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Abstract: This paper focusses on the problem of controlling the production rate of a discrete-
event manufacturing system such that the total production meets a certain reference demand.
There is a need for a simple and structured approach to design controllers for manufacturing
systems. Therefore, we choose for a continuous approximation model of a manufacturing
machine, which is controlled using a PI controller with anti-windup. Convergent systems theory
and a nonlinear extension of frequency response functions are used to evaluate the performance
of this continuous approximation model with the proposed controller. Next, the controller is
implemented on the discrete-event system and performance is evaluated using discrete-event
simulations. Simulation results of the manufacturing system with an anti-windup controller
agree with the observations that were made during the frequency domain performance analysis
of the continuous approximation.
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1. INTRODUCTION

Today’s manufacturing systems have become highly dy-
namic and complex. In order to stay competitive, man-
ufacturing systems must use a good control strategy to
rapidly respond to demand fluctuations. Simple discrete-
event manufacturing systems can be controlled by policies
such as PUSH, CONWIP or Kanban (see e.g. Hopp and
Spearman [2000]). However, as manufacturing systems be-
come more complex, these policies become less effective.

Another control approach is based on the use of ordinary
differential equations (ODE’s) to model a manufacturing
system (see e.g. Alvarez-Vargaz et al. [1994], Boukas
[2006]). Such ODE models are a continuous approximation
of the discrete-event system and as a result the control
problem is much simpler. Moreover, control theory for
ODE’s is widely available, which makes it attractive to
work with such models.

In such ODE models, a manufacturing machine is usually
interpreted as an integrator, where the cumulative number
of finished product is the integral of the production rate.
There are, however, some restrictions on the production
rate that should be taken into account in the model in
order to maintain a good representation of the actual man-
ufacturing system. A machine cannot produce products at
any rate: the production rate must be nonnegative and
cannot exceed some maximum production rate, due to the
limited capacity of the machine. These restrictions, which
in fact render the system nonlinear, can be interpreted

as saturation of the production rate, something that in
practice is common to all actuators.

A well-accepted control strategy that uses flow models
and that is able to account for the limited capacity of
the system is Model (based) Predictive Control (MPC).
Examples of MPC for reentrant manufacturing systems
can be found in Vargas-Villamil et al. [2003] and references
therein. Such control strategies can become complex and
computationally expensive. Moreover, the performance of
these strategies depends on the predictions of the future
demand. Such predictions can be hard to make and are
often inaccurate.

Therefore, there is need for a simple, straightforward
control strategy for manufacturing systems, that does
not rely on predictions of the future demand. We try
to derive such a strategy by using feedback control of
continuous systems. In this paper, we choose to use a
simple PI controller to set the production rate in the
ODE model of a manufacturing system such that the
production meets a certain demand. The use of an integral
action in the controller, combined with input saturation
gives rise to certain problems, such as integrator windup
and appropriate performance evaluation for this nonlinear
system. These problems will be discussed in this paper and
a suitable solution will be provided.

The combination of input saturation and the integrator in
the PI controller leads to a phenomenon called integrator
windup. When the actuator saturates, the effective control
signal cannot exceed some value, which affects the system
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behavior and therefore again the control signal. As a
result of this, the closed-loop performance of the system
can deteriorate, and in some situations the system can
even become unstable. By adding a so-called anti-windup
controller to the system, this loss of performance can
be counteracted by “turning off” the integrator in the
controller when the machine saturates. In the past, many
anti-windup controllers have been proposed in literature.
In this article we use the anti-windup design as presented
in van den Berg et al. [2006]. Since this design is based
on convergent systems, the performance evaluation of the
system simplifies.

In Pavlov et al. [2007], nonlinear equivalents of the mag-
nitude of the linear sensitivity functions are given for
uniformly convergent systems. These are the so-called
generalized sensitivity functions, which show to be use-
ful performance measures for the considered anti-windup
manufacturing system. We use the method as presented in
van den Berg et al. [2007], based on harmonic linearization
to efficiently and accurately calculate bounds on these
generalized sensitivity functions.

The presented control strategy is first evaluated in the
frequency domain by means of the generalized sensitivity
functions. Subsequently, the controller is implemented in
the discrete-event domain and the results are evaluated.

The outline of this paper is as follows. In Section 2
the investigated manufacturing system is described. It is
shown how this system can be modeled by a continuous
model and how it can be controlled. Section 3 discusses
the conditions for uniform convergency and the frequency
domain analysis of the anti-windup controlled manufac-
turing system. In Section 4 it is illustrated how bounds
on the generalized sensitivity functions can be efficiently
calculated for the manufacturing system. Furthermore, the
controller is implemented in the discrete-event domain and
it is shown by means of discrete-event simulations that
anti-windup control can be successfully applied to control
a discrete-event manufacturing system. Finally, Section 5
concludes the paper.

2. CONTROL OF A MANUFACTURING MACHINE

This section introduces the control problem of a discrete-
event manufacturing machine that is considered through-
out this paper. Here the manufacturing machine is approx-
imated by a continuous model and it will be shown that the
closed loop system with PI control can be formulated as a
system for which convergency has been proven in van den
Berg et al. [2006].

Consider a simple manufacturing system, as depicted in
Fig. 1, consisting of one machine producing lots from an
infinite capacity buffer. It is assumed that the supply of
raw materials to the buffer is always sufficient, such that
the machine never starves.

The machine processes lots from the buffer with a process
rate u(t), which can be interpreted as the velocity at
which the machine operates. The relation for the cumu-
lative number of products that has been processed by the
machine, y(t), is given as

B

M

u(t)

y(t)

Fig. 1. Manufacturing system with buffer B and ma-
chine M .

ẏ(t) = u(t). (1)

The machine can be interpreted as a pure integrator. By
using a feedback controller to set the production rate u(t)
one can control the cumulative output y(t) such that the
machine can track a given desired production yd(t).

A possible reference production is given by

yd(t) = udt+ yd0 + r(t), (2)

which has a part that is linear, where ud is the desired
production rate and yd0 is the desired production at t = 0
and a bounded term r(t), which can be interpreted as a –
for instance seasonal – fluctuation of the demand.

It can be argued by means of the final value theorem
from linear control theory (see for instance Franklin et al.
[2001]) that for r(t) = 0 a controller with integral action
should be used to track the error e(t) = yd(t) − y(t) to
zero.

Therefore, we also choose to use an integral action for the
case where r(t) 6= 0. The simplest controller with integral
action is a PI controller for which the controller output at
time t is given by:

yc(t) = kP e(t) + kI

∫ t

0

e(τ)dτ, (3)

with kP and kI the controller parameters. Using the
Routh-Hurwitz stability criterion, it can be concluded that
the closed loop system is stable if kP , kI > 0. This is a
necessary and sufficient condition for stability. A specific
choice of these parameters has to be made based on
performance criteria, for instance certain demands for the
sensitivity and complementary sensitivity.

In practice all physical actuators saturate at some level.
For the machine in our simple manufacturing system we
can state that the production rate cannot become negative
and that it cannot exceed some maximum rate umax:

0 ≤ u(t) ≤ umax. (4)

If we take k = 1

2
umax we can rewrite this constraint as

−k ≤ u(t) − k ≤ k.

Using the fact that u(t) − k equals the saturated value of
the controller output yc between −k and +k, this can be
written as

u(t) = satk(yc) + k, (5)

where satk(·) is the saturation function
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satk(x) = sign(x)min(k, |x|).

Instead of working with unbounded input yd and un-
bounded output y, we rather work with bounded signals.
We are interested in how the disturbance r(t) is propa-
gated through the system, so we no longer want to have
yd(t) as reference and y(t) as output. In order to have r(t)
as the input to the system, we subtract the linear part
ud · t+ yd0 from the desired output yd(t), which leaves the
bounded term r(t).

The linear term udt+yd0 also needs to be subtracted from
the output y(t), which yields

y(t) − udt− yd0 = −e(t) + r(t)
def

= z(t),

where z(t) is defined to be the normalized output. Differ-
entiating z(t) with respect to time and using (5) results
in

ż(t) = u− ud = satk(yc) + k − ud. (6)

The constant d is defined to be d = k−ud. In the remainder
of this paper, it is assumed that k = ud, which means that
we have an average utilization of 50% and d = 0. Note
that the initial conditions for y(t) and z(t) need to be
equivalent:

y(t = 0) = 0 ⇒ z(t = 0) = −yd0.

The resulting system is depicted in Fig. 2, which is
equivalent to the system with original coordinates, but we
now have bounded reference r(t) and normalized output
z(t). This system can be used to investigate how the
bounded disturbance r(t) is propagated by the system by
looking at the normalized output z(t).

r(t) +

-

z(t)e(t)

s

1yc(t) satk(·)
+

+

k

u(t)

ud

-

+
PI

Fig. 2. Normalized system with saturation.

The combination of actuator saturation and the integral
action in the PI-controller leads to a phenomenon called
“integrator windup” (see for instance Franklin et al. [2001].
When the actuator saturates, the effective control signal
cannot exceed some value, which means that it takes longer
for the control action to take effect. This means that for
a certain period there remains a tracking error, which
the integrator keeps integrating. This is called “integrator
windup” and it causes the controller output to grow. This
increase in the controller signal has no effect, because the
actuator is already at its saturation limit. A considerable
negative error is required to bring the integrator output
back within the proportional band where the control action
is not saturated.

The solution to this problem is the so-called integrator
anti-windup, which “turns off” the integral action in the
controller when the actuator saturates. One possible way

of implementing anti-windup is depicted in Fig. 3. The
value for the static anti-windup gain kA needs to be chosen,
based on performance criteria.

r(t) +

-

z(t)e(t)

s

1yc(t) satk(·)
+

+

d
kP

kI / s
-

+

+

+

-+

kA

yc,I(t)

Fig. 3. Implementation of anti-windup for the normalized
system.

The closed loop dynamics of the system in Fig. 3 can be
written in the following Lur’e form, where we leave d out
of the equations as d = 0:

ẋ = Ax−Bφ(yc) + Fu

yc = Cx+Du

z = Hx+ Eu,

(7)

where x =

[

z
yc,I

]

, with z being the normalized output

and yc,I the integrator part of controller (3), u(t) = r(t)
and φ(·) = satk(·) with

A =

[

0 0
−kI + kIkAkP −kIkA

]

, B =

[

−1
−kIkA

]

,

F =

[

0
kI − kIkAkP

]

, C = [−kP 1 ] ,

D = [ kP ] , H = [ 1 0 ] , E = [ 0 ] .

An important observation is the fact that the introduction
of saturation has rendered the system nonlinear. It is
known that for a stable linear time-invariant (LTI) system
with a given harmonic input, the solution will converge to
a unique harmonic steady-state solution. This harmonic
steady-state solution only depends on the input signal and
is independent of the initial conditions. In other words,
for a given input signal, solutions with different initial
conditions will converge to the same unique steady-state
solution.

This is in general not true for nonlinear systems as multiple
solutions might coexist. There is a, however, a class of
nonlinear systems for which a unique bounded steady-
state solution exists, which is independent of the initial
conditions, and only depends on the input signal. Roughly
speaking, this class of systems is referred to as the class
of convergent systems. In the next section we will address
conditions for which (7) is uniformly convergent. The fact
that the manufacturing system is uniformly convergent
allows us to analyse the performance as discussed in the
next section.
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3. FREQUENCY DOMAIN ANALYSIS OF
CONVERGENT SYSTEMS

As was stated earlier, certain choices for the controller
parameters kP , kI , kA need to be made, based on perfor-
mance criteria. For linear systems it is useful to investigate
the closed loop behavior captured in the sensitivity and
complementary sensitivity functions. These functions al-
low the quantification of the sensitivity of the closed-loop
system to measurement noise and its tracking properties.
A similar performance indicator for uniformly convergent
nonlinear systems was introduced in Pavlov et al. [2007].

Based on the results in van den Berg et al. [2006], one can
prove that for harmonic inputs r(t) = b sin(ωt) the system
(7) is uniformly convergent if kAkP > 1. The fact that
system (7) is uniformly convergent means that for each
input

r(t) = b sinωt (8)

there is one unique corresponding steady-state output
response z̄bω(t) and steady-state error ēbω(t). Details on
the exact definition of (uniform) convergency can be found
in van den Berg et al. [2006] and references therein.

Definition 1. (Pavlov et al. [2007]). For uniformly conver-
gent nonlinear systems we can define the generalized sen-
sitivity and generalized complementary sensitivity as fol-
lows:

S(b, w) =
‖ēbω‖2

‖r̄bω‖2

, T (b, w) =
‖z̄bω‖2

‖r̄bω‖2

. (9)

Notice that due to the nonlinearity, S(b, w) and T (b, w)
depend not only on the input frequency but also on the
input amplitude, in contrast to the linear case, where the
sensitivity functions are only a function of the frequency.

Simulations could now be used to obtain the steady-state
responses for a range of input frequencies and ampli-
tudes and calculate the generalized sensitivity functions.
These simulations would, however, consume a considerable
amount of time, especially if this has to be done for a range
of control parameter values. In van den Berg et al. [2007]
a computationally efficient method is presented, which
finds bounds on the generalized sensitivity functions using
harmonic linearization of system (7).

Bounds on ‖z̄bω‖2 can efficiently be calculated using har-
monic linearization, such that bounds on the generalized
complementary sensitivity are known.

First, using harmonic linearization the rms value of the
linear approximation η̄(t) of the nonlinear output z̄(t) can
be found as will be shown shortly hereafter. Next, an upper
bound on the accuracy of the approximation ‖z̄(t)− η̄(t)‖2

is given. Finally, using the triangular inequality we know
that

‖η̄‖2 − ‖z̄ − η̄‖2 ≤ ‖z̄‖2 ≤ ‖η̄‖2 + ‖z̄ − η̄‖2.

With the rms value of the input given by ‖r̄bω‖2 = b√
2
,

bounds on the generalized complementary sensitivity are
known.

3.1 Harmonic linearization

Here we will briefly discuss how harmonic linearization
– also referred to as the describing function method –
can be used to approximate the nonlinear system (7).
More details on well-posedness and accuracy of harmonic
linearization of harmonically forced Lur’e systems can be
found in van den Berg et al. [2007]. The nonlinear system
(7) is approximated by the following linear system:

ξ̇ =Aξ −BK (a(b, ω))φ(ζ) + Fu (10)

ζ =Cξ +Du (11)

η =Hξ + Eu, (12)

where the gain K is to be determined. In case matrix
A − BKC does not have eigenvalues on the imaginary
axis, this system has a unique periodic limit solution
with the corresponding approximated output equal to ζ =
a sin(ωt+ψ) for some amplitude a = a(b, ω) > 0 and some
phase ψ. For the saturation nonlinearity φ(·) = satk(·) the
equivalent gain K is given by (see e.g. Khalil [1996]):

K(a) =















1, a ≤ k

2

π



sin−1

(

k

a

)

+
k

a

√

1 −
(

k

a

)2



 , a > k

(13)

The relation between the output amplitude a and the input
amplitude b and frequency ω is given by the harmonic
balance equation

|1 +K(a)G(iω)|2a2 = |C(iωIn −A)−1F +D|2b2. (14)

If the amplitude b and frequency ω of the input are given
the right-hand side of this equation is known. Then we
can (numerically) solve the left-hand side to obtain the
amplitude a of the output. We are only interested in
positive and real solutions, because output amplitude a
can only be positive and real.

The left-hand side of (14) is a nonlinear function of a, due
to which, in general, it is possible that there exist multiple
solutions a for one pair of (b, ω). If, however, kAkP > 1
there is one unique positive real solution a(b, ω) of (14) as
shown in van den Berg et al. [2007].

The rms value of the approximated output η(t) is given by

‖η‖2 =
b√
2

∣

∣

∣
H (iωI − (A−BK (a (b, ω))C))

−1

(F −BK (a (b, ω))D) + E| , (15)

which depends on both b and ω.

An upper bound on the accuracy ‖z̄ − η̄‖2 of the approx-
imation η̄ is given in Theorem 7 of van den Berg et al.
[2007]. The upper bound on the accuracy of the approxi-
mation can be used to obtain bounds on the generalized
complementary sensitivity T (b, ω).

To estimate the generalized sensitivity S(b, ω) as given
by (9) in a similar way, bounds on ē(t) have to be
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known. In order to estimate the bounds where ē(t) should
lay between we need to choose matrices H and E such
that Hx + Eu represents the error ē(t) = r̄(t) − z̄(t).
Then, applying the same technique as discussed above for
the generalized complementary sensitivity, bound on the
generalized sensitivity S(b, ω) can be calculated.

4. NUMERICAL EXAMPLE: PERFORMANCE OF
MANUFACTURING SYSTEM

In this section it is demonstrated how the theory from
Section 3 can be used to analyse the performance of a
manufacturing system.

We consider the system given in Fig. 2, of which the closed
loop dynamics are described by (7). We choose controller
parameters kP = 10, kI = 20 and kA = 0.5, such that the
system is uniformly convergent.

The maximum production rate of the machine is umax =
25.0 and thus k = 12.5. The nominal desired production
rate ud is chosen equal to k, i.e. the system has a utilization
of 50% and d = 0. We consider different demand fluctua-
tions r(t) = b sin(ωt), with amplitudes b ∈ {2.5, 5.0, 12.5}
for a range of frequencies ω ∈ [0.1, 20] rad/sec. The initial
condition (yd0) does not matter, as the system is uniformly
convergent and the limit solution is independent of the
initial conditions.

10
−1

10
0

10
1

10
−1

10
0

ω [rad/s]

T
(b

,ω
)

 

 

b = 2.5 →

b = 5.0 →

b = 12.5 →
Linear System
Linearization
Bounds
Experimental

Fig. 4. Generalized complementary sensitivity function

T (b, w) = ||zbω||2
||rbω||2 , for b ∈ {2.5, 5.0, 12.5}.

The results of the approach described in Section 3 for
the generalized complementary sensitivity function are
depicted in Fig. 4. The results show the bounds on the
generalized complementary sensitivity function for differ-
ent fluctuation amplitudes b. For comparison, the comple-
mentary sensitivity of the linear system without saturation
has also been added.

The calculated bounds are also compared with the experi-
mentally determined generalized sensitivity functions. For
this purpose simulations were performed for a range of fre-
quencies to obtain z̄(t) and thus T (b, ω). The simulations
take a considerable time, which confirms the statement

that the approach based on harmonic linearization is more
time efficient.

First of all, it can be observed that the generalized com-
plementary sensitivity depends on the reference amplitude
b, unlike the linear complementary sensitivity. It is clear
that for bω > ud there is a drop in the closed loop tracking
performance. For demand fluctuations with bω > ud it is
required that the machine produces beyond its capacity
to follow the reference. This explains the sudden drop
in the closed loop performance of the system with input
saturation.

For bω < ud it can be observed that the closed loop
behavior of the nonlinear system is equal to that of the
linear system without input saturation. This is because
at these frequencies, the anti-windup controller keeps the
control signal within the saturation limits and thus the
system acts in a linear way.

The results also show that the approach used here is
accurate, as all experimental results lay well within the
error bounds. In fact, for this case we observe that the
experimental results are really close to the complementary
sensitivity of the harmonic linearization.

For low frequencies (roughly below 1 rad/sec) we have
good tracking performance for these demand amplitudes.
Moreover, a resonant peak is visible at a frequency around
3 rad/sec. This observation might help to understand the
bullwhip effect, where demand fluctuations in a supply
chain move and grow upstream (see Lee et al. [1997]). A
small demand fluctuation at the customer end of the line
can result in a large fluctuation upstream at the supplier
and manufacturing side.

Results like these, are valuable when control parameters
need to be chosen. Throughout this paper we have worked
with a continuous approximation of a discrete-event man-
ufacturing machine. Next, we want to use the derived
controller to control a discrete-event production system.

4.1 Discrete-event simulation

To implement the controller in the discrete-event domain,
a discrete-event simulation of the single machine with the
derived controller is used. This is an accurate and well-
accepted modeling technique in the analysis of manufac-
turing systems. The discrete-event model was constructed
using χ, a specification language developed at Eindhoven
University of Technology (see van Beek et al. [2006]).

In the discrete-event case, we do not control the production
rate of the machine, but we instead control the rate at
which unfinished products arrive at the buffer in front
of the machine. This means that we can still control the
production rate of the system as a whole. There is another
important difference between the continuous approxima-
tion and the discrete-event system. The approximated
continuous machine produces products instantly, without
delay, whereas in the discrete-event case, it takes a pro-
cessing time t0 = 1

umax

to finish a lot. This means that the
umax is a measure of how quick the system can respond to
demand fluctuations.

As an illustration of the bad behavior without anti-
windup, we consider the same machine and PI controller
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z0 = −5
z0 = −3

Fig. 5. Discrete-event simulation results for kA = 0.0, and
reference b = 12.5, ω = 1.0.

as before, however without anti-windup, i.e. kA = 0.0. We
have the same desired production (2), with fluctuation
amplitude b = 12.5 and frequency ω = 1.0. The result
of discrete-event simulations for different initial condition
are shown in Fig. 5. The results demonstrate that without
anti-windup kA > 1/kP the steady-state solution depends
on the initial conditions.

For the same machine and PI controller with anti-windup
control action kA = 0.5 the result of a discrete-event
simulation is shown in Fig. 6 for a demand fluctuation
parameters b = 12.5 and ω = 0.5. This result demonstrates
that the anti-windup controlled discrete-event manufac-
turing system is able to follow the demand fluctuation
at low frequencies. This corresponds to the observations
made before in Fig. 4, where we observed that the system
has good tracking performance for these parameters b and
ω.

0 5 10 15 20 25 30
−20

−10

0

10

20

z(
t)

Time

 

 

DES
r(t)

Fig. 6. Discrete-event simulation results for kA = 0.5, and
reference b = 12.5, ω = 0.5.

Fig. 7 shows the result of a simulation for the same
parameters, but now for a demand fluctuation with b = 2.5
and ω = 3.0. It can be seen that in this case there is an
overshoot of production. This confirms the observation of
the resonant peak for these parameters in Fig. 4.

0 5 10 15 20 25 30
−4

−2

0

2

4

z(
t)

Time

 

 

DES
r(t)

Fig. 7. Discrete-event simulation results for kA = 0.5, and
reference b = 2.5, ω = 3.0.

5. CONCLUSION

In this paper we discussed the problem of controlling a
discrete-event manufacturing system. Here we chose to

use a continuous approximation model of a manufactur-
ing machine and control this with a PI controller with
anti-windup. For this system uniform convergency can be
proven under certain conditions. For uniformly conver-
gent systems it is possible to analyse the performance in
the frequency domain by means of the generalized sen-
sitivity functions. A method exists that efficiently calcu-
lates bounds on the generalized sensitivity functions. This
method has been applied to the manufacturing system.

Finally the controller was implemented on the discrete-
event system by means of discrete-event simulations. The
simulation results confirmed that the application of a
simple PI controller without anti-windup does not result
in a unique steady-state solution. Discrete-event results
with an anti-windup controller corresponded to the obser-
vations that were made during the performance analysis
of the continuous approximation.

More research is needed to make the anti-windup control
approach applicable to more complex manufacturing sys-
tem, such as lines and networks with multiple machines.
For such systems a comparison needs to be made between
the anti-windup control approach and existing control
strategies.
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