applying
Routh’s criterion on its characteristic polynomial.
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Assuming that the tensor of inertia I is invertible, the time
derivative of Ω̃ can be expressed as

˙̃Ω =
1

ǫ
I−1(−Ω×IΩ) +

1

ǫ
I−1Γ − l1

2
V(R̃T Ωd

× + Ωd
×R̃)

+
l1

2ǫ
V(Ω×R̃

T + R̃Ω×)

(34)
By choosing the control torque

Γ = Ω×IΩ + I(−l2Ω̃− 2lV(Pa(R̃))− l1

2
V(Ω×R̃

T + R̃Ω×))

(35)
with l > 0 and l2 > 0, equation (34) becomes:

˙̃Ω = − l2
ǫ

Ω̃ − 2
l

ǫ
V(Pa(R̃)) − l1

2
V(R̃T Ωd

× + Ωd
×R̃) (36)

Remark 3. The control law (35) has been designed by
considering the orientation dynamics of (11) under the
assumption Ωd = 0, which corresponds to a time-scale
separation between the translational and the orientation
dynamics.

Let L be a candidate Control Lyapunov Function for the
orientation dynamics (31):

L = l tr(Id − R̃) +
1

2

∥

∥

∥
Ω̃

∥

∥

∥

2

(37)

We use relations (33) and (34), and identities (4) and (5)
to compute the time derivative of L along the trajectories
of (31) controlled by (35). We get:

L̇ = − 2l (Ωd)T
V(Pa(R̃)) − l l1

ǫ
tr(Pa(R̃)Pa(R̃)T )

− l2

ǫ

∥

∥

∥
Ω̃

∥

∥

∥

2

− l1

2
Ω̃T

V(R̃T Ωd
× + Ωd

×R̃)

(38)

By triangular inequality and applying identity (6), we
obtain

L̇ ≤2l
∥

∥Ωd
∥

∥

∥

∥

∥
V(Pa(R̃))

∥

∥

∥
− 2l l1

ǫ

∥

∥

∥
V(Pa(R̃))

∥

∥

∥

2

− l2

ǫ

∥

∥

∥
Ω̃

∥

∥

∥

2

+
l1

2

∥

∥

∥
Ω̃

∥

∥

∥

∥

∥

∥
V(R̃T Ωd

× + Ωd
×R̃)

∥

∥

∥

(39)

To get an upper bound on µ =
∥

∥

∥
V(R̃T Ωd

× + Ωd
×R̃)

∥

∥

∥
, we

compute

µ2 ≤ 1

2
tr

{

(R̃T Ωd
× + Ωd

×R̃)T (R̃T Ωd
× + Ωd

×R̃)
}

≤ 1

2
tr((R̃T Ωd

×)T R̃T Ωd
×) +

1

2
tr((Ωd

×R̃)T Ωd
×R̃)

≤ tr((Ωd
×)T Ωd

×) ≤ 2
∥

∥Ωd
∥

∥

2

(40)

It remains to find an upper bound on
∥

∥Ωd
∥

∥. In the case of

stabilization, we choose Ωd
3

= 0. We get
∥

∥Ωd
∥

∥ =
∥

∥Ωd
×e3

∥

∥

and can use (A.8) along with the time-derivative of (15)
to obtain:

∥

∥Ωd
∥

∥ ≤ m

T
1

kv

{(kx + 2k1) ‖v‖ + 2k1 ‖α‖} (41)

Using (40) and (41) along with (39) leads finally to the
following upper bound on the time derivative of L:

L̇ ≤ − 2l l1
ǫ

∥

∥

∥
V(Pa(R̃))

∥

∥

∥

2

− l2

ǫ

∥

∥

∥
Ω̃

∥

∥

∥

2

+
2m

T
l

kv

∥

∥

∥
V(Pa(R̃))

∥

∥

∥
{(kx + 2k1) ‖v‖ + 2k1 ‖α‖}

+

√
2

2

m

T
l1

kv

∥

∥

∥
Ω̃

∥

∥

∥
{(kx + 2k1) ‖v‖ + 2k1 ‖α‖}

(42)

6. STABILITY ANALYSIS

Consider now the complete system composed of the trans-
lational dynamics (14) and of the orientation dynamics
(31), and define the candidate Control Lyapunov Function

V = S + L (43)

We have the following proposition :

Proposition 1. Consider the system (14)-(31) along with
the control laws (15) and (35) and the virtual input (16).
There exist K1,K2 > 0 and ǫ∗ > 0 such that,

for all initial conditions ξ(0), v(0), q(0) = ξ(0), w(0) = 0,

R(0) and Ω(0) such that

V(0) <
K2(g − ǫg

m
)2

2(3K1

kv
)2

(0 < ǫg ≪ mg) (44)

then, for all l verifying

l ≥ K2(g − ǫg

m
)2

2(3K1

kv
)2(4 − η)

(0 < η < 4) (45)

and for all ǫ > 0 such that ǫ < ǫ∗,
the closed loop system is exponentially stable.

Proof
First, let us consider the following assumptions that will
be verified at the end of the proof:

Assumption 1. There exist two reals Tmin and Tmax such
that

0 < Tmin < mg < Tmax <∞ (46)

∀t ≥ 0, Tmin ≤ T (t) ≤ Tmax (47)

Assumption 2. There exists a real c > 0 such that

∀t ≥ 0, cos(
γR̃(t)

2
) ≥ c (48)

Let us define the coefficients

s1 =
1

2
λmax(P )

Tmax

m

√
2

c
, s2 =

l

Tmin

m

kv

(49)

s3 =

√
2

4

l1

kv

m

Tmin

(50)

With these notations and under Assumptions (1) and (2),
we can use relations (29) and (42), to give the following
upper bound on the time derivative of V, computed along
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the trajectories of (14)-(31) controlled by (15),(35) and
(16):

V̇ ≤ −λmin(Q)
{

‖ξ‖2
+ ‖v‖2

+ ‖α‖2
+ ‖β‖2

}

− 2l l1
ǫ

∥

∥

∥
V(Pa(R̃))

∥

∥

∥

2

− l2

ǫ

∥

∥

∥
Ω̃

∥

∥

∥

2

+ 2s1 ‖ξ‖
∥

∥

∥
V(Pa(R̃))

∥

∥

∥

+ 2(s1 + s2(kx + 2k1)) ‖v‖
∥

∥

∥
V(Pa(R̃))

∥

∥

∥

+ 2(s1 + 2s2k1) ‖α‖
∥

∥

∥
V(Pa(R̃))

∥

∥

∥

+ 2s1 ‖β‖
∥

∥

∥
V(Pa(R̃))

∥

∥

∥
+ 2s3(kx + 2k1) ‖v‖

∥

∥

∥
Ω̃

∥

∥

∥

+ 4s3k1 ‖α‖
∥

∥

∥
Ω̃

∥

∥

∥

(51)

Let us define

a = λmin(Q) , b1 = s1 , b2 = s1 + s2(kx + 2k1) (52)

b3 = s1 + 2s2k1 , b4 = s3(kx + 2k1) , b5 = 2s3k1 (53)

and introduce the state vector

X =
[

ξT vT αT βT
V(Pa(R̃))T Ω̃T

]T

(54)

With these notations, equation (51) can be restated as

V̇ ≤ −X T ΣX (55)

The term −X T ΣX is negative definite if and only if the
following matrix σ is positive definite:

σ =





















a 0 0 0 −b1 0
0 a 0 0 −b2 −b4
0 0 a 0 −b3 −b5
0 0 0 a −b1 0

−b1 −b2 −b3 −b1
2l l1
ǫ

0

0 −b4 −b5 0 0
l2

ǫ





















(56)

Since the matrix Q is positive definite, the coefficient
a = λmin(Q) is strictly positive and the four first minors
of the matrix σ are strictly positive. The positivity of the
minor of size five is obtained for ǫ < ǫ∗

1
with

ǫ∗
1

=
2λmin(Q) l l1

4s2
1

+ s2
2
(8k2

1
+ k2

x + 4kxk1) + 2s1s2(4k1 + kx)
(57)

The strict positivity of det(σ) is obtained for

Aǫ2 +Bǫ+ C > 0 (58)

where

A = a2s2
3
s2
1
(3k2

x + 8kxk1 + 16k2

1
) > 0 (59)

B = −a3(4l2s
2

1
+ 8l2s1s2k1 + 8l2s

2

2
k2

1
+ 2s2

3
ll1k

2

x

+ 8s2
3
ll1kxk1 + 16s2

3
k2

1
ll1 + 2l2s1s2kx

+ l2s
2

2
k2

x + 4l2s
2

2
kxk1) < 0

(60)

C = 2l2ll1a
4 > 0 (61)

With these coefficients, it can be checked that the discrim-
inant (B2 − 4AC) of (58) is strictly positive. Let us define

ǫ∗
2

=
−B −

√
B2 − 4AC

2A
(62)

which is strictly positive since A > 0, B < 0, C > 0
and (B2 − 4AC) > 0. Hence, det(σ) is strictly positive for
ǫ < ǫ∗

2
.

Let us define
ǫ∗ = min(ǫ∗

1
, ǫ∗

2
) (63)

For all ǫ > 0 such that ǫ < ǫ∗, the time derivative (55) of
V is negative definite and we can ensure 4 the exponential
stability of the system (14)-(31) when (15) and (35) are
used as control inputs and (16) as virtual control.

We have shown that closed loop stability is guaranteed
for all ǫ < ǫ∗ under Assumptions 1 and 2. Now we have to
check that both assumptions are satisfied.

Let us start with Assumption 1. Define K1 = max(kx, k1).
Using triangular inequality with (15) yields:

mg − m

kv

K1(‖ξ‖ + ‖α‖ + ‖β‖) ≤ T

T ≤ mg +
m

kv

K1(‖ξ‖ + ‖α‖ + ‖β‖)
(64)

That expression can be linked to the value of the Lyapunov
function V using (22),(23) and (43) to get for all t ≥ 0:

mg−3
m

kv

K1

√

2V(t)

K2

≤ T (t) ≤ mg+3
m

kv

K1

√

2V(t)

K2

(65)

with K2 = λmin(P ).
The time derivative of V being negative for ǫ < ǫ∗, one has

∀t ≥ 0, V(t) ≤ V(0) (66)

and from (65), we obtain for all t ≥ 0:

mg − 3
m

kv

K1

√

2V(0)

K2

≤ T (t) ≤ mg + 3
m

kv

K1

√

2V(0)

K2

(67)
Taking a ǫg > 0 such that ǫg ≪ mg, we can use condition
(44) to finally get

∀t ≥ 0, 0 < ǫg < T (t) < 2mg − ǫg (68)

Assumption 1 is hence verified by choosing Tmin = ǫg and
Tmax = 2mg − ǫg.

To complete the proof, let us finally check that Assumption
2 is verified. As previously, we use the fact that V is
decreasing, with (37) and (43), to obtain

∀t ≥ 0, l tr(Id − R̃(t)) ≤ V(t) ≤ V(0) (69)

Defining a η > 0 such that η < 4, conditions (44) and (45)
can be used successively to get:

V(0) < (4 − η)l (70)

and then
∀t ≥ 0, tr(Id − R̃(t)) < 4 − η (71)

Using (7) we obtain

∀t ≥ 0, (1 − cos(γR̃(t))) < 2 (72)

Therefore, for all t ≥ 0, we have −π < γR̃(t) < π and there
exists a c > 0 such that

cos(
γR̃(t)

2
) ≥ c > 0 (73)

Assumption 2 is hence verified, which completes the proof.
�

Remark 4. Since assumptions (46) and (47) are verified,
the strict positivity of the input T is guaranteed. There-
fore, the direction Rde3 computed by (12) is well defined.

4 The convergence of R̃ to the identity matrix Id is guaranteed
by conditions (44) and (45) from which we can show that (1 −

cos(γ
R̃

)) < 2 and hence γ
R̃

→ 0. That relation will be shown in
the next step of the proof.
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Remark 5. Condition (44) is not restrictive. Indeed, in
practice, the gains kx, k1 and the matrix P can be chosen
to obtain respectively sufficient small and high values for
K1 and K2, so that all initial conditions in the usual
domain of flight of the vehicle will satisfy (44).

7. CONCLUSION

In this paper, we have presented both design and stability
analysis of a hierarchical controller for a miniature VTOL
UAV. Position and attitude controllers have been designed
considering successively, and with a time-scale separation,
the translational dynamics and the orientation dynamics
of a six degrees of freedom VTOL UAV model. A partial
state feedback controller has been proposed for position
stabilization, assuming that no measurement of the linear
velocity of the vehicle is available. Time-scale separation
of the proposed control scheme and stability analysis have
been addressed by singular perturbation theory.
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Appendix A. COMPUTATION OF THE DESIRED
ANGULAR VELOCITY

A method to compute Ωd from the control vector T Rde3
is presented here. From (13) we get

d

dt
(Rde3) = Ṙde3 = RdΩd

×e3 (A.1)

and then

Ωd
×e3 = (Rd)T d

dt
(Rde3) (A.2)

To compute the time derivative of Rde3, let us define

N = T Rde3 (A.3)

so that we get

Rde3 =
N√
NTN

(A.4)

The time derivative of Rde3 is given by

d

dt
(Rde3) =

Ṅ
√
NTN − NNT Ṅ√

NT N

NTN
=

1√
NTN

(Id −
NNT

NTN
)Ṅ

(A.5)
Therefore, we have

d

dt
(Rde3) =

1

T
{

Id −Rde3e
T
3
(Rd)T

} d

dt
(T Rde3) (A.6)

Defining the projector

Πe3
= Id − e3e

T
3

(A.7)

equation (A.2) can be restated as

Ωd
×e3 =





Ωd
2

−Ωd
1

0



 =
1

T Πe3
(Rd)T d

dt
(T Rde3) (A.8)

Considering the stabilization of the UAV around a fixed
point, the third component Ωd

3
of the vector Ωd is chosen

to be identically zero, and we have ψd(t) = ψd(0), for a
given initial yaw ψd(0).
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