
Probabilistic sorting and stabilization of
switched systems

Hideaki Ishii ∗ Roberto Tempo ∗∗

∗ Department of Computational Intelligence and Systems Science
Tokyo Institute of Technology, Yokohama 226-8502, Japan
∗∗ IEIIT-CNR, Politecnico di Torino, 10129 Torino, Italy

Emails: ishii@dis.titech.ac.jp, roberto.tempo@polito.it

Abstract: We consider Lyapunov stability of switched linear systems whose switching signal
is constrained to a subset of indices. We propose a switching rule that chooses the most stable
subsystem among those belonging to the subset. This rule is based on an ordering of the
subsystems using a common Lyapunov function. We develop randomized algorithms for finding
the ordering as well as for finding a subset of systems for which a common Lyapunov function
exists. We show that the class of Las Vegas randomized algorithms is useful in the design.

Keywords: Switched systems, Lyapunov function, Randomized algorithms.

1. INTRODUCTION

Switched systems refer to a class of hybrid dynamical sys-
tems characterized by a set of subsystems and a switching
rule which specifies a subsystem at each time. Stability of
switched systems is a difficult issue and has been studied
extensively; see, e.g., (Liberzon 2003, Sun and Ge 2005).
There, the approach based on common Lyapunov func-
tions is of particular interest because asymptotic stability
under arbitrary switching is achieved if and only if such a
function exists. In the design of switching rules, once sta-
bility is guaranteed, we can focus on performance measures
other than stability.

In this paper, we consider one of the basic instances of
switched systems with linear time-invariant subsystems
and quadratic common Lyapunov functions. It is well
known that the existence of such a Lyapunov function is
equivalent to a set of linear matrix inequalities (LMIs).
A number of sufficient conditions have been developed;
see the abovementioned references and, e.g., (Shorten
and Narendra 2002, Cheng et al. 2003, Gurvits et al.
2007). However, though LMIs can be solved using efficient
algorithms, as the number of subsystems increases, the
computation often becomes intractable.

Within this context, we would like to address the following
questions: How can we find a quadratic common Lyapunov
function, if not for all of the original subsystems, for a
large subset of them? Moreover, after this is accomplished,
how can we design a switching rule for achieving good
performance by utilizing the common Lyapunov function
at hand? These are fairly basic questions, but we believe
that they have not been studied much in the literature.

Here, we formulate a switching control problem where the
system contains discrete parameters which can be tuned
at each time instant, but are constrained to a certain range

� This work was supported in part by the Ministry of Education,
Culture, Sports, Science and Technology, Japan, under Grant-in-Aid
for Scientific Research No. 17760344.

varying over the time. The switching rule determines the
parameters from the range in such a way that the system
response would be desirable in its control performance.

Specifically, we consider two problems as follows: (1) To
introduce an order among the subsystems based on their
relative stability levels with respect to the common Lya-
punov function. (2) To find the largest subset of the given
subsystems such that a common Lyapunov function exists.
It is noted that both problems exhibit combinatorial as-
pects. To order the subsystems, one needs to compare the
subsystems to each other, while to find the largest subset
may require examining LMIs for every possible subset.

For these two problems, in this paper, we take a probabilis-
tic approach. In recent years, methods based on random-
ized algorithms have been successfully developed for anal-
ysis and synthesis of uncertain systems (e.g., (Vidyasagar
1998), (Tempo et al. 2005)) and hybrid systems (e.g.,
(Liberzon and Tempo 2004, Ishii et al. 2005)). For control
problems difficult to solve deterministically, the approach
is to introduce control specifications in probabilistic terms.
While the specifications can be met only under a certain
probability, the computational complexity is lower.

In this regard, one contribution of this paper lies in the
application of a class of randomized algorithms, which
has not been well recognized in the control literature. In
(Tempo and Ishii 2007), we have pointed out that the prob-
abilistic approach for control has mainly relied on the use
of Monte Carlo randomized algorithms. Such algorithms
may produce incorrect outputs, but the probability of such
an event is bounded. On the other hand, in computer
science, another class known as the Las Vegas randomized
algorithms has been used (Motwani and Raghavan 1995).
This type, in contrast, always produces correct outputs
with probability one.

In particular, for the first problem of this paper, we develop
a Las Vegas algorithm. To order the subsystems with
respect to their stability levels, we extend the Randomized
Quick Sort (RQS) algorithm, which performs sorting of

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 402 10.3182/20080706-5-KR-1001.1438

real numbers very efficiently (Knuth 1998). An analysis
on the complexity of the algorithm is provided as well.
Regarding the second problem, as mentioned above, there
is a combinatorial issue. While conventional deterministic
approaches may result in exponential running time, we
propose an efficient Monte Carlo type algorithm. Further-
more, we discuss an approach for the generation of random
matrices necessary there.

This paper is organized as follows: In Section 2, the system
setup is introduced. In Section 3, we describe the algorithm
for sorting the subsystems while, in Section 4, we propose
methods for finding a subset of systems and a common
Lyapunov function. The results are illustrated through an
example in Section 5. The paper is concluded in Section 6.

2. PROBLEM FORMULATION

Consider the switched linear system specified by
ẋ(t) = Aσ(t)x(t), (1)

where x(t) ∈ R
n is the state and σ(t) ∈ IN is the mode of

the switching signal with the index set given by IN :=
{1, . . . , N}. We introduce two features to the switched
system (1) which may limit its switching behavior.

(i) The switching signal is constrained to a subset Σ0 of
IN , called the admissible set. This set can be chosen
arbitrarily prior to operation of the system.

(ii) There is a time-varying index set Σ(t) ⊂ Σ0 such that,
at each time t, the switching signal can take any value
from this set as

σ(t) ∈ Σ(t), ∀t ≥ 0.

The subsystems whose indices belong to Σ(t) are
referred to as the admissible systems at time t.

These two features imply that the designer can specify
the set of indices to which the system should switch.
Further, the designer can choose among the index set
Σ(t) the exact subsystem at each time, but does not
have control over determining the set Σ(t). Hence, the
objective here is to find the admissible set Σ0 and a rule
to determine a subsystem among the admissible systems
at each time t that is optimal from a control performance
viewpoint. This type of setups may arise when systems
have multiple tuning parameters which are discrete and
whose range depends on external factors such as the
systems environment.

To address this general problem, we follow the approach
based on quadratic common Lyapunov functions. We di-
vide the design procedure into two problems.

The first one is to order the systems according to their
levels of stability with respect to a Lyapunov function. For
this part, we fix the admissible set Σ0 ⊂ IN . Suppose that
there is a quadratic function V (x) = xT Px with a positive-
definite matrix P ∈ R

n×n which is a common Lyapunov
function for all the subsystems, that is,

L(P,Ai) < 0 for all i ∈ Σ0, (2)
where L(P,A) := AT P + PA. We consider to order
the matrices L(P,Ai), i ∈ Σ0, since they represent the
overall decay rates of the subsystems. In this context, these
matrices provide a simple and useful measure of stability.

More specifically, for each subsystem i, we look for the
subset Ai of systems having slower decay rates given by

Ai := {Aj : L(P,Ai) ≤ L(P,Aj), j ∈ IN , j �= i} , (3)
or equivalently the subset Ai of systems with faster decay
rates as

Ai := {Aj : L(P,Aj) ≤ L(P,Ai), j ∈ IN , j �= i} . (4)
Once this goal is achieved, the switching rule is to select
the index as σ(t) among Σ(t) that is the smallest with
respect to this ordering; if such an index is not unique,
one of them may be arbitrarily chosen. For example, a
particular switching rule can be given as

σ(t) ∈ arg max
i∈Σ(t)

∣∣Ai ∪ AΣ(t)

∣∣ , (5)

where AΣ(t) := {Ai : i ∈ Σ(t)} and | · | denotes cardinality.

The second problem is to find the admissible set Σ0 such
that a common Lyapunov function exists. It is formulated
as follows: Find the set Σ0 with the maximum cardinality
among those having a common Lyapunov function satis-
fying the condition (2), that is,

Σ0 = arg max
{|Σ1| : Σ1 ⊂ IN , ∃P > 0 s.t.

L(P,Ai) < 0, i ∈ Σ1

}
. (6)

This problem can clearly be handled by methods that
directly solve the LMIs in (2). Nevertheless, for such
methods, combinatorial issues would arise. In the worst
case, we need to check all possible subsets of the index
set IN whether a common Lyapunov function exists. The
number of such subsets is exponential as 2N . In contrast,
we propose a probabilistic algorithm with polynomial
running time.

The results for the first and second problems are presented
in Sections 3 and 4, respectively.

3. SORTING THE SUBSYSTEMS

We consider the first problem of sorting the subsystems in
(1). We develop a sorting algorithm for general symmetric
matrices which is a generalization of the RQS for scalars.

We state the problem considered in this section. Given a
set X of N distinct symmetric matrices in R

n×n as
X := {X1, X2, . . . , XN}, (7)

find the following three sets for each i ∈ IN :
XXi

:= {X ∈ X : X ≤ Xi, X �= Xi},
XXi := {X ∈ X : Xi ≤ X, X �= Xi}, (8)
NXi := X \ (XXi

∪ XXi ∪ {Xi}
)
.

The set XXi
consists of matrices smaller than Xi (in the

positive-definite sense) while XXi contains the matrices
larger than Xi (in the same sense as above).

In the case of real numbers (n = 1), clearly, all elements
in X can be ordered. For the matrix case, however,
this is not true; for example, consider the set X =
{diag(1, 1),diag(0, 2),diag(2, 0)}. Hence, we introduce the
set NXi of matrices that share no order with Xi. We note
that the three sets in (8) are unique for the given set X .

For the scalar case, the problem is the usual sorting, where
various algorithms are available; see, e.g., (Knuth 1998).
The RQS is one such algorithm which is known to be very

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

403

efficient especially when well implemented (Motwani and
Raghavan 1995). Here, we propose a matrix version of the
RQS. It is a natural and elegant extension of the original
RQS, which allows to study worst-case and average-case
complexity. As in the RQS for scalars, the randomization
is performed under the uniform distribution. Because of
no prior knowledge on the matrices, each time a matrix
is randomly chosen from a set, equal probabilities are
allocated to the elements.

3.1 Matrix Randomized Quick Sort

The RQS algorithm for symmetric matrices is divided into
two phases: The first is based on quick sort ideas, and the
second performs extra comparisons among the matrices.

We now present the first phase of the algorithm. This phase
generates the ternary tree structure shown in Fig. 1.

Algorithm 3.1. (Phase 1 of the matrix RQS)

(1) Set S1 := X and k = 1.
(2) At step k, if |Sk| > 1, then do the following, and

otherwise go to step 3.
(a) Take Sk ∈ Sk randomly according to the uniform

distribution. This is called the pivot matrix.
(b) Compare each matrix in Sk with Sk and deter-

mine the following three sets:
Sk := {X ∈ Sk : X ≤ Sk, X �= Sk} ,

Sk := {X ∈ Sk : Sk ≤ X, X �= Sk} ,

Mk := Sk \ (Sk ∪ Sk ∪ {Sk}
)
.

The set Mk is a set of matrices which have no
order with the pivot Sk.

(c) Relabel the sets according to the tree structure in
Fig. 1. That is, let Sl be the left child of Sk, and
then let Sl = Sk, Sl+1 = Mk, and Sl+2 = Sk.

(3) Let k = k + 1. Stop if all leaves in the tree are
singletons. Otherwise, go to step k in 2.

(4) After stopping, in the tree in Fig. 1, for each node
Sk, construct the sets in (8) as follows:

Let YSk
be the set containing Sk, all matrices in

the left sub-tree of each ancestor Sl of Sk such that
Sl ≤ Sk or Sk ∈ Sl, and the ancestor Sl itself.

Let YSk
be the set containing Sk, all matrices in

the right sub-tree of each ancestor Sr of Sk such that
Sk ≤ Sr or Sk ∈ Sr, and the ancestor Sr itself.

In the scalar case, Algorithm 3.1 coincides with the basic
RQS algorithm, and this phase outputs the desired result
of sorted numbers in the form of sets: XXi

= YXi
and

XXi = YXi , i ∈ IN . In the matrix case, however, the
sorting requires an additional procedure. This is performed
in the second phase of the algorithm.

To illustrate this point more clearly, we show below the
candidate matrices after Phase 1 that belong to the sets
XSk

and XSk
, but may not be included in the sets YSk

and YSk
, respectively. For each node Sk, the sets in (8)

can be described as follows.

• XSk
: In the tree structure in Fig. 1, all matrices to

the left side of Sk are candidate elements of this set.
They can be characterized as below:

· Sk is in XSk
.

S2

M3 = S3

S4

S1 = S4S1 = S2

S3

S1

M4S4M3M2S2 S2 S4S3 S3

Fig. 1. Ternary tree structure

· Let Sl be an ancestor of Sk such that Sl ≤ Sk, or
Sk ∈ Sl. Then, the left sub-tree of Sl is contained
in this set XSk

. Also, some matrices in the mid
sub-tree of Sl are in XSk

.
· Let Sl be an ancestor of Sk with Sk ∈ Ml. Then,

some matrices in left sub-trees of Sl are in XSk
.

• XSk
: This set has a structure similar to XSk

by
taking the right sub-trees instead of the left ones. All
matrices to the right of Sk are candidate elements.

It is clear now that further comparisons are necessary
especially between matrices in left/right sub-trees and
those in mid sub-trees. No comparison is required for
matrices in left sub-trees and those in right sub-trees.

In the second phase, in an inverse-order traversal, visit
each node l, and compare the elements in Ml with those
in Sl and Sl. This can be formally described as follows.

Algorithm 3.2. (Phase 2 of the matrix RQS)

(1) Perform a traversal in an inverse order. That is,
starting from the root, at each node, visit the right
child, the mid child, the left child, and then the node
itself in a recursive manner.

(2) When visiting the node l, if Ml exists, then do the
following, and otherwise go to step 3.
(a) For each matrix M ∈ Ml, compare it with the

elements in Sl and Sl.
(b) Based on the results, update the sets YM , YM ,

and also YX , YX for each X ∈ Sl ∪ Sl.
(3) Stop if the current node l is the root. Otherwise, visit

the next node, and goto step 2.

For these algorithms, the following worst-case complexity
result holds. Since this complexity is quadratic, in Sec-
tion 3.2, we provide a detailed average complexity analysis.
Proposition 3.3. For a given set X of symmetric matri-
ces in (7), the matrix RQS algorithm consisting of Algo-
rithms 3.1 and 3.2 always finds the sets in (8) as

XXi
= YXi

, XXi = YXi ,

NXi = X \ (YXi
∪ YXi ∪ {Xi}

)
for each i ∈ IN . The total number of comparisons is no
greater than N(N − 1)/2.

The statement says that, for any set of matrices, the pro-
posed algorithm always finds the correct solution despite
the randomization steps. Such algorithms are classified
as Las Vegas type randomized algorithms (Motwani and
Raghavan 1995). As mentioned in the Introduction, this
class has not been exploited yet in the field of control.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

404

3.2 Analysis on the number of comparisons

We now analyze the complexity of the proposed algorithm.
In a Las Vegas algorithm, the running time is random and
may be different in each execution. As in the scalar case
(Motwani and Raghavan 1995), we measure the running
time in terms of the expected number of comparisons.
Now, denote by pij the probability that a comparison
between two matrices Xi and Xj in X occurs.
Theorem 3.4. In Algorithm 3.1, for a given set X of
N symmetric matrices, the expected number Cave of
comparisons is given by

Cave =
N−1∑
i=1

N∑
j=i+1

pij =
N−1∑
i=1

N∑
j=i+1

2
|Ωij | ,

where Ωij := X \ [(XXi ∩ XXj

) ∪ (XXi
∩ XXj

) ∪(NXi ∩NXj

)]
for i, j ∈ IN .

There are two extreme cases in Phase 1. One is when all
matrices in X can be ordered. Then, we have NXi = ∅ for
all i. This coincides with the scalar case, and the expected
number Cave of comparisons can be computed explicitly
as shown in (Mitzenmacher and Upfal 2005):

Cave = 2(N + 1)
N∑

i=1

1
k
− 4N = 2(N + 1) lnN + Θ(1).

The other extreme is when there is no order at all among
the matrices in X . In this case, we have XXi = XXi

= ∅
for all i. As a consequence, in Phase 1, all matrices are
compared to each other. It is easy to check that Cave

becomes the worst-case number N(N − 1)/2. In these two
extreme cases, Phase 2 is unnecessary.

Other cases fall between these two extreme cases. However,
in Phase 2, some of the comparisons that did not occur in
Phase 1 must be carried out. As shown in Proposition 3.3,
the total number is always less than or equal to the worst-
case number N(N − 1)/2. The number of comparisons in
Phase 2 is difficult to estimate.

One question of interest is, what are the characteristics
of the trees that require a small number of comparisons?
Working on some examples, we can deduce that good
cases with fewer comparisons have the following features:
(i) Fewer levels in the tree or, in other words, more
branches at each node. (ii) Fewer mid-trees in higher levels.
These are rather qualitative features. Clearly, depending
on the result of randomization in each run, from the same
set X of matrices, different trees with and without such
features can be produced.

4. FINDING A SUBSET OF SYSTEMS AND
A COMMON LYAPUNOV FUNCTION

We now consider the problem stated in (6), which is to find
the largest subset of systems having a common Lyapunov
function. The proposed algorithm requires random matrix
generation; discussion on some methods is also provided.

4.1 A randomized approach

We first introduce some notation. The problem as in (6)
is a maximization one. This can be rewritten using the
function J : R

n×n → Z+ defined as

J(P) =
∑

i∈IN

I{L(P,Ai)<0}(P),

where I{L(P,Ai)<0}(P) is an indicator function given by

I{L(P,Ai)<0}(P) :=
{

1 if L(P,Ai) < 0,

0 otherwise.
This function J(P) provides the number of subsystems for
which the quadratic function V (x) = xT Px serves as a
common Lyapunov function.

Note that J(P) is invariant under constant scaling:
J(αP) = J(P) for any positive real scalar α. Due to
this property, without loss of generality, we can limit the
domain of the function to the unit ball B+ ⊂ R

n×n of
positive-definite matrices given by

B+ :=
{
P ∈ R

n×n : P = PT > 0, ‖P‖ ≤ 1
}

, (9)
where ‖·‖ is a matrix norm. Now, the problem in (6) is
reduced to the following maximization problem:

Jmax := max
P∈B+

J(P).

In the probabilistic approach, we assume that the matrix
P ∈ B+ is a random matrix. For simplicity, we employ
the uniform density function fP (·) associated to P having
B+ as the support set. Let ProbP (·) be the probability
measure induced by this density function.

We employ an algorithm involving the computation of the
empirical maximum of J . This is defined as follows:

Ĵmax := max
j=1,2,...,M

J(P (j)), (10)

where P (j) ∈ B+, j = 1, 2, . . . , M , are i.i.d. samples of
the random matrix P generated according to the density
function fP . The empirical maximum Ĵmax is determined
by a finite number of samples drawn from the set B+.

It is clear that the empirical maximum Ĵmax is always
smaller than Jmax. Hence, we must question how well Ĵmax

estimates the true maximum. Under a sufficiently large
sample size M , a probabilistic statement can be made as
shown next (Tempo et al. 1997).
Proposition 4.1. Let ε, δ ∈ (0, 1). If the sample size M
is such that M ≥ �log(1/δ)/ log[1/(1 − ε)]�, then, with
probability greater than 1 − δ, the empirical maximum
Ĵmax in (10) satisfies the following inequality

ProbP

{
J(P) ≤ Ĵmax

} ≥ 1 − ε.

That is, ProbP (1,...,M)

{
ProbP

{
J(P) ≤ Ĵmax

} ≥ 1 − ε
}

>
1− δ, where ProbP (1,...,M)(·) denotes the probability mea-
sure with respect to the multi-sample

{
P (1), . . . ,P (M)

}
.

The result implies that the empirical maximum is an
estimate of the true value within an a priori specified
accuracy ε with confidence 1−δ given that the sample size
M satisfies the bound. We emphasize that, the sample size
M is not dependent on the dimension of the matrices in
the set B+ but only on ε and δ.

The approach here is reminiscent of the learning theoretic
methods proposed in (Vidyasagar 1998), where the design
parameters (the matrix P in our case) are randomized in
order to solve an optimization problem arising in the con-
text of hybrid systems. We note that Proposition 4.1 was
originally developed in (Tempo et al. 1997) for problems
of uncertain systems.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

405

4.2 Generation of random matrices

In this section, we discuss the generation of random matri-
ces required in the computation of the empirical maximum
in (10). We focus on generating matrices uniformly in the
unit ball B+ of positive-definite matrices in (9) 1 .

We remark that the choice of the norm employed in
the ball (9) determines the computation method; see,
e.g., (Calafiore and Dabbene 2002),(Tempo et al. 2005).
Moreover, the norm changes the probability density of
the random matrices and, in turn, the performance in
calculating the empirical maximum. We present a specific
algorithm for the case with the Frobenius norm, which is
based upon the hit-and-run method.

For a symmetric matrix Z ∈ R
n×n, the Frobenius norm

is defined as ‖Z‖ := (Tr Z2)1/2. Note that ‖Z‖ =
‖[ζT

1 · · · ζT
n]T ‖, where ζi, i = 1, . . . , n, are the columns

of Z and the vector norm is the Euclidean norm in R
n2

.
Also, define the inner product 〈·, ·〉 by 〈X,Y 〉 = Tr XY
for symmetric matrices X,Y .

Let the unit ball B of symmetric (but not necessarily
positive-definite) matrices be B :=

{
Z ∈ R

n×n : Z =
ZT , ‖Z‖ ≤ 1

}
. Clearly, we have B+ ⊂ B.

We next describe that the generation of random matrices
can be reduced to that of random vectors. Let n̄ := n(n +
1)/2. Also, denote by BRn̄ the unit ball with center 0 in R

n̄

under the Euclidean norm. Then, we define the mapping
g from R

n̄ to the set of symmetric matrices in R
n×n as

g(z) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
1√
2

z2 · · · · · · 1√
2

zn

∗ zn+1
1√
2

zn+2 · · · 1√
2

z2n−1

..

.
. . .

. . .
. . .

..

.
.
..

. . . zn̄−2
1√
2

zn̄−1

∗ · · · · · · ∗ zn̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where z = [z1 · · · zn̄]T ∈ R
n̄ and the lower-triangular

entries are determined by the symmetry of the matrix.
With g, we can verify the isomorphism between BRn̄

and B. Furthermore, the mapping is norm preserving.
Hence, generating matrices uniformly in B+ is equivalent
to obtaining uniform vectors in the corresponding set
contained in BRn̄ . In fact, computing uniform vectors in
BRn̄ can be done easily (e.g., (Tempo et al. 2005)); this is
exploited in the algorithm to be presented.

Noticing that B+ is a convex subset of B, we employ
the so-called hit-and-run algorithm. It is a sampling tech-
nique based on Markov chain for generating uniformly
distributed real vectors in a convex set. The asymptotic
distribution of the chain is uniform. Further, it is guaran-
teed that this distribution is reached after a given number
of steps, which is called the burn-in period T .

The hit-and-run algorithm outlined below provides a ma-
trix P whose distribution is asymptotically uniform in B+.
In particular, it is based on (Lovász and Vempala 2006).

1 We note that in fact the matrix generation is on the closure of
the ball B+. However, since the boundary points have measure zero,
they are irrelevant in the context of this paper.

Algorithm 4.2. (Hit-and-run algorithm for generating uni-
form matrices in B+ under the Frobenius norm)

(1) Set P1 := (
√

n + 1)−1I ∈ B+ and k = 1.
(2) At step k, generate a matrix Sk uniformly distributed

in B as follows:
(a) Let qk be a vector in R

n̄ whose entries are
independent Gaussian real numbers with mean
0 and variance 1.

(b) Generate a random real number tk according to
the uniform distribution in [0, 1].

(c) Set Sk = g
(
t
1/n̄
k qk/‖qk‖

)
.

(3) Let W k,0,W k,1 be the matrices that are (i) on the
line going through P k in the direction of Sk and (ii)
on the boundary of B+.

(4) Generate a random real number yk according to the
uniform distribution in [0, 1].

(5) Let P k+1 be a convex combination of W k,0 and W k,1

as P k+1 := ykW k,0 + (1 − yk)W k,1.
(6) Set k = k + 1. Stop if the burn-in period is reached

(k = T) and return P k. Otherwise, go to step k in 2.

A special feature here is that the initial matrix P1 is fixed.
In typical hit-and-run algorithms, additional processing is
required for obtaining an initial vector having a certain
distribution. We note that the burn-in period is of order
O(n7 ln n) (Lovász and Vempala 2006).

5. NUMERICAL EXAMPLE

For the system in (1), we used 30 subsystems, i.e., N = 30.
The matrices Ai, i ∈ IN , were chosen as

Ai = A∗ + Ki

:=
[−1.5 −2

2 0.5

]
+ 0.1

√
i

[
1 0.3 ri,1

1.5 ri,2 0.5 ri,3

]
, i ∈ IN ,

where ri,j are random numbers uniformly distributed on
[−1, 1] for j = 1, 2, 3.

For this particular system, several conventional approaches
failed to provide a common Lyapunov function. First,
since ‖sI − A∗‖∞ ≤ 2.30, by a small-gain type argument
(Liberzon 2003), a sufficient condition for the existence
of a common Lyapunov function is given by maxi‖Ki‖ <
1/2.30 = 0.435. However, we had maxi‖Ki‖ = 0.913.

The other method is based on interval matrices: Let ajm

and ajm be, respectively, the maximum and the minimum
values of the (j,m) entries of Ai, i ∈ IN . Then, the
objective is to find a common Lyapunov function for the
vertex matrices, whose (j,m) entries are either ajm or ajm
for all j,m. The set of systems is now smaller because the
number of vertex matrices is 24 = 16, but it provides a
conservative solution. In fact, the LMIs for this case were
found infeasible.

Next, we used the algorithm in Section 4.1. We found a
matrix P for the quadratic common Lyapunov function
V (x) in less than 100 iterations in most trials. Thus, in
this case, the admissible set is Σ0 = IN .

To find the order in the subsystems, using one of the
common Lyapunov functions, we ran the matrix RQS
in Section 3. In one such trial, Phase 1 required 135
comparisons and in Phase 2, there were 54 comparisons.
Thus, the total number is 189, which is smaller than the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

406

Table 1. Cardinalities of the sets Ai and Ai

i |Ai| |Ai| i |Ai| |Ai|
1 6 16 15
2 17 2 4
3 3 18 2 4
4 2 19 7 1
5 8 20 2 6
6 21 5
7 5 22 2 7
8 23 1 7
9 24 14
10 9 25 8 1
11 26 6 1
12 15 27 3 1
13 1 28
14 10 29 5 3
15 30 8

worst-case number of N(N − 1)/2 = 435. The result is
summarized in Table 1. For each subsystem i, the number
of the subsystems slower than it, that is, the cardinality of
the set Ai in (3), is given. Also, the number of the faster
subsystems is shown; this is equal to the cardinality of
the set Ai in (4). We see that the faster ones include the
subsystems 5, 19, 24, 25, and 30, while the slower ones are
the subsystems 10, 12, 14, 16, 22, and 23.

The switched system was simulated assuming that every
h = 0.1 sec, the system is provided with 10 randomly
selected indices of subsystems from IN ; recall that this
index set at the switching time t = kh is denoted by
Σ(kh) ⊂ Σ0, k ∈ Z+. The controller must choose one
index from this set Σ(kh) and then σ(t) takes that value
during the next period for t ∈ [kh, (k + 1)h).

We employed three switching rules as follows:

(a) The random rule: This is a simple rule. An index from
Σ(kh) is picked at random.

(b) The fast rule: Based on the results of the quick sort,
this rule looks at the order of L(P,Ai) for i ∈ Σ(kh)
and chooses the index i having the maximum number
of subsystems j such that L(P,Ai) ≤ L(P,Aj). This
switching rule is expected to give the fastest decay
rate of all possible rules, at least on average. This is
similar to the rule given in (5).

(c) The slow rule: This is the opposite of the rule (b)
above and chooses the subsystem which has the
largest number of subsystems faster than itself. This
rule will produce trajectories with slow decays.

In Fig. 2, sample paths of the systems are plotted in
the state space. The rule (b) yields the fastest trajectory.
These plots exhibit that the proposed sorting algorithm is
useful in stabilizing switched systems with fast decays.

6. CONCLUSION

We developed randomized algorithms for two switched-
systems problems. Based on the ordering of subsystems,
the proposed switching rule chooses one subsystem among
the admissible ones at each time to achieve fast decay. Fu-
ture research will focus on other hybrid systems problems
using Las Vegas type algorithms.

REFERENCES

Calafiore, G. and F. Dabbene (2002). A probabilistic
framework for problems with real structured uncer-
tainty in systems and control. Automatica 38, 1265–
1276.

−10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

x1

x
2

Fig. 2. Sample paths of (x1, x2): (a) The random rule
(dotted), (b) the fast rule (solid), and (c) the slow
rule (dash-dot)

Cheng, D., L. Guo and J. Huang (2003). On quadratic
Lyapunov functions. IEEE Trans. Autom. Control
48, 885–890.

Gurvits, L., R. Shorten and O. Mason (2007). On the
stability of switched positive linear systems. IEEE
Trans. Autom. Control 52, 1099–1103.

Ishii, H., T. Başar and R. Tempo (2005). Randomized algo-
rithms for synthesis of switching rules for multimodal
systems. IEEE Trans. Autom. Control 50, 754–767.

Knuth, D. E. (1998). The Art of Computer Programming,
2nd edition. Vol. 3: Sorting and Searching. Addison-
Wesley. Reading, MA.

Liberzon, D. (2003). Switching in Systems and Control.
Birkhäuser. Boston.

Liberzon, D. and R. Tempo (2004). Common Lyapunov
functions and gradient algorithms. IEEE Trans. Auto-
m. Control 49, 990–994.

Lovász, L. and S. Vempala (2006). Hit-and-run from a
corner. SIAM J. Comput. 35, 985–1005.

Mitzenmacher, M. and E. Upfal (2005). Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press.

Motwani, R. and P. Raghavan (1995). Randomized Algo-
rithms. Cambridge University Press.

Shorten, R. N. and K. S. Narendra (2002). Necessary and
sufficient conditions for the existence of a common
quadratic Lyapunov function for a finite number of
stable second order linear time-invariant systems. Int.
J. Adaptive Control Signal Proc. 16, 709–728.

Sun, Z. and S. S. Ge (2005). Analysis and synthesis of
switched linear control systems. Automatica 41, 181–
195.

Tempo, R. and H. Ishii (2007). Monte Carlo and Las Vegas
randomized algorithms for systems and control: An
introduction. European J. Control 13, 189–203.

Tempo, R., E. W. Bai and F. Dabbene (1997). Probabilis-
tic robustness analysis: Explicit bounds for the min-
imum number of samples. Systems & Control Letters
30, 237–242.

Tempo, R., G. Calafiore and F. Dabbene (2005). Random-
ized Algorithms for Analysis and Control of Uncertain
Systems. Springer. London.

Vidyasagar, M. (1998). Statistical learning theory and ran-
domized algorithms for control. IEEE Control Sys-
tems Magazine 18(6), 69–85.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

407

