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Abstract: We consider the inventory-routing problem in a three-level distribution system with a single 

vendor, a single warehouse and many geographically dispersed retailers. In this problem, each retailer 

faces a demand at a deterministic, retailer-specific rate. The demand of each retailer is replenished either 

from the warehouse by a small vehicle or from the vendor bypassing the warehouse by a big vehicle. 

Inventories are kept not only at the retailers but also at the warehouse. The objective is to find a combined 

inventory policy and routing pattern minimizing a long-run average system-wide cost while meeting the 

demand of each retailer without shortage. We present an efficient solution approach based on a fixed 

partition policy where the retailers are partitioned into disjoint and collectively exhaustive sets and each set 

of retailers is served on a separate route. Given a fixed partition, the original problem is decomposed into 

three subproblems. In this paper, we focus on the modelling and resolution of the vendor-warehouse 

transportation and inventory subproblem. We demonstrate that the subproblem can be reduced to a 

C/C/C/Z capacitated dynamic lot sizing problem and there exists an algorithm to solve the reduced 

problem to optimality in O(T
2
) time. 
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1. INTRODUCTION 

Nowadays, more and more companies are aware that great 

cost savings can be achieved by integrating inventory control 

and vehicle routing into a cost-effective strategy for their 

distribution systems, especially for Vendor Managed 

Inventory (VMI) systems (Campbell and Savelsbergh, 

2004 ). Determining such a cost-effective distribution 

strategy is known as Inventory Routing Problem (IRP).   

IRP has been successfully applied to many industrial sectors, 

such as retailer industries, oil and gas industries, clothing 

industries (Adelman, 2004; Cambelll and Savelsbergh, 2004; 

Gaur and Fisher, 2004). It also has been attracting the 

attention of academic communities. The literature on IRP 

distinguishes between single-period deterministic, multi-

period deterministic, infinite-horizon deterministic, single-

period stochastic, multi-period stochastic and infinite-horizon 

stochastic models according to different time horizons and 

demand types (Cambelll and Savelsbergh, 2004; Yu et al., 

2007).  

Specifically, this paper considers an infinite-horizon 

deterministic IRP for a three-level distribution system with a 

single outside vendor, a single warehouse and many 

geographically dispersed retailers. In this problem, each 

retailer faces an external demand for a single product with a 

deterministic, retailer specific rate. The demand of each 

retailer is replenished either from the vendor through the 

warehouse by a “small” vehicle of limited capacity or directly 

from the vendor bypassing the warehouse by a “big” vehicle 

of limited capacity. Inventories are kept not only at the 

retailers but also at the warehouse. The objective is to 

determine a combined inventory policy and routing strategy 

minimizing a long-run average system-wide cost while 

meeting each retailer’s demand without shortage.   

Most of existing literature focuses on the IRP for two-level 

distribution systems, also called one-warehouse multi-retailer 

distribution systems, see e.g., Anily and Bramel (2004), 

Anily and Federgruen (1990), Bramel and Simchi-Levi 

(1995), Burns et al. (1985), Chan et al. (1998), and Jung and 

Mathur (2007). The literature on the IRP for three-level 

distribution systems is rather limited. To the best of our 

knowledge, only Chan and Simchi-Levi (1998) and Zhao et 

al. (2007) are exceptional. Zhao et al. (2007) consider a 

simpler three-level distribution system where the inventory of 

the warehouse is replenished from the vendor by a single 

train with a large capacity. They propose a solution strategy 

integrating a Fixed Partition Policy (FPP) and a Power-Of-

Two (POT) policy. In the strategy, firstly an FPP is 

implemented, i.e., the retailers are partitioned into disjoint 

and collectively exhaustive sets and each set of retailers is 

served on a separate route (Bramel and Simchi-Levi, 1995), 

and then a POT policy is implemented, i.e., each set of 

retailers and the warehouse are restricted to be visited at a 

replenishment interval which is power of two times a basic 

planning period (Roundy, 1985). The distribution system 

considered in Chan and Simchi-Levi (1998) is identical to the 

one considered in this paper, although it includes multiple 

warehouses. To solve the complex IRP in the three-level 

distribution problem, they present a solution approach that 

decomposes the problem into two subproblems: the 

warehouse-retailer transportation and inventory subproblem 
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including a transportation decision from the warehouse to the 

retailers and an inventory decision at the retailer, and the 

vendor-warehouse transportation and inventory subproblem 

including a transportation decision from the vendor to the 

warehouse and an inventory decision at the warehouse. The 

former subproblem is solved based on an FPP. The latter 

subproblem is then solved based on the restriction to the 

cross-docking strategy in which the warehouse acts as a 

coordinator of the supply process and as a transhipment point 

for incoming orders from the vendor but not keep stock itself. 

The authors prove that the cross-docking strategy is 

asymptotically optimal.  

As pointed out by Jung and Mathur (2007), however, for a 

finite number of retailers, if the inventory holding cost rate at 

the warehouse is relatively small to the one at the retailers, it 

may be profitable to keep inventory also at the warehouse. 

Moreover, in Chan and Simchi-Levi (1998), it is assumed 

that all shipments are delivered from the vendors to the 

retailers through the warehouse. In Li et al. (2007b), we 

prove that in certain conditions a strategy in which shipments 

are delivered from the vendor to the retailers bypassing the 

warehouse has a higher asymptotic optimality, and conclude 

that a hybrid strategy, i.e., combing the strategy bypassing the 

warehouse with the strategy passing the warehouse, should be 

used in three-level distribution systems with a limited number 

of retailers.  

In this paper, the restriction to the cross-docking strategy is 

relaxed, i.e., the warehouse is allowed to keep inventories. 

The restriction to the strategy passing the warehouse is also 

relaxed, i.e., a retailer is allowed to be delivered directly from 

the vendor bypassing the warehouse. For simplicity, we 

assume that each shipment from the vendor directly to the 

retailers serves only one retailer. The assumption is 

reasonable in practice.  

The remainder of this paper is organized as follows. In 

Section 2, we describe formally the IRP in the three-level 

distribution system and introduce the notation used. In 

Section 3, we present a solution approach for the problem, in 

which the problem is decomposed into three subproblems. 

For lack of space, in Section 4, we focus on modelling the 

vendor-warehouse transportation and inventory subproblem 

and discussing its solution algorithms. Section 5 concludes 

this paper. 

2. THE IRP AND THE NOTATION 

In the three-level distribution system considered, there are a 

single outside vendor, a single warehouse and N 

geographically dispersed retailers (see Fig. 1 for illustration). 

Each retailer faces an external demand for a single product 

with a deterministic, retailer specific rate Di ( },...,2,1{ Ni ∈ ). 

The vendor with an unlimited supply of the product serves 

the warehouse using “big” vehicles of limited capacity Q. 

The warehouse serves the retailers using “small” vehicles of 

limited capacity q. The vendor can also serve directly the 

retailers using big vehicles; however, it is assumed that a big 

vehicle departing from the vendor directly to the retailers 

serves only one retailer. In addition, it is assumed that split 

delivery is not allowed, i.e., every retailer is served by only 

one vehicle (Dror and Trudeau, 1989). Consequently, the 

demand of each retailer is replenished either from the vendor 

through the warehouse or directly from the vendor bypassing 

the warehouse. Each time a big (small) vehicle is sent out to 

replenish inventory to the warehouse or a set of retailers, it 

incurs a fixed cost C (c) plus a variable cost proportional to 

the total distance travelled, where the variable transportation 

cost per unit distance of a big (small) vehicle is U (u). A 

linear inventory holding cost at a constant rate h (h0) is 

charged at each retailer (the warehouse) whenever stocks are 

kept there. The frequency in which a given retailer can be 

visited is bounded from above by f. The objective is to 

determine a combined transportation (routing) and inventory 

policy minimizing a long-run average system-wide cost 

including the transportation cost from the vendor to the 

warehouse, the transportation cost from the vendor to the 

retailers, and the transportation cost from the warehouse to 

the retailers, the inventory cost at the warehouse and the 

inventory cost at the retailers, while meeting each retailer’s 

demand without shortage or backlogging. 

 

Fig. 1. The three-level distribution system 

The other notation used in this paper is introduced as follows.  

t  Index of time period, 1,...,1,0 −= Tt , where T is a 

cycle period and how to determine T will be 

discussed in Section 4  

χ  A fixed partition of the set of the retailers under an 

FPP, },...,2,1{ L=χ , where χ  excludes the retailers 

to be replenished by direct shipping from the vendor  

l  Index of fixed region, χ∈l  

l
T  Replenishment interval of region l,  

l
Q  Replenishment quantity of region l in each 

replenishment interval 

d  Distance from the vendor to the warehouse 

)(tD  Total demand of the retailers (i.e., the demand of the 

warehouse) in period t 
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)(tQ  Delivery quantity from the vendor to the warehouse 

in period t  

)(tI  Inventory level at the warehouse at the end of period 

t, without loss of generality, assume initial inventory 

level is zero 

3. THE SOLUTION APPROACH FOR THE IRP 

The IRP for the three-level distribution system is NP-hard 

since it is more complex than the NP-hard IRP for two-level 

distribution systems. It is therefore impossible to find an 

algorithm that can solve the problem with a number of 

retailers to optimality in an acceptable computation time. As 

an alternative, we develop an approach based on an FPP as in 

most literature. The approach combining with a metaheuristic 

such as tabu search or genetic algorithm can find a near-

optimal solution for the problem. The metaheuristic is used 

for the improvement of the fixed partition. In the approach, at 

each iteration, a fixed partition is generated in which the 

retailers are partitioned into fixed regions. Under the fixed 

partition, the original problem is decomposed into three 

subproblems: the option to direct shipping subproblem in 

which a retailer is to be decided whether is replenished 

directly by the vendor bypassing the warehouse (subproblem 

1), the warehouse-retailer transportation and inventory 

subproblem (subproblem 2), and  the vendor-warehouse 

transportation and inventory subproblem (subproblem 3). 

Subproblem 1 and subproblem 2 are first solved, then 

subproblem 3. The fixed partition in the next iteration may be 

generated by exchanging two retailers between two regions 

or moving a retailer from one region to another region if we 

use local search based metaheuristic such as tabu search. If 

we use a genetic algorithm for fixed partition improvement, 

at the first iteration, multiple fixed partitions may be 

generated and the fixed partitions in the next iteration may be 

generated by crossover and/or mutation operations. The 

solution procedure is repeated until no further improvement 

is possible. The framework of the approach is illustrated in 

Fig. 2, where TC is the total cost of the three subproblems. 

The fixed partition policy and three subproblems are 

described in more detail as follows. 

(1) Fixed Partition Policy: The proposed solution approach is 

based on an FPP whose task is to partition the retailers into 

regions to be replenished by a single vehicle. Dozens of 

literature are available on FPP, see e.g., Anily and Bramel 

(2004), Bramel and Simchi-Levi (1995), Chan et al. (1998), 

Chan and Simchi-Levi (1998), Jung and Mathur (2007), and 

Zhao et al. (2007). Moreover, the literature on Vehicle 

Routing Problem (VRP) can also provide useful references. 

Due to the complexity of the problem, it is necessary to find 

an efficient approach for quickly generating good fixed 

partitions. Some metaheuristics (e.g., genetic algorithms) or 

variable neighbourhood search algorithms are potential good 

approaches. This is one of our further research topics. 

(2) The option to direct shipping subproblem (subproblem 1): 

The task of the subproblem is to determine a retailer whether 

is replenished directly by the vendor bypassing the 

warehouse (otherwise is replenished by the vendor through 

the warehouse). Given a fixed partition, one can determine 

that a retailer is replenished directly by the vendor whenever 

a fixed region includes only the retailer and the demand rate 

of the retailer is large enough, e.g., the demand rate of the 

retailer is larger than the largest possible capacity of a small 

vehicle qf or is close to the largest possible capacity of a big 

vehicle Qf. Particularly if qQ 2≥ , one can determine 

whether a retailer is replenished directly by the vendor by 

using an explicit formula evaluating the effectiveness of 

direct shipping, which is derived by us in Li et al. (2007a). 

That is, for any retailer with a demand rate larger than qf, its 

demand must be satisfied by direct shipping from the vendor, 

whereas for any retailer with a demand rate less than or equal 

to qf, its demand must be replenished by the warehouse. The 

detail is omitted here. Once the retailers to be replenished 

directly by the vendor are determined, the optimal 

replenishment interval and replenishment quantity in each 

replenishment interval for each of these retailers can be easily 

computed, so do the transportation costs from the vendor to 

these retailers and the inventory costs at these retailers. 

(3) The warehouse-retailer transportation and inventory 

subproblem (subproblem 2): Under a given fixed partition, 

the subproblem is to determine the optimal replenishment 

interval and replenishment quantity in each replenishment 

interval for each region to be replenished from the warehouse 

by a single vehicle. This subproblem is easy to solve based 

on the solution to its corresponding Travelling Salesman 

Problem (TSP), so the transportation costs from the 

warehouse to the retailers and the inventory holding costs at 

the retailers can be computed easily. 

(4) The vendor-warehouse transportation and inventory 

subproblem (subproblem 3): The subproblem is to determine 

simultaneously the transportation decision between the 

vendor and the warehouse and the inventory decision at the 

warehouse, i.e., to determine the delivery quantity from the 

vendor to the warehouse and the inventory level at the 

warehouse in every period, with the objective to minimize 

long-run average total transportation and inventory costs 

while meeting the retailers’ demands without shortage. The 

results of subproblem 2 are input parameters of this 

subproblem. That is, when the replenishment interval and 

replenishment quantity in each replenishment interval for 

each region is known, the demand of the warehouse in each 

period is determined. To solve this subproblem, Chan and 

Simchi-Levi (1998) and Zhao et al. (2007) consider a specific 

strategy, cross-docking and power-of-two polices 

respectively, and thus obtain only a suboptimal solution of 

the subproblem. In this paper, we solve the subproblem to 

optimality based on the following important finding: the 

subproblem can be reduced to a C/C/C/Z capacitated 

dynamic lot size problem in a certain condition. The notation 

δγβα /// introduced by Bitran and Yanassee (1982) 

represents a specific family of dynamic lot size problems, 

where δγβα ,,,  specify respectively the time structure of the 

setup costs, holding costs, production costs, and production 

capacities, and may be taken the following letters: G, C, ND, 

NI, Z to indicate arbitrary pattern, constant, nondescreasing, 

nonincreasing, and zero.  Once the subproblem is solved, the 

corresponding transportation costs from the vendor to the 
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warehouse and the corresponding inventory holding costs at 

the warehouse can be known. 

 

Fig. 2. Framework of the proposed solution approach 

4. THE VENDOR-WAREHOUSE TRANSPORTATION 

AND INVENTORY SUBPROBELM 

T  is a cycle period, i.e.,  )()( tDTtD =+ , )()( tQTtQ =+ , 

)()( tITtI =+ . Without loss of generality, only the situations 

during T are needed to be considered for the vendor-

warehouse transportation and inventory subproblem with an 

infinite-horizon.  

4.1  Model 

Given a fixed partition },...,2,1{ L=χ , the vendor-warehouse 

transportation and inventory subproblem can be formulated 

as follows.  

P :              ThtIdUCQtQ
T

t

T

t

/])(ë)2(/)(min[
0

1

0

1

0

∑∑
−

=

−

=

+ ,        (1) 

 S.t. 

  l

L

l

l

t

QTtQtI ∑∑
==

+−=
10

)/1()()(
τ

τ , 1,...,1,0 −= Tt  , (2) 

0)(),( ≥tItQ ,   1,...,1,0 −= Tt  , (3) 

The objective function is to minimize the sum of the 

transportation cost from the vendor to the warehouse and the 

inventory cost of the warehouse. Constraints (2) ensure the 

flow balance of the warehouse, i.e., the inventory level equals 

the cumulative delivery quantities minus the cumulative 

demands. Constraints (3) are variable domain constraints.  

In what follows we discuss properties of optimal solutions of 

the model and prove that the problem (P) is a C/C/C/C 

capacitated dynamic lot size problem. Without loss of 

generality we assume that deliveries are used to satisfy 

demand in a first-in-first-out basis. D(t) can be computed by 

Equations (4). 

    l

L

l

ll

L

l

l
QTtQTttD ∑∑

==

−+−+=
11

)/)1(1()/1()( , 

1,...,1,0 −= Tt . (4) 

Without loss of generality, let 
tt

qQktD +=)( , 0≥
t

k  and 

integer, Qq
t

<≤0 , t∀ . 

4.2  Properties of Optimal Solutions 

Proposition 1���� 0) % )((*)1( =− QtQtI , t∀ . 

Proof: by contradiction. Assume there is an optimal solution: 

τ∃ , 0)1( >−τI  and xkQQ +=)(τ , where 0≥k  and 

integer, Qx <<0 . It is clear that a part of the demand after 

period τ (including periodτ ), )1( −τI , is replenished before 

periodτ . Let 0}),1(min{ >−−= xQIy τ . We can construct 

a new solution where ySS −−=−′ )1()1( ττ , which means 

that y inside the part )1( −τI  is no longer delivered at the 

corresponding period(s) before period τ , instead delivered in 

period τ , i.e., QkyQQ )1()()( +≤+=′ ττ . This alternation 

does not incur additional transportation cost (possibly 

decrease transportation cost) and does save the inventory cost 

at least
0

yh . This implies that the original solution is not an 

optimal solution. □ 

Proposition 2���� QtI <≤ )(0 , t∀ . 

Proof: by contradiction. Assume there is an optimal solution: 

τ∃ , xkQI +=)(τ , where 1≥k  and integer, Qx <≤0 . We 

can construct a new solution: kQSS −=′ )()( ττ  and thus 

xkQII =−=′ )()( ττ , i.e., QI <′≤ )(0 τ ;  

kQQQ +′=′ )()( ηη  and thus )()( ηη II =′  , where η ( τ> ) is 

the earliest (or first) period when the delivery quantity of the 

vendor is larger than zero.  This alternation does not incur 

additional transportation cost and does save the inventory 

cost 
0

)( kQhτη − . This implies that the original solution is 

not an optimal solution. □ 

Proposition 3���� QktQQk
tt

)1()( +≤≤ , t∀ . 
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Proof:  

i). Firstly, we prove QktQ
t

≥)( . 

Case 1: 0=
t

k . The conclusion is clear. 

Case 2: 1≥
t

k . By contradiction. Assume there is an optimal 

solution: τ∃ , QkQ ττ <)( . Without loss of generality, let 

0)( >+=− xnQQQk ττ , 0≥n and integer, 1−≤ τkn , 

Qx <≤0 . This implies that  the demand in period τ  has at 

least xnQ +  to be satisfied before period τ , i.e., 

xnQI +≥− )1(τ .  If 1≥n , we can construct a new solution: 

nQSS −−=−′ )1()1( ττ ; nQQQ +=′ )()( ττ . This alternation 

does not incur additional transportation cost and does save 

the inventory cost at least 
0

nQh . This implies that the 

original solution is not an optimal solution. If 0=n , i.e., 

xQkQ += ττ )(  and Qx <<0 , i.e., 0 % )( >= xQtQ . At the 

same time we have 0)1( >≥− xI τ . According to 

Proposition 1, it is impossible.   

ii). Now we prove QktQ
t

)1()( +≤ . 

The proof of i) indicates that we need to consider only 
t

q  for 

)(tD , t∀ . That is, the original proposition turns to prove 

QtQ ≤)(  whenever 
t

qtD =)( , Qq
t

<≤0 , t∀ . By 

contradiction. Assume there is an optimal solution: τ∃ , 

QQ >)(τ . It is clear that that a part of the demand after 

period τ  is satisfied in period τ . Therefore, 

)(τττ QxnQqq =+=+′ + , 1≥n , Qx <≤0 , where τq′  is  the 

whole or part of demand in period τ  to be satisfied in period 

τ , and ττ qq ≤′  because a part of the demand in period τ  

maybe satisfied before period  τ ; +

τq  is the total demand 

after period τ  that is satisfied in period τ . Observe 

Qqq
tt

2<+ ′  for tt ′∀ , . This implies that the demands of at 

least n-1 periods after period τ  are satisfied in period τ . 

Without loss of generality, let η ( τ> ) is the earliest (or first) 

period in these periods. If 1=n , xQqq +=+′ +

ττ  and 

Qx <<0 , and then xq >+

τ  since Qqq <≤′
ττ . We can 

construct a new solution: QxQQ =−=′ )()( ττ (decreasing a 

vehicle) ; xQQ +=′ )()( ηη  (increasing at most a vehicle). 

This alternation does not incur additional transportation cost 

(possibly decrease transportation cost) and does save the 

inventory cost at least 
0

)( xhτη − . If 2≥n , ++′= τττ qqQ )(  

xnQ +=  and Qx <≤0 , and then xQnq +−>+ )1(τ  since 

Qqq <≤′
ττ . We can construct a new solution: 

QnQQ )1()()( −−=′ ττ  , QnQQ )1()()( −+=′ ηη .  This 

alternation does not incur additional transportation cost and 

does save the inventory cost at least 
0

))(1( Qhn τη −− . This 

implies that the original solution is not an optimal solution. 

¶�

Proposition 4���� QktQ
t

=)(  whenever QktD
t

=)( , 0≥
t

k  

and integer.  

Proof: by contradiction. Assume there is an optimal solution: 

τ∃ , xQkQ += ττ )( , where 0≥τk  and integer , Qx ≤<0 .  

Note that QkQQk )1()( +≤≤ ττ τ  according to Proposition 3. 

Similar to the proof of Proposition 3,  we can construct a new 

solution: QkxQQ τττ =−=′ )()( (decreasing a vehicle), 

xQQ +=′ )()( ηη  (increasing at most a vehicle).  This 

alternation does not incur additional transportation cost  

(possibly decrease transportation cost)  and does save the 

inventory cost at least 
0

)( xhτη − . ¶�

It is important to note that, according to Proposition 4, 

0)( =tQ  whenever 0)( =tD , t∀ .  

4.3  The reduced problem 

P1 is a special case of P where
t

qtD =)( , Qq
t

<≤0 , t∀ . 

Theorem 1: P can be reduced to P1. 

Proof: According to Proposition 3 and 4, the portion Qk
t

 of 

)(tD  is surely replenished by 
t

k  vehicles in period t. 

Therefore, only the portion 
t

q  of )(tD  needs to be decided 

how to be replenished. ¶�

Theorem 2���� Given a planning horizon T, P1 is a C/C/C/Z 

capacitated dynamic lot sizing problem.   

Proof: In P1, if )(tQ  is viewed as the production (or order) 

amount to be decided, Q  corresponds to the production 

capacity bound, dUC 2+  corresponds to the setup cost, h0 is 

the inventory holding cost per unit item per unit time, and the 

production cost per unit item is zero and hence is omitted. P1 

is therefore a C/C/C/Z capacitated dynamic lot sizing 

problem.  ¶ 

4.4  Solution algorithms of the reduced problem 

According to Theorem 2, given a planning horizon, P1 is a 

C/C/C/Z capacitated dynamic lot sizing problem. 

Consequently, all algorithms for the C/C/C/Z capacitated 

dynamic lot sizing problem without backlog can be also used 

to solve P1.  

Theorem 3:  Given a planning horizon T, there is an 

algorithm to solve P1 in O(T
2
) time. 

Proof: In Chung and Lin (1988), the authors designed a 

dynamic programming algorithm to solve the NI/G/NI/ ND 

capacitated dynamic lot sizing problem in O(T
2
) time. It is 

clear that the C/ C/ C/Z problem is a special case of the 

NI/G/NI/ ND, therefore the algorithm can be also used to 

solve the C/C/C/Z problem. ¶�

4.5  Determining T 
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Lastly, the remaining problem is to determine the planning 

horizon T. It is clear that T is a cycle period ensuring 

)()( tDTtD =+ , )()( tQTtQ =+ , )()( tITtI =+ . We 

assume that )(tD , )(tQ , t∀  and Q  are rationales. Hence, 

without loss of generality,  )(tD , )(tQ , t∀  and Q  are 

assumed to be integers, see also Chan et al. (1998). Let M be 

the smallest common multiple of 
L

TTT ,...,,
21

, i.e., M is a 

cycle period satisfying )()( tDMtD =+ . 

Theorem 4���� QMTM ≤≤ . 

Proof: According to Proposition 2, QtI <≤ )(0 , t∀ . This 

implies that )(tI  has at most Q kind of possible values since 

)(tI  is an integer.  Therefore, within the planning horizon 

Q(M + 1) + 1  , for any τ ( 10 −≤≤ Mτ ),  there exists two 

periods in τ , τ+M , τ+M2 , …, τ+QM , without loss of 

generality, let the two periods be τ+iM  and τ+jM , 

satisfying )()( ττ +=+ jMIiMI . In addition, )1( ++τiMD . 

As a consequence, the transportation and inventory sub-

policy during [ 1++τiM , τ+jM ] is not an optimal sub-

policy. Hence, )1()1( ++=++ ττ jMIiMI . This implies 

that TMij =− )( is a cycle period satisfying )( TtD +  

)(tD= , )()( tQTtQ =+ , )()( tITtI =+ . As a consequence, 

QMMijTM ≤−=≤ )( . ¶ 

How to obtain an accurate value of T? A feasible method is 

described as follows. Let T = M, 2M, …, QM respectively, 

solve P1 and obtain respective optimal solution, and then 

select the best one from them.  

5. CONCLUSIONS 

For the inventory-routing problem in the three-level 

distribution system, we present a solution approach that 

decomposes the problem into three subproblems. For lack of 

space, we emphasize on modelling and solving the vendor-

warehouse transportation and inventory subproblem in this 

paper. We have demonstrated that the vendor-warehouse 

transportation and inventory problem can be reduced to a 

C/C/C/Z capacitated dynamic lot sizing problem and there is 

an algorithm to solve the reduced problem to optimality in 

O(T
2
) time.  
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