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Abstract: The optimal control and parameters estimation of flexible vehicle motion and elastic 
displacements consist usually in solving the stabilization and trajectory tracking problems with many 
restrictions on dynamic properties. Sensors position defines influence of elastic oscillations on measured 
parameters of vehicle motion as solid body. The effective analytical approach and software for solving the 
problem of optimal choice of requirements for sensors number, type and positioning are suggested in this 
paper. Solution is based on linear programming method properties. The quadratic performance index for 
stochastic LTI systems and errors of measuring define inequalities-restrictions. The minimized goal 
function is related with number, type and accuracy of sensors. 

 

1. INTRODUCTION1 

State-space model of aeroelastic vehicle includes the dynamic 
equations of solid body motions, models of flexible relative 
displacements of construction, actuators dynamics from one 
side and from other side the cross relations defined by 
aerodynamic and trust forces and closed loop feedback 
control. Such effects as sloshing, stochastic models of non-
stationary aerodynamic forces may be included also.  

1.1 Solid-body equations  

The rigid part of mathematical model of vehicle is described 
by the system of differential non-linear equations (1).  
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Here xyzv is velocity vector for center of gravity (c.g.), xyzω  
is angular velocity vector about the c.g, xyzf is total external 
force vector, xyzm is total external moment vector, M is total 
mass, xyzI  is inertia tensor of the rigid body. The solution 
{ xyzv,ωxyz } is vehicle motion in the body reference frame. 

2.2 Elasticity equations 

Discrete form of flexible forced oscillations in node 
displacements q at body axes frame as next 

,fqqqM Δ=+ΔΞ+Δ &&&  (2) 
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where M  is diagonal mass matrix of lumped masses mi , Δ  
is the inverse stiffness symmetrical matrix and Ξ  is damping 
symmetrical matrix, f is vector of lumped loads in each node. 
Matrix Δ  is calculated with tacking to account free 
boundaries and dynamic equilibrium conditions. It implies 
that the matrix Δ  is singular, and pair of singular values 
corresponds to linear displacement and rotation of vehicle as 
solid body. In other words, the stiffness matrix ignores the 
part of distributed loads which do not cause the deformation. 
The solution of homogeneous part of ordinary differential 
equation (3) 

,Δ 0qqM =+&&  (3) 

without damping 0=Ξ , corresponds to free oscillations: 

The dimension of equation is defined by the number of node 
points. If one multiplies equation on the left by 2

1−M  and 
solves eigenvalues problem for symmetrical matrix 
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one obtains natural frequencies iω  , as and mass normalized 
shapes of free oscillations }{φ ,

j
jiΦ= , as columns of 

matrix Φ . 

The displacements of forced flexible oscillations can be 
represented as linear combination of shapes of free 
oscillations. The components of vector ξ  are known as 
modes of flexible oscillations (generalized coordinates). 

Φξ=q . (6) 

By multiplying on the left by 2
1−M  and substituting of q , the 

equation (2) can be written as 
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It can be transformed by multiplying on the left by 2
1ΦM′  

and taking into account trivial property of symmetrical matrix 
( ) ( )2
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1 ΦΛ Δ  Φ MMMM ′=′  to the following form 

fMM ΦΛΦξΦξΞΦΦΛξΦΦΛ ′=′+′+′ &&& , (8) 

fMM ΦΦξΦΩξΞΦΦξΦΦ 2 ′=′+′+′ &&& . (9) 

The diagonal elements iM  of ΦΦM′  are known as general 
masses and the components of vector fΦ′ are known as 
general forces. In common case the matrix of general masses 
is diagonal, but for conditions (4) it is an identity matrix. 

Theoretically the number of modes is equal to the number of 
local masses. Practically it is possible to decrease dimension 
of equation by eliminating the non-dominant harmonics. If 
one eliminates corresponding components of q  and columns 
of matrix Φ , one obtains the reduced equation. 

For analogy with pendulum equation the transformed 
damping matrix is approximately assumed as diagonal with 
elements equal to 

)(2ΞΦΦ iiiMdiag ωζ=′ . (10) 

1.3 Aeroservoelasticity 

Rigid body model of vehicle and model of elasticity are 
interconnected via distributed aerodynamic forces, which 
depend on parameters of body motion and local angle of 
attack at i nodes. For example for lateral elastic 
displacements in the pitching plane the local angle of attack 
is 
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where ii xq ∂∂ is slope of node surface in current time, iq& is 
the lateral node velocity. Here iV  is local air velocity, ia  is 
local attack angle of node airfoil section for solid body. For 
mathematical simplicity the so-called strip theory as a first 
approximation is used. In this theory it is assumed that the 
local force is proportional to the local angle of attack. 

The lumped loads f  include aerodynamic and thrust forces, 
applied to points of body in various directions. These forces 
depend from flexible displacements of construction and 
control law u, which defines value and direction of thrust and 
positions of aerodynamic control surfaces. The total forces 
fxyz and moment mxyz are formed from lumped loads. 

1.4 LTI model 

State-space model of object with consideration of all factors 
may be created by applying linearization procedure to system 
of all nonlinear and time-varying equations about points of 
calculated base trajectory. Approximately one can separate 
the motion of object to translation and rotation and research 
motion in one plane. For simplicity let us investigate the 

longitudinal motion of vehicle in pitch channel and use beam 
flexibility model of bending oscillations. It is reasonable to 
use minimal realization of system where all uncontrollable or 
unobservable modes have been removed. 

2. MEASUREMENTS, ESTIMATION AND CONTROL 

The output of sensors, measuring linear or angle parameters 
of motion, includes matched parameters of flexible 
displacements. Influence of oscillations depends on the 
positions of sensors. It is necessary to perform the estimation 
of state space vector and design the control law considering 
this information. The optimization of measuring and control 
systems for flexible aerospace vehicles is not separated from 
estimator and regulator optimization. 

State-space model of aeroservoelastic object may be 
represented in the following matrix form: 

wBuAxx ++=& , (12) 
vuDxCy ++=   , (13) 

where )ξ,( scol xx =  is a state vector includes the solid body 
and actuators state parameters sx  and modes of oscillations 
ξ . The input of system contains deterministic control u, 
process noise w and measurement noise v. The output of 
system is measurement vector y. 

The matrix Anxn is called the dynamic coefficient matrix, 
and Bnxm is the input coupling matrix. The matrix Ckxn is 
the measurement sensitivity matrix, and Dkxm is the input-
output coupling matrix. 

The main feature of matrix C is that the rows of C contain 
information about sensors and their position. This is used to 
formalize and solve the problem of sensors choice and their 
accommodation. 

2.1 Shapes based model of measurements 

Let us define the measurement sensitivity matrix for sensors 
measuring angle, angular velocity and linear acceleration. For 
the pitching motion the state vector is given by 

( )221 ,,,,,, qqqqcol &&&θθα=x . If one defines matrix C for all 
available nodes n of elastic body, where it is possible to set 
the above types sensors, one obtains 

( )0000C xx ∂∂∂∂= 21
00 φφφθ ,  

( )xx ∂∂∂∂= 21
00 φφφ 0000Cω , (14) 

( )21
01 φφφ 0000C =a ,  

where measurement sensitivity matrix θC  corresponds to 
tangage, ωC  corresponds to angular velocity , and aC  
corresponds to acceleration. The vectors 00φ  and 01φ  are so-
called solid body shapes for translation and rotation. The 
shapes of bending oscillations of homogenous beam 

∑= )()(),( txtxq i ξφ  and its derivatives x∂∂ 1φ , 

x∂∂ 2φ  are shown in Fig. 1. 
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Fig. 1. Mass normalized shapes and their 1st and 2nd 
derivatives 

The row-vectors c(i) =[Ci,j] of matrix C correspond to sensors 
positions. The elimination of rows of matrix C in equation 
(13) is adequate to the elimination of sensors. It is reasonable 
to complete matrix C in consideration of || c(i) – c(j) ||, thus it 
is possible to change nodes partitions and exclude the 
possibility of ambiguity correspondence from rows of C to 
points of sensors location. The elimination of a priori not 
suitable points decreases the dimension of measurements 
optimization problem. 
The Linear Quadratic Gaussian (LQG) control system 
contains optimal linear-quadratic regulator or tracking 
controller and stationary Kalman filter for estimation of state 
vector. Let us investigate LQG control system purposely to 
optimize measurements satisfying requirements for control 
and estimation. 

2.2 KALMAN ESTIMATION AND OPTIMAL 
LQ REGULATOR 

The system (12),(13) must be completely controllable and 
observable. For the pitching motion with state vector 

( )221 ,,,,,, qqqqcol &&&θθα=x  let us expand the model of 
measurement. 

 
Fig. 2: Plant and measurements 

The matrix },{ ωθ CCC1 col=  corresponds to angle and 
angular velocity measurements, the matrix aCC2 =  
corresponds to accelerations. 
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Let us assign and substitute 
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Let us determine stochastic properties of unbiased white 
noises 
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In this case, the optimal estimation of state-vector is 

( ),DuCxyLBuAxx −−++= eee&  (18) 

( ) ,1−+′= RNCSL  (19) 
where S.>0 is solution of associated with estimator Riccati 
equation 
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The control is implemented using observer state variables 

,  , 1 PBRFFxu r ′=−= −
e  (21) 

where P.>0 is solution of associated with regulator Riccati 
equation 

,1 0QPBPBRPAPA rr =+′−+′ −  (22) 

 

for the following quadratic performance index with weighting 
matrixes 0. ,0. >≥ rr RQ , which condense requirements for 
dynamic properties of closed-loop system 

( )∫
∞
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0

dtEJ uRuxQx rr . (23) 

The time-averaged value of quadratic performance index is 
equal to 
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( )FRFSPQ r′+= trσ . (25) 
 
The value of σ  linearly depends from covariance matrix of 
state error estimation S, which in one's turn linked with 
covariance matrix R, defining error dispersion of 
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measurements. Let us assume that the measurement noises 
are not correlated variables and therefore the matrix V is 
diagonal matrix with vi,j elements corresponding to 
dispersions of noises of sensors in i nodes. The diagonal 
elements of inverse matrix V-1 equaling zero can be 
interpreted as absence of sensors in corresponding node. 

Let us impose a responsibility for dynamical properties of 
closed-loop system with state-feedback law (21) to choice 
weight matrix Qr and Rr and fix this by setting minimal 
value of time-averaged quadratic performance indexσ . The 
matrix of state error estimation S defines the accuracy of 
estimation. 

3. MATHEMATICAL PROGRAMMING PROBLEM 
FORMULATION 

The main question about measurement optimization is where, 
which and how many sensors one should use to provide a 
necessary accuracy of state estimation and to realize the 
desired control system. 

3.1 Restrictions 

Let us formulate the main requirements as 

( ) ,*σσ ≤S  (26) 

( ) *.  SRS ≤ . (27) 

The last inequality for solution of (20) defines that the 
difference is not a positive-definite matrix. 

The restrictions may be not so stringent if the accuracy is 
declared only for some of components of state vector or their 
linear combination exv′  

( ) *   d≤′ vRSv . (28) 
Fulfilment of these inequalities for various weight matrixes 
of a functional (23) one shall use as restrictions. Performance 
of these restrictions by some composition of sensors provides 
permissible nonoptimal solution Ro. 

3.2 Goal function 

Let us examine equation (20). All information about sensors 
condensed in diagonal matrix 1−R . Let us define 1Rx −= i,ii . 
The goal function for x can be written as 

( ) xρx ′=f , (29) 
where ρ  is weight vector. The physical meaning of this 
measurements cost function minimization can be explained 
by the following features: 

0≥ix   it is condition for dispersions, 
0=ix   there are no sensor in i node, 

mki xxx +=  there are two sensors in i node. 

The last equality assumes that the signals from two sensors 
were processed as least squares solution ex  in the presence 
of known covariance diagonal matrix 

])([}{ 11 −−=′= mk xxdiagE wwR  and ]1   1[=C . The 
descriptions of least squares solution is as following 
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The coefficients of weight vector ρ  are specified under the 
assumption about priority of applied sensors (cost of the 
sensor, its weight, reliability, etc.) and setting points which 
can differ by variance of noise of measurements. 

3.2 Linear programming problem 

Let matrix S satisfies restrictions (26),(27), then the equation 
(20) defines the restriction for x 
( ) ( ) QASASNCSxNCS +′+=′++′ )(diag . (31) 
With taking into account the requirement to minimize goal 
function (29) min→′xρ the problem can be represented in 
the following form 
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This is complete setting of linear programming problem. 
Reduction of the equations to a canonical form justifies an 
optimum amount of sensors, and the outcome of a solution 
determines a locations and parameters of sensors. In other 
words the number of active restrictions defines a number of 
nonzero components of vector x, that equal to number of 
sensors. 
The solving problem with equalities-restrictions may exclude 
minimal solution for goal function, which increase precision 
of estimation. The next problem statement with extended 
vector of controlled variables ( )xx ~,col  formally compensates 
accuracy advantage 
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4. CONCLUSIONS 

The optimization of measuring system for flexible aerospace 
vehicle requires full information about the mathematical 
model of object motion and elastic oscillations and can not be 
solved separately from control optimization. The suggested 
approach can be included in specific software developed for 
these purposes. 

The additionally developed methods and algorithms for 
solving this problem, such as choice of controllable variables 
and elimination of surplus inequalities, guarantee the convex 
programming conditions for goal function and restrictions. 
This implies uniqueness of solution and good performance 
and convergence. 

The offered algorithm of optimization can be applied also to 
a problem, not linked with elastic vibrations - problems in 
which location of sensors determines parameters of linear 
combination of estimated parameters. The approach can be 
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applied also to a problem of localization and choice devices 
for active damping of elastic vibrations, proceeding from the 
duality of problems of optimal control and estimation. 
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