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Abstract: There is a new trend in digital signal processing. It is gradually recognized that
while the processing is done in the digital domain, its performance must be measured in the
analog domain. This framework was proposed by the present authors and co-workers, and also
recently proposed by Unser and his co-workers. While our approach relies on modern sampled-
data control theory which minimizes an analog H> performance criterion, Unser independently
proposed an oblique projection method. This paper examines their method, and shows that
their method often leads to instability of designed filters. A comparison with the sampled-data
method is made, along with some design examples, which shows the advantage of the sampled-

data method.

1. INTRODUCTION

Expanding signals in terms of prespecified basis functions
is a fundamental problem in signal processing. Fourier and
wavelet analysis are typical examples. In so doing, it is
required that such an expansion gives a faithful result,
i.e., the error is either zero or very small, and that it is
effective in the sense that one needs only a small number
of terms to attain sufficient accuracy.

Such an expansion is performed on an a priori given set
of data on signals. In the digital context, such data are
likely to be given in the form of sampled values of a target
signal. Typically, one is given a set of uniformly sampled
signal values {f(nh)}5L_, with sampling period h, and
then compute a series function expansion as desired. We
do not therefore know the intersample values of the signal
and hence we have only partial information of the origi-
nal continuous-time signal f(¢). This loss of information
should be in some way recovered to obtain a desirable
expansion.

A wusual, and now quite standard, approach is to rely on
the sampling theorem (Shannon (1949); Zayed (1996)),
assuming that the original signal does not contain any
frequency components beyond the Nyquist frequency m/h,
which is half of the sampling frequency 27 /h.

In examining the hypotheses underlying the sampling
theorem, we however notice that there can be certain
points that can be improved. For example, it is much more
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natural to assume that the class of signals obeys a certain
frequency decay curve, extending even beyond the Nyquist
frequency. It is then desirable to design a digital (discrete-
time) filter that optimally reconstructs the original analog
signals. Due to the nature of analog characteristics, it
is plausible that such an optimal filter gives a result
different from a more familiar and rather standard perfect
reconstruction filters (Vaidyanathan (2000)) based on the
discrete-time performance measures.

Thus our desirable target is to design a digital (discrete-
time) filter that optimizes an analog performance index
for analog signals. This philosophy and framework were
proposed by the present authors in, e.g., Khargonekar
and Yamamoto (1996); Yamamoto et al. (2000). To this
end, we have shown that modern sampled-data control
theory can be very effectively used for signal processing.
This is more than natural since this new theory made
it possible to design a digital controller that optimally
controls an analog performance of a continuous-time plant.
This new theory was developed in the 90’s and represents a
fundamental advance in the design philosophy of sampled-
data control theory which was previously based on only
discrete-time performance measured at sampled points.

This new theory is adopted to digital signal processing in
Khargonekar and Yamamoto (1996). While there are some
technical modifications necessary for this, this is basically
in the scope of sampled-data theory, and now effectively
solvable. Due to the nature of analog characteristics,
this new theory can optimize the intersample responses
of the processed signals. This is in marked contrast to
the conventional philosophy of digital signal processing.

10.3182/20080706-5-KR-1001.1440
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Fig. 1. Sampled-data signal reconstruction

In particular, this theory can optimize the analog H°
performance index, which means the maximum of the
frequency response gain. Hence it can control the high-
frequency intersample behavior even beyond the Nyquist
frequency.

A very similar philosophy is also presented and proposed
recently by Unser and co-workers (Unser (2005)). To come
up with a solution method, they introduced a new type of
splines called cardinal exponential B-splines (Unser and
Blu (2005)). This consists of B-spline like functions that
are exponentials between sampled points. Assuming that
the original signals are linear combinations of exponentials,
it is natural to conceive that such signals are express-
ible as combinations of such piecewise exponential basis
functions. The motto is “Think analog, act digital” in
Unser (2005) which is exactly the same as the one in
sampled-data signal processing theory since Khargonekar
and Yamamoto (1996).

Toward a solution of such an expansion, Unser (2005)
proposed a method based on oblique projections. The
performance is a square norm. They gave a system solution
to this problem.

This paper intends to closely examine the merit of Unser’s
method. In particular, we focus our attention to the
stability of designed filters. In fact, Unser (2005) claims
that their method always gives rise to a stable filter.
We will examine this closely, and actually this claim
is indeed false, that is, the proposed method in Unser
(2005) can, in general, lead to unstable filters. This is not
coincidental, but is closely connected to the limiting zeros
of discretized continuous-time transfer functions, and it
shows that Unser (2005) neglects analog characteristics
described by plants with order more than 1.

The paper is organized as follows: We start with examining
Unser’s method, and then give a detailed stability analysis.
We will show the relation with Astrom’s fundamental
result, and show a counterexample in the stability analysis.

2. SIGNAL RECONSTRUCTION BY CARDINAL
EXPONENTIAL SPLINES

2.1 Perfect reconstruction by oblique projection

We state and review the signal reconstruction framework
by cardinal exponential B-splines (Unser (2005)). Consider
the system shown in Fig. 1. Hereafter we assume, without
loss of generality, that our sampling period is 1.

Let x(t) € L? denote an exogenous signal. Then it is
filtered through an analog low-pass filter H;(s), becoming
semi-bandlimited following the characteristics of Hy(s). It
is further sampled by the ideal sampler

S HiL*3uwvel? vkl :=ulk), k=0,1,2,...,
and becomes a digital signal c; [k]. We here note that if the
low-pass filter H;(s) satisfies a decay estimate

[Hy(jw)| < M(1+|w]?)=*/?

for some M > 0 and a > 1/2, then for every function u in
H1L?, the resulting sampled sequence v belongs to £2 (see,
e.g., Kannai and Weiss (1993)). This condition is satisfied,
for example, for low-pass filters with transfer function of
relative degree greater than or equal to 1. Then the digital
filter Q(2), to be designed below, produces another digital
signal co[k], which is converted back to an analog signal
by the zero-order hold H defined by

H: P >v—uel?  ut) ::Zﬁo(t—k)v[k],
k=0
where 5y (t) is the hold function
1, teo,1),
folt) = {0, otherwise.

The output of H is then filtered through an analog filter
Hs(s) to obtain the final objective analog signal y(¢). The
signal reconstruction problem is to find a digital filter
Q(z) which makes the output y as close to the input x
as possible.

Let hq(t) and ho(t) denote the impulse responses of Hi(s)
and Hs(s), respectively. Then, the digital signal c;[k] is
represented as follows.

c1lk] = S(hy * x)[k]
- / 2(t)ha (k — D)dt
0

_ / Tt —R)dt (G(t) = (1))
= (x(-), p1(- — k)).

On the other hand, the output analog signal y(t) is
represented as follows.

y(t) = Zcz[k]%(t — k),
k=0
¢2(t) = [Bo() * ha(—)](2).

Now define the following spaces:

Vi = span{¢: (- — k) } 120, (1)
Vo = span{z(- — k) }7Zo-

Summarizing, the above setup says the following: The
exogenous signal z is filtered through an analog filter
H,(s). This in general limits the bandwidth of the filtered
signal, usually in a low-pass characteristic, according to
the decay characteristic of Hi(s). The filtered signal is
then sampled. The shifted linear span of ¢1(-) is Vj.
Likewise V5 is precisely the space of outputs produced
by the hold device H and Hs(s). Note, however, that V;
never represents the totality of signals obtained by filtering
x € L? by H;. The latter space is infinite-dimensional,
while V; is spanned by linear (possibly infinitely many)
combinations of shifted ¢q(t) = hq1(—t).

Suppose, for the moment, that we want to reconstruct
given signals in V7 with those in V5. That is, we consider
the following signal reconstruction problem:

Problem A: Given an arbitrary exogenous signal in z €
L2, find y € V5 such that y optimally approximates z in
the sense of L2.
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— H —>Ha(s) b

e

In an analogy with the well known projection theorem,
Unser (2005) proposed that z — y be orthogonal to V;.
Note that this gives a best approximant if ¢; belongs to
V5. Since ¢1 does not necessarily belong to V5, one needs a
modification. Namely, the optimal reconstruction solution
proposed in Unser (2005) is characterized by

<1‘()—y(),¢1(—]€)> =0, k£=0,1,2,.... (2)

This idea states that there remains no extra component
in the error x — y that can be expanded with elements in
V1. The filter Q(z) corresponds to the oblique projection
Unser (2000) of z(t) onto V5 orthogonal to V3.

Definition 1. A linear operator P : L? — V3 is an oblique
projection on Vo orthogonal to Vi if the following three
conditions hold:

(1) Px =z, Vo € V.
(2) 2 — Px € V-, Vo € L2,
(3) Pr=0,Vx € Vit

Fig. 2. Error system E,,

We quote the following proposition from Unser (2005):

Proposition 1. The optimal filter, denoted by Qop, achiev-
ing (2) makes the operator X (see Fig. 1) to be the oblique
projection on V5 orthogonal to V.

Now consider the error system shown in Fig. 2. In this
figure, X is the operator from z to y shown in Fig. 1. By
FE,, we denote the error system given by Fig. 2. We then
have the following proposition.

Proposition 2. The optimal filter (), achieving (2) is also
optimal in the sense that

Qop(z) = argmin || Ey |2 = argmin || Ey || co-

Q(2) Q(2)
Proof. Assume that the input w is the discrete-time delta
function
1, k=0
6 k — b b
4] {0, otherwise.

Then z € V5. Since ¥ is an oblique projection,
y=Xr==x.

That is, the impulse response of the error system E,, is

Z€ro.

Next, assume that the input w is in £2. In this case, x is
alsoin V5 and e = y—x = 0. That is, Qop(2) is the optimal
filter to make ||Ey oo = 0. o

In the next subsection, we will show a formula for the filter
Qop(2).

2.2 Characterization by system inversion

The formula of the optimal Q.p(z) is obtained by the
cardinal exponential B-spline method (Unser and Blu
(2005); Unser (2005)).

First, let us consider the rational transfer function

_(=m)(s—72) (s —7m)
Hals) = (s—ai)(s—ag) - (s—an)’
= (1, ANV, - YM)-

Then the B-spline function corresponding to Hy(s) is
given by Unser (2005)

Pec(s) = Ac(s) Har(5),
where Ay (s) is the localization operator (Unser and Blu
(2005); Unser (2005)) defined as
Ag(s)=(1—ee )1 —e*?e %) (1 —e*Ne™ ). (3)

Note that each 1 —e®ie™* is a truncation operator (Mirkin
(2003)), and the support of B4(t) (the inverse Laplace
transform of B (s)) is contained in [0, N].
By using this B-spline function, the optimal filter Qqp(2)
is given as follows. Let the poles and zeros of H;(s) and
HQ(S) be

Q1 = (Q1, o QAN VAT - -5 YVIM: )

Q= (21, Q2N V215 - - -5 V2M3)-
For brevity, we assume that «a;;’s are distinct, but this is

not at all necessary. Then the optimal Qop(2) is obtained
by the following equation (Unser (2005)):
Aal (Z)Aaz (Z)

Qop(z) = N1+N2+1 ’ (4)

Z 5(a1:0:a2)(k)2_k
k=0

where fB(a,:0:az) = Bay * B0 * Pas, and Ag, (i = 1,2) is
the discretization of the localization operator of A, (s),
that is,

N;
Ag,(2) = H(l —evinzTh) i=1,2. (5)
n=1
The filter (4) is based on cardinal exponential B-splines,
and the realization of this filter is easily executed by
the spline calculus (see Unser and Blu (2005); Unser
(2005)) 1. On the other hand, this filter is realized via
system inversion.

Theorem 1. The optimal filter Qop(z) in (4) can be equiv-
alently realized as

1
QOP(Z) H12d(2)’ (6)
where Hi24(2) is the step-invariant equivalent discretiza-
tion of Hy(s)Ha(s), that is, if a state-space realization of
H,y(s)Hz(s) is given by {4, B, C, 0}, then

1
e? / e Bdr

C 0

ngd(z) = SHl(S)HQ(S)H =

Proof. First, we consider the denominator of Qop(z). The
Laplace transform of B(q,:0:a.)(t) is given by

B(al:O:az)(s) =L [ﬁ(a1:0:a2)] (S)
=L [ﬂ(alzag) * 50] (S)

N 1—e*
= ﬂ(al:az)(s)

1 However, this filter is not guaranteed to be stable, as we see in the
next section. Of course, if « belongs to V2 and if there are no errors
in computation, the formula still works for unstable filters, but in
practice this does not work.
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w
Hiaq

Qop

f—»H—»HQ—e>

Fig. 3. Block diagram equivalent to Fig. 2

The coefficients f(a,:0:a,)(k), & = 0,1,2,...
by sampling the inverse Laplace transform of B(al:o:aQ) (s).
Since (1 — e™®)/s is the laplace transform of the hold
function Fy(t) of H, the denominator of Qop(z) is the z-

transform of the step-invariant transformation of 8, :a),
that is,

SB(ariaz) (8)H = SAa, (5)Aay ()Hi(s) Ha(s)H.

—S

are obtained

By using the relation Se™* = 271S, we have (see (3) and

()
SAOu (S)Aaz (8) = Aal (Z)Aaz (Z)S
It follows that
SBian:a) (5)H = Ay (2)Aa, (2)SHi (s) Ha(s)H
= A (2)Aa, (2) Hi2a(2)-
Then, since the numerator of Qop(2) is Aq, (2)Aa,(2), we
conclude that

Qop(z) — A011 (Z)Aaz(z) 1

8/3((11:(12)7_{ - Hle(Z) .

0O

We have shown in the previous subsection that the optimal
filter Qop(z) makes the transfer function of the error
system E,, (Fig. 2) zero. On the other hand, the block
diagram in Fig. 2 is equivalently transformed to Fig. 3.
From this block diagram, we easily see that the filter (6)
makes the transfer function E,, zero.

3. STABILITY OF CARDINAL EXPONENTIAL
B-SPLINE RECONSTRUCTION

It is claimed in Unser (2005) that the filter Qop(2) is stable
if cos(612) # 0, where 612 is the angle between V; and Va.

to the
stom et

However, this is not necessarily true accordin
following well-known result of limiting zeros by
al. (1984):

Fact 3. For every continuous-time system with relative
degree strictly greater than 2, its step-invariant-discretized
system always possess an unstable zero provided that the
samping time is sufficiently small.

Even if the sampling time (= 1 in our present normal-
ization) is not small compared to the time-constants of
Hy and Hs, the discretized system His4(z) may still have
unstable zeros.

For example, consider
1 1
— H. =
P R Ol P o Py
An easy calculation via MATLAB shows cos(f12) =

0.4863 # 0. The zeros of the discretized system Hia4(2)
are

Hl(S) =

{0, —1.28549, —0.0816767},
and hence the optimal filter

Fig. 4. Time response of Unser’s reconstruction system

w W x > Yy ~ €

Fig. 5. Error system E,, for sampled-data delayed signal

reconstruction

1

Qop(z) = m

23 —0.72632% + 0.1621z — 0.01111
0.0572523 4+ 0.0782722 + 0.0060112
is unstable. This (), agrees exactly with the one obtained
via oblique projections; see, e.g.,
http://bigwww.epfl.ch/demo/Esplines/.
Fig. 4 shows a time response of the reconstruction system.
The output clearly diverges.

4. ROBUST RECONSTRUCTION VIA
SAMPLED-DATA H* OPTIMIZATION

In the previous section, the reconstruction system pro-
posed in Unser (2005) is not necessarily stable. Moreover,
Theorem 1 shows that this system does not take the
intersample behavior into account.

In contrast, we have dealt in Khargonekar and Yamamoto
(1996); Yamamoto et al. (2000) with the same problem via
sampled-data H control theory.

Consider the block diagram in Fig. 5 (cf. the error system
in Fig. 2). In this diagram, the input w is in L2, and W
is a model of the input analog signal?. We assume that
W is a continuous-time linear time-invariant system with
rational transfer function W(s). In the upper portion of
the diagram, input «x is discretized, processed in discrete-
time, and then converted back to a continuous-time signal
y (see Fig. 1). In the lower portion, the input analog
signal is delayed and forwarded to the adding point. The

2 In the case of the cardinal exponential B-spline reconstruction,
the input model W is Ha(s)H. The sampling theorem by Shannon
assumes that W is an ideal lowpass filter with cutoff frequency
we < m (Nyquist frequency).
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Fig. 6. Bode plot of reconstruction filters Qop(z): cardinal
exponential B-spline method (dot) sampled-data H*°
optimization (solid)

objective is to attenuate the reconstruction error e with
respect to the H*> norm of the error system E,. The
optimal filter is then obtained by modern sampled-data
control theory, and has the following advantages:

(1) the optimal filter is always stable;

2) the design takes the inter-sample behavior into ac-
count;

3) the system is robust against the uncertainty of W;

4) the optimal FIR filter is also obtainable; via Linear
Matrix Inequalities (LMI).

5. NUMERICAL EXAMPLES

Here we design the reconstruction filter Qop(2) by

e cardinal exponential B-spline reconstruction (Unser
(2005)), and

e sampled-data H optimization (Khargonekar and
Yamamoto (1996); Yamamoto et al. (2000)).

Example 1. The analog filters are the same as those given
in Unser (2005)

1 1
HI(S)_S—FI’ HQ(S)—S+2.
The reconstruction delay is set to be m = 1 to be
consistent with Unser (2005). While the setup of Unser
(2005) appears quite similar to the sampled-data setup
(Fig. 5), we do need yet another transfer function W(s) to
make the sampled-data design work®. We here take W (s)

as
1

W) = s
Fig. 6 shows the optimal filter Qop(z) designed by the
cardinal exponential B-spline method and sampled-data
H®° optimization. Fig. 7 shows the frequency response of
the error system E,, shown in Fig. 5. Sampled-data H>
optimized system shows almost a flat characteristic. On
the other hand, the exponential B-spline reconstruction

3 This W cannot be absorbed to Hy(s) in Unser’s framework, since
what is to be reconstructed is the weighted w, namely x, while Unser
(2005) attempts to track unweighted input w, but with the expense
of stability as we already pointed out.

10 107 107 10
Frequency (red/s)

Fig. 7. Frequency response (gain) of error system E,,:
exponential B-spline method (dot) sampled-data H>°
optimization (solid)

0 5 10 15 20 25 30 35 40

Fig. 8. Time response (exponential B-spline reconstruc-
tion)

system shows much larger error in high frequencies. Fig-
ures 8 and 9 show the time responses against the square-
wave by the exponential B-spline reconstruction system,
and by the sampled-data designed filter. The former shows
a large amount of ripples around the edges.

In the above example, the sampling time 1 is close to the
time constants of H; and Hs. This makes the advantage
of the sampled-data design a little ambiguous. In the next
example, where the time constant of Hs is large compared
to the sampling period, there is a more obvious distinction.

Ezxample 2. We take Hz(s) = 1/(s + 0.05). Hy and W
are the same as before. The zeros of the step-invariant-
discretization Hygq of Hi(s)Ha(s) are {0, —0.7063}, and
hence the filter based on exponential B-splines is stable. In-
deed, we have Qop(2) = (22 —1.3192+0.3499)/(0.36142%+
0.2552z). This filter leads to one step delay (m = 1). On
the other hand, our design is free from the limit of the
delay, and hence we design the optimal filter with m =1
and m = 4.
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Fig. 9. Time response (sampled-data H°° optimization)

Gain (dB)

Frequency (rad/s)

Fig. 10. Frequency response (gain) of error system E,,: ex-
ponential B-spline method (dash) sampled-data H*°
optimization with m = 1 (dash-dot) and m = 4 (solid)

Fig. 10 shows the frequency response of the error sys-
tem FE,, shown in Fig. 5. Sampled-data H* optimized
system (m = 1) shows almost a flat characteristic. On
the other hand, the exponential B-spline reconstruction
system shows much larger error in high frequencies. Note
also that as we increase the delay step m, the error is
substantially reduced in the sampled-data design. While
we omit their time ersponses due to the lack of space,
the design via cardinal exponential B-splines shows much
larger ripples around the edges for square-wave responses.

6. CONCLUDING REMARKS

We have shown that the reconstruction filter proposed in
Unser (2005) is the inverse of the step-invariant discretiza-
tion of the pertinent analog filters. Hence this reconstruc-
tion system does not take the intersample behavior of
continuous-time signals into account. We have also shown
that the obtained filter is not necessarily stable in spite of
the claim in Unser (2005). In contrast, the sampled-data
H*° optimal reconstruction proposed in Khargonekar and
Yamamoto (1996); Yamamoto et al. (2000) is always stable

and can take the intersample behavior into accout. The
numerical examples show the advantages of the sampled-
data H*® design. The sampled-data design has also been
studied extensively for sample-rate conversion (Ishii et
al. (1999); Nagahara and Yamamoto (2000); Yamamoto
(2006b)), fractional delay filters (Nagahara and Yamamoto
(2003)), digital image processing (Kakemizu et al. (2005))
etc. For details, the readers are referred to these articles
and references therein.
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