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Abstract: This paper considers the analysis and synthesis of a spatially distributed controller
for discrete-time spatially interconnected parameter-varying system. The system under con-
sideration has both discrete time and space dynamics. The concept of quadratic separators
(Iwasaki and Shibata, 2001), (Chughtai and Werner, 2007) has been extended to compute a
measure of worst-case performance for such systems by solving an LMI problem. The use of
quadratic separator allows a systematic search for a parameter dependent Lyapunov function,
thus resulting in less conservative controllers. The problem of synthesizing controllers leads to a
nonlinear matrix inequality, and a hybrid evolutionary-LMI approach to solving this problem,
based on LMI solvers and genetic algorithms, is proposed in this paper. A design example
illustrates the efficiency of the proposed method.
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Systems.

1. INTRODUCTION

The problem of finding suitable controllers for large scale
interconnected systems has attracted researchers for more
than three decades. The main problem associated with
such systems is that modern MIMO controller design
approaches may fail if the number of subsystems becomes
very large.

In some cases interacting systems are distributed spatially
and their interactions depend on the spatial location of
one subsystem with respect to another. In (D’Andrea and
Dullerud, 2003), a detailed analysis and synthesis frame-
work is presented to deal with systems which consists of
identical interconnected subsystems located at the nodes
of a fixed lattice as shown in Figure 1.

The framework developed in (D’Andrea and Dullerud,
2003) requires that the spatially distributed system G be
represented in its state space form as
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where T and S are the temporal differential and spatial
shift operators defined as:

Txt(t, s) =
dx(t, s1, . . . , sL)

dt
Six

s(t, s) = x(t, s1, . . . , si + 1, . . . , sL)

and s = [s1, ..., sL] represents the spatial variable. Physi-
cally, the spatial states xs represent the interactions among
the subsystems.

The assumption of having identical subsystems can be
relaxed to near identical subsystems if these can be rep-
resented in Linear Fractional Transformation (LFT) form,

z

G G G

wwwz z

Fig. 1. Spatially Distributed System

see (Wu and Yildizoglu, 2005). The approach proposed
in that work searches for a fixed Lyapunov function over
complete variations and any conservatism which may arise
is reduced by scaling or multipliers. The controller de-
signed using the approach has structure as shown in Figure
2, which requires considerable communication among the
local controllers. Which may limit its application.
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Fig. 2. Spatially Gain Scheduled Control Structure

This paper presents new analysis conditions to find the
worst-case L2-norm of spatially interconnected parameter
varying (SIPV) discrete-time systems. The approach pre-
sented here is based on the concept of quadratic separa-
tion (Iwasaki and Shibata, 2001). Thus, it systematically
searches for a parameter dependent Lyapunov function
along with an extra degree of freedom which arises in
the form of multipliers. The analysis condition is used to
synthesize fixed structured controllers using LMI solvers
and evolutionary search. Experience suggests that this
approach is quite suitable for real-world applications, as
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it is independent of controller order and structure. It
allows a systematic search for less conservative distributed
controllers which are easily implementable. Specifically we
have considered the following types of controller.

1. As shown in Figure 3, where the controller is sched-
uled according to the spatial variations of parameters
but different control modules do not exchange infor-
mation, thus reducing the communication burden.

2. As shown in Figure. 4, where the same controller is
used at each node point.
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Fig. 3. Spatially Decentralized Gain Scheduled Control
Structure
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Fig. 4. Decentralized Robust Control Structure

The paper is organized as follows: Section II summarizes
some preliminary concepts which will be used in Section III
to obtain an L2-norm analysis result. Section IV presents
an approach to controller synthesis using the analysis
LMIs developed in section III. In section IV the infinite-
dimensional problem of Theorem 3.1 is converted to a
finite dimensional problem using the D-G scaling approach
of (Iwasaki and Shibata, 2001). The approach is applied
to a simple example to demonstrate its usage. Finally in
section V some conclusions are drawn.

2. NOTATION AND PRELIMINARIES

Let the state space representation of an interconnected
system be given as
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with feedback

p = ∆q

where p, q ∈ Rm, ∆ ∈ Rm×m, ∆ ∈ ∆. We are dealing
with signals which are vector valued functions of L +
1 independent variables: d = d(t, s1, . . . , sL), where t
denotes the temporal variable and si the spatial variable.
For the systems considered here both t and si are integer
valued.

For brevity let us define xT =
[

xtT xsT
]

, where xt ∈ Rnt ,

ns =
L
∑

i=1

nsi
+

L
∑

i=1

ns
−i

, xs1 ∈ Rnsi , w ∈ Rl, z ∈ Rk and,

A =

[
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]

, B1 =

[

Bt
1
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1

]

C1 =
[

Ct
1 Cs

1

]

(3)

Using the discrete-time stability condition presented in
(Curtain and Zwart, 1995), Theorem 2 of (D’Andrea and
Dullerud, 2003) can be modified for discrete-time discrete-
space systems as follows.

Theorem 2.1. A system G with state space representation
(1), is well-posed, stable and has L2-norm < γ if there exist
Xt ∈ Xt and Xs ∈ Xs such that the following inequality is
satisfied:





AT XA − X AT XB1 CT
1

BT
1 XA −γ2I DT

11
C1 D11 −I



 < 0 (4)

where
X := diag(Xt,Xs)

X t := {Xt ∈ Rnt×nt : Xt = XtT > 0}

X s := {Xs = diag(Xs1 , ...,XsL) :

Xsi = XsiT ∈ Rnsi
×nsi}

3. WORST CASE L2-NORM OF SIPV SYSTEMS

Consider an SIPV system with state space representation
as given in (2). We can define

A∆ = A +

[

Bt
0 Bt

0
Bs

0 Bs
0

] [

N t 0
0 Ns

]

(5)

where

N t := (I − ∆D00)
−1∆Ct

0

Ns := diag(Ns1

0 , . . . , NsL

0 )

Nsi = (I − ∆D00)
−1∆Csi

0

Cs
0 = [Cs1

0 ... CsL

0 ] (6)

Furthermore, let the parameter-dependent Lyapunov ma-
trix X∆ be represented as shown in Figure 5, where ∆(t, s)

X

∆

Fig. 5. Lyapunov matrix X∆

is the same as that associated with the plant. Then

X∆ = diag(Xt
∆,Xs

∆) (7)

where
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ξ = 0 (15)

Xt
∆ =

[

I
N t

]T

Xt

[

I
N t

]

, (8)

Xs
∆ = diag(Xs1

∆ , ...,XsL

∆ )

Xsi

∆ =

[

I
Nsi

]T

Xsi

[

I
Nsi

]

,Xsi ∈ Rnsi
×nsi

Applying Theorem 2.1 to the system whose dynamics are
governed by A∆ will leads to an LMI condition where (4)
is replaced by the following inequality





A∆T X∆
k+1A

∆ − X∆
k A∆T X∆

k+1B1 CT
1

BT
1 X∆

k+1A
∆ −γ2I DT

11

C1 D11 −I



 < 0 (9)

where the index k is introduced to distinguish between X∆

at different times, since only temporally causal systems are
considered here. Applying the Schur complement to (9)
results in

J < 0 (10)

where

J =

[

A∆T X∆
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− X∆

k
+ CT

1
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]

Let us further define ∆δ
k = ∆k+1 − ∆k as the change in

uncertainty during one interval and

ηt
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k
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1w
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kD̃00η
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k

(11)

where

pt
k = N t

kxt
k

ps = [ps1 , . . . , psL ]T

psi = Nsixsi ,∀i = {1, . . . , L}

(12)

and D̃11, D̃, Ĩ, B̃t
0 and B̃s

0 are matrices with D11, D00, I,
Bt

0, Bs
0 repeated L times, and

∆̃ = diag(∆, . . . ,∆), ∆̃δ = diag(∆δ, . . . ,∆δ)

C̃s
0 = diag(Cs1

0 , . . . , CsL

0 ), D̃00 = diag(D00, . . . ,D00)

(13)

Remark : Here for generality it is assumed that ∆δ 6= 0.
Indeed, if only uncertain systems are considered, then
∆δ = 0 can be considered as a special case.

Now, for a system defined by (2) and using (5) and (7),
(10) can be written as (14). From (6), (11) and (12) the
vectors x, ηt, ηs, φt and φs must satisfy the constraint
given in (15), where ξT = [xt, xs, pt, ps, w, ηt, ηs, φt, φs].
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
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


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then, (14) and (15) can be written as

ξT

([

AT

BT

]

X [A B] −

[

I
0

]

X [I 0] +

[

ET

FT

]

Γ [E F ]

)

ξ < 0 (17)

[∇ −I] [C D] ξ = 0 (18)

where ∇ := diag(∆,∆, ∆̃,∆δ, ∆̃δ) and

Γγ =

[

I 0
0 −γ2I

]

Applying the Generalized Finsler’s Lemma (Iwasaki and
Shibata, 2001) , (17) and (18) are equivalent to

[

AT

BT

]

X [A B] −

[

I
0

]

X [I 0] +

[

CT

DT

]

Θ [C D] +

[

ET

FT

]

Γ [E F ] < 0 (19)

where Θ ∈ Θ

Θ =

{

Θ :

[

I
∇

]T

Θ

[

I
∇

]

> 0

}

(20)

The above result can formally be presented as the following
theorem.

Theorem 3.1. Consider a SIPV system with state space
realization (2). The system is well-posed and internally
stable and the worst-case L2-norm from w to z is less than
γ if there exists X := diag(Xt,Xs), where

X t := {Xt ∈ R(nt+m)×(nt+m) : Xt = XtT > 0}

X s := {Xs = diag(Xs1 , ...,XsL) :

Xsi = XsiT ∈ R(nsi
+m)×(nsi

+m)}

(21)

and the following holds for each admissible ∆ ∈ ∆.






A B
I 0
C D
E F







T 





X 0 0 0
0 −X 0 0
0 0 Θ 0
0 0 0 Γγ













A B
I 0
C D
E F






< 0

[

I
∇

]T

Θ

[

I
∇

]

> 0 (22)

4. CONTROLLER SYNTHESIS

In this section it will be shown how the analysis condition
presented in the previous section can be utilized for
controller synthesis purposes. Let an SIPV system (2) be
given in generalized plant form as


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
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


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




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1
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0
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1
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2
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0
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1
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1

0 D11 D12

Ct
y Cs

y Dyp Dyw 0

















xt

xs

p

w

u









(23)

e = r − y

with feedback

p = ∆q

Checking the condition of Theorem 3.1 is an infinite-
dimensional problem, which can be reduced by using the
D-G scaling approach as proposed in (Iwasaki and Shibata,
2001). This approach is however conservative as the set Θ
will be replaced by a subset to gain tractability.

4.1 D-G scaling

Let ∆ and ∆δ of a SIPV system have the form

∆(t, s) = diag {q1(t)Ik1
, . . . , qv(t)Ikv

,

qv+1(s)Ikv+1
, . . . , qm(s)Ikm

}

∆δ(t, s) = diag
{

qδ
1(t)Ik1

, . . . , qδ
v(t)Ikv

, 0, . . . , 0
}

(24)

and all the varying parameters qi are bounded such that
|qi| < δi ∀i = 1, . . . ,m. Moreover, changes in the varying
parameter in single time interval qδ

i are bounded such
that

∣

∣qδ
i

∣

∣ < ρi, ∀i = 1, . . . , v, while the spatially varying
parameters are considered fixed over time.

Let us also define sets of scaling matrices that commute
with the structure of ∇ as follows:

D := {D : D∇ = ∇D,D = D′ > 0}

G = {G : G∇ = ∇G,G + G′ = 0} (25)

Using D-G scaling leads to the following result.

Theorem 4.1. The LPV system described by (2) and (24)
is stable and has worst-case performance less than γ if
there exists X = diag(Xt,Xs), where Xt and Xs are
defined in (21) and Θ ∈ ΘDG such that (22) holds, where
A,B, C,D, E and F are defined in (16) and

ΘDG :=

{[

ΥRΥ S
S′ −R

]

: R ∈ D,S ∈ G

}

(26)

where

Υ := diag
(

Υδ,Υδ, Υ̃δ,Υρ, Υ̃ρ

)

Υδ := diag (δ1Ik1
, . . . , δmIkm

)

Υρ := diag (ρ1Ik1
, . . . , ρvIkv

, 0, . . . , 0)

Υ̃δ = diag(Υδ, . . . ,Υδ)

Υ̃ρ = diag(Υρ, . . . ,Υρ) (27)
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The synthesis problem - the LMI (19) - is turned into a
non-linear matrix inequality in P , Θ, Γγ and K. How-
ever, for fixed K, (19) can be solved using standard LMI
solvers. This motivates a hybrid evolutionary-LMI ap-
proach, where K is searched for using evolutionary search
methods.

4.2 Hybrid Evolutionary-Algebraic Algorithm for Controller
Synthesis

A hybrid evolutionary approach was proposed in (Farag
and Werner, 2004) for solving non-convex synthesis prob-
lems involving lumped LTI systems. Here, this approach
is used to construct K, and the LMI solver is applied
to calculate P,Θ and γ. A complete algorithm to find a
controller that minimizes the worst-case performance γ
over the complete operational envelope of an SIPV system,
can be given as follows:

• Generate an initial random population of controllers
{K1, . . . ,Kµ},

where Ki =
{

Ak
i, Bk

i, Ck
i,Dk

i
}

• Evaluate the objective function:

f(Ki) =

{

γ if Acl is stable

κ(Acl) + β if Acl is unstable
(28)

where Acl is the A-matrix of the closed loop system,
κ(Acl) is the maximum real part of the eigenvalues of
Acl, β is a penalty on destabilizing controllers, and
γ is the worst-case performance obtained by solving
(22) with (26) using standard LMI solvers

• Evolve the current generation using evolutionary
operators to produce the next generation

• Repeat evaluate and evolve steps until a stopping
criterion is met.

Note that the above algorithm is independent of the
controller structure, thus controllers with arbitrary order
and structure can be synthesized.

4.3 Example

To illustrate the above algorithm, consider the problem
of temperature control of a nonuniform two-dimensional
plate. This example is a modified version of an example
given in (D’Andrea and Dullerud, 2003) (to test the above
algorithm, a spatial variation of the thermal conductivity
has been introduced). Let Q be a heat source, then the
multi-dimensional heat transfer in the absence of any
convective heat loss, is given by,

ρc
∂T

∂t
= ∇(K∇T ) + Q (29)

where, T , ρ, c, K are the temperature, density, specific
heat and thermal conductivity of the material and ∇ =
( ∂

∂x
, ∂

∂y
).

It is assumed that the thermal conductivity of the plate
varies linearly along both the dimensions by the following
relation.

K(x, y) = K0(1 − ǫ
x

L1
− ǫ

y

L2
) (30)

Using the finite difference approximation of the time
derivative and two spatial partial derivatives, results in
the following discrete-time, discrete-space approximation

Table 1. Worst case L2-norm (γ) for different
values of ǫ.

ǫ γ γro γgs

0.1 1.621 1.92 1.84
0.3 2.425 5.31 3.55
0.7 3.273 10.21 6.43

Tk+1 − Tk

ts
= (K ′ − αδ1 − αδ2)(S1 + S−1

1 − 2)Tk

+(K ′ − αδ1 − αδ2)(S2 + S−1
2 − 2)Tk

−
2α

L1
(S1 − S−1

1 )Tk −
2α

L2
(S2 − S−1

2 )Tk

+
1

ρc
Q, (31)

where K ′ = K0(1 − ǫ), α = ǫ K0

2ρc
, δ1 = 2x/L1 − 1,

δ2 = 2y/L2 − 1 and ts is the time interval, taken as
0.01 sec. The boundary conditions are taken to be simply
T (t, 0, y) = T (t, L1, y) = T (t, x, 0) = T (t, x, L2) = 0.
Let d1 be the input disturbance and r be the reference
temperature. The control objective is disturbance rejection
with minimum control effort.

For comparison, first the approach presented in (Wu
and Yildizoglu, 2005) (the controller shown in Figure 2)
is applied to the system for different values of ǫ. The
results are summarized in Table 1, γ denotes the achieved
worst-case performance. One can see that as the spatial
variation in the system increases the worst-case L2-norm
also increases.

Next the fixed-structure controllers shown in Figure. 4 and
3 are designed. The worst-case L2-norms achieved by these
controllers, after 100 generations with 20 individuals, are
γro and γgs, respectively. Note that the worst-case perfor-
mance index has increased, which indicates a deterioration
in achieved control objectives - this is the price one has
to pay in order to use simply structured controllers. The
main advantage is that the communication burden has
been reduced and also the connective stability is ensured
as discussed in (Siljak, 1978).

5. CONCLUSIONS

This paper presents sufficient LMI conditions to find the
worst case L2-norm of discrete time SIPV systems. These
conditions are less conservative than previously presented
LMI conditions since they are based on parameter depen-
dent Lyapunov functions and multipliers.

The LMIs are then used in a combined evolutionary-
LMI algorithm to design low-order fixed-structure robust
or gain-scheduled controllers. The proposed algorithm
involves genetic operators to span the solution space and
LMI solvers to find the worst case performance.

The efficiency of algorithm is demonstrated by applying it
to the problem of controlling the temperature profile of a
large non-uniform plate.
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