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Abstract: This work is concerned with identification of Hammerstein systems whose outputs
are measured by set-valued sensors. The system consists of a memoryless nonlinearity which is
polynomial and possibly non-invertible, followed by a linear subsystem. The parameters of linear
and nonlinear parts are unknown but have known orders. Input design, identification algorithms,
and their essential properties are presented under the assumptions that the distribution function
of the noise is known and the threshold values of set-valued sensors are known. The concept of
strongly scaled full rank signals is introduced to capture the essential conditions under which
the Hammerstein system can be identified with set-valued observations. Under strongly scaled
full rank conditions, a strongly convergent algorithm is constructed. The unbias and efficient
properties of the algorithm are investigated.
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1. INTRODUCTION

Set-valued sensors are commonly employed in practical
systems since they are more cost effective than regular
sensors. In some applications, they are the only ones avail-
able during real-time operations (Wang et al, 2003). More
importantly, set-valued observations are the fundamental
building blocks for quantized observations that are inte-
grated parts of communication channels. Consequently,
understanding system identification under set-valued ob-
servations is essential for studying identification of systems
involving communication channels.

Set-valued observations supply very limited information
on the system outputs, and hence introduce difficulties
in system identification. Classical system identification
methods, such as least-square algorithms, maximum like-
lihood methods, etc., assume that the output is measured
by a linear sensor and construct estimation algorithms
accordingly. However, the information from set-valued ob-
servations contains only a finite number of possible values,
making it necessary to develop new methodologies and
algorithms, and to ensure convergence of estimates.

The first comprehensive treatment on identification with
set-valued observations was presented in Wang et al
(2003). Based on full rank periodic inputs and empirical
distribution, Wang et al (2003) investigated identification
errors, time complexity, input design, and impact of dis-
turbances and unmodeled dynamics on identification ac-
curacy and complexity for linear systems that are modeled
by impulse responses with binary-valued observations. The

⋆ This work was supported by the National Natural Science Founda-
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work was extended to rational models and unknown noise
distributions in Wang et al (2006). Recently, the method-
ologies have been extended to system identification with
quantized observations in Wang & Yin (2007). Most signif-
icantly, the optimality of the identification algorithms has
been established by showing the Cramér-Rao lower bound
is asymptotically achieved (Wang & Yin, 2007). The work
on nonlinear systems with set-valued observations started
with Wiener systems in Zhao et al (2007). Comparing to
Wang et al (2003), the main difficulty of Wiener system
identification is how to deal with the nonlinearity. The idea
of scaled full rank signals was employed to overcome this
difficulty. It was shown that under scaled full rank signals,
identification of unknown parameters can be transformed,
in an invertible mapping, into a number of simplified
core identification problems involving certain intermediate
variables, which are solved with the methods of Wang et al
(2003).

This paper studies identification of Hammerstein systems
whose outputs are measured by set-valued sensors. Ham-
merstein systems consist of a static nonlinear block fol-
lowed by a linear dynamic system. They represent typ-
ically, but certainly not limited to, linear systems with
memoryless nonlinear actuators. Consequently, this paper
deals with identification of systems with both nonlinear
actuators and nonlinear sensors. In other words, we are
in fact dealing with Hammerstein-Wiener systems. When
the output of a Hammerstein system must be measured
by a set-valued sensor or sent through a communication
channel, it can be represented as a Hammerstein system
with set-valued observations. Consequently, understand-
ing identification of Hammerstein systems with set-valued
observations will be essential for studying both identifica-
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tion of nonlinear systems and impact of communication
channels on system models.

Identification of Hammerstein systems, together with
Wiener systems, has been studied extensively under linear
sensors. Identification methodologies used for Hammer-
stein/Wiener structures may be loosely classified by it-
erative algorithms (Hunter & Korenberg, 1986; Korenberg
& Hunter, 1998), correlation techniques (Billings, 1980),
stochastic recursive algorithms (Chen, 2006; Hu & Chen,
2005), least-squares estimation and singular value decom-
position methods (Bai, 1998; Lacy & Bernstein, 2002),
Frequency-domain identification methods (Bai, 1998, Nin-
ness & Gibson, 2002) et al. All these approaches require
output measurements by linear sensors. In previous liter-
atures on identification of Hammerstein-Wiener systems,
the nonlinearities are required to be smooth (Bai, 1998,
2002). However, the switching nonlinearity whose output
takes only a finite number of values is fundamentally dif-
ferent from smooth nonlinearities which can provide much
more information.

The work in this paper is of essential difference from
previous research on Hammerstein system identification,
mainly because the output is measured by set-valued sen-
sors, which introduces substantial difficulty in construct-
ing convergent identification algorithms. Technically, this
work is more difficult than identification of Wiener systems
with set-valued observations, due to much more involved
input design. In essence, a periodic full rank input may
lose its rank after passing through the input nonlinearity,
rendering inapplicable the main ideas of Zhao et al (2007)
for identifying Wiener systems.

In this paper, the nonlinearities of Hammerstein systems
are polynomial and possibly non-invertible. Polynomial
functions are commonly applied as the nonlinearities of
Hammerstein systems in current literatures, and polyno-
mial functions can be considered as approximations of
some other nonlinear functions. As for polynomial non-
linearities, the concept of strongly scaled full rank input
is developed, under which the system parameters can be
estimated with the set-valued observations. It is shown
that the parameters of linear part are estimated firstly,
based on which the nonlinearity is identified.

The remaining part of the paper is organized as follows.
The structure of Hammerstein models using set-valued
observations is formulated in Section 2. The concepts of
strongly scaled full rank signals and their essential prop-
erties are introduced in Section 3. Under strongly full rank
inputs, algorithms based on each threshold for identifying
the variances after the nonlinearity are constructed in
Section 4. Then convex combination ones are derived based
on all thresholds in Section 5. The identification algorithms
for Hammerstein systems are shown to be strongly conver-
gent (in the sense of convergence with probability one).
Their efficiency is also investigated. Section 6 develops
identification algorithms for the parameters of both linear
part and nonlinear part. Examples are presented in Section
7 to illustrate input design, identification algorithms, and
convergence results of the methodologies discussed in this
paper. Finally, Section 8 provides a brief summary of the
findings of this paper.

2. PROBLEM FORMULATION

u x ζ

d

y
sNonlinear

Function
Linear

Dynamics

Set−
Valued
Sensor

- - -
?

- -
⊗

Fig. 1. Hammerstein systems with set-valued observations

Consider the system in Figure 1, in which 1





y(k) =
n−1∑

i=0

aix(k − i) + d(k),

x(k) = b0 +
m∑

j=1

bju
j(k), bm = 1,

(1)

where u(k) is the input, x(k) the intermediate variable,
and d(k) the measurement noise. Both n and m are known.

The output y(k) is measured by a sensor of l thresholds
C1 < · · · < Cl. The sensor is represented by

si(k) = S(y(k), Ci) = I{y(k)≤Ci}, i = 1, . . . , l,

where

I{y(k)∈A} =

{
1, if y(k) ∈ A,
0, otherwise.

Denote θ = [a0, . . . , an−1]
T , φ0(k) = [1, . . . , 1]T and

φj(k) = [uj(k), . . . , uj(k − n + 1)]T , j = 1, . . . ,m. Then

y(k) =
m∑

j=0

bjφ
T
j (k)θ + d(k). (2)

By using the vector notation, for k = 1, 2, . . ., Y (k) =
[y(2(k − 1)(m + 1)n + n), . . . , y(2k(m + 1)n + n − 1)]T ∈
R

2n(m+1), Φj(k) = [φj(2(k−1)(m+1)n+n), . . . , φj(2k(m+

1)n+n−1)]T ∈ R
2n(m+1)×n, j = 0, . . . ,m, D(k) = [d(2(k−

1)(m + 1)n + n), . . . , d(2k(m + 1)n + n− 1)]T ∈ R
2n(m+1),

Si(k) = [si(2(k−1)(m+1)n+n), . . . , si(2k(m+1)n+n−
1)]T ∈ R

2n(m+1), i = 1, . . . , l, we can rewrite (2) as

Y (l) =
m∑

j=0

bjΦj(l)θ + D(l). (3)

The purpose of this paper is to develop identification
algorithms of parameters θ and η = [b0, . . . , bm−1]

T with
the information of the input u and the output of set-valued
sensor s.

The input signal, that will be used to identify the system,
is a 2n(m + 1)-periodic signal u whose one-period values
are

(v, v, ρ1v, ρ1v, . . . , ρmv, ρmv),

where v = (v1, . . . , vn) is to be specified. The scaling
factors 1, ρ1, · · ·, ρm are assumed to be nonzero and

1 In this paper, the linear subsystem is constraint to be finite impulse
response, this is mainly because of simplification. Indeed, the results
can be easily extended to infinite impulse response cases by using
the techniques in Wang et al (2006).
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distinct. Under 2n(m+1)-periodic inputs, we have Φj(l) =

Φj(1) , Φj , l = 1, 2, . . .. Thus, (3) can be written as

Y (l) =
m∑

j=0

bjΦjθ + D(l) , ζ + D(l). (4)

For the above system, the identification algorithm will be
divided into two parts: i) to estimate ζ (which turns to be
the estimation of gain systems), ii) to get θ and η with the
estimate of ζ.

3. STRONGLY SCALED FULL RANK SIGNALS

This section is to introduce a class of input signals, called
strongly full rank signals, which will play an important
role in subsequent development.

An n×n circulant matrix (Lancaster & Tismenetsky, 1985)

T =




vn vn−1 · · · v1

v1 vn v2

...
. . .

...
vn−1 vn−2 · · · vn


 (5)

is completely determined by its first row [vn, . . . , v1], which
will be denoted by T([vn, . . . , v1]).

Definition 1. An n-periodic signal generated from its one-
period values (v1, . . . , vn) is said to be full rank if the
circulant matrix T([vn, . . . , v1]) is full rank.

Definition 2. An n-periodic signal generated from its one-
period values (v1, . . . , vn) is said to be strongly m full rank
if the circulant matrices T([vi

n, . . . , vi
1]) are all full rank for

i = 1, . . . ,m.

Proposition 1. An n-periodic signal generated from v =
(v1, . . . , vn) is strongly m full rank if it is strongly m + 1
full rank.

Theorem 1. An n-periodic signal generated from v =
(v1, . . . , vn) is strongly m full rank if and only if for
l = 1, 2, . . . ,m,

γk,l =
n∑

j=1

vl
je

−iωkj

are nonzero at ωk = 2πk
n , k = 1, . . . , n.

Due to the page limit, some of the proofs are omitted,
interested readers can contact the author for details.

Remark 1. Recall that F [vl] = {γ1,l, . . . , γn,l} (l = 1, 2,
. . . ,m) is the frequency samples of the vl, where F [·] is
the discrete Fourier transform. Then, Definition 1 may
be equivalently stated as “an n-periodic signal v is said
to be strongly m full rank if the frequency samples of vl

(l = 1, 2, . . . ,m) do not contain 0.”

Proposition 2. For n = 1, 2, an n-periodic signal u gener-
ated from v = (v1, . . . , vn) is strongly m full rank if and
only if it is full rank.

Remark 2. For n > 2, the conditions of strongly m full
rank may be different from the conditions of full rank.

Definition 3. A 2n(m + 1)-periodic signal u is called
strongly scaled m full rank if its one-period values are
(v, v, ρ1v, ρ1v, . . . , ρmv, ρmv), where v = (v1, . . . , vn) is
strongly m full rank; ρj 6= 0, ρj 6= 1, j = 1, . . . ,m; and
ρi 6= ρj , i 6= j. Denote Um to be the class of such signals.

4. ESTIMATE OF ζ WITH INDIVIDUAL
THRESHOLDS

Based on the strongly scaled full rank signal, this section
derives the estimation algorithm for ζ and analyze their
unbias and efficient properties. To this end, an estimation
algorithm based on the information of individual thresh-
olds is firstly investigated.

Assumption 1. The noise {d(k)} is a sequence of indepen-
dent and identically distributed (i.i.d.) random variables
with finite variance. The distribution function F (·) of d(1)
is known, which is continuously differentiable and has a
continuously differentiable inverse F−1(·) and a bounded
density f(·) with f(x) 6= 0.

Assumption 2. The prior information on θ = [a0, . . . ,

an−1]
T and η = [b0, . . . , bm−1]

T is that
∑n−1

i=0 ai 6= 0,
bm = 1, η 6= 0, θ ∈ Ωθ and η ∈ Ωη, where Ωθ and Ωη

are two known compact sets.

The input is a scaled 2n(m + 1)−periodic signal with
one period values (v, v, ρ1v, ρ1v, . . . , ρmv, ρmv), where v =
(v1, . . . , vn) is strongly m full rank.

By periodicity, Φj(k) = Φj for j = 0, . . . , n, and Φj can
be decomposed into 2(m + 1) submatrices Φj,i, i = 1, . . . ,
2(m + 1), of dimension n × n:

Φj = [ΦT
j,1,Φ

T
j,2, . . . ,Φ

T
j,2(m+1)]

T .

And for k = 1, . . ., 2(m + 1), Φj,k = [φj(kn), φj(kn +
1), . . . , φj(kn + n − 1)]T .

Denote the n × n circulant matrix V0 = T ([1, . . . , 1]), and

Vj = T ([vj
n, . . . , vj

1]), j = 1, . . . ,m. Then, for j = 0, . . . ,m,
the odd-indexed block matrices satisfy the simple scaling
relationship

Φj,1 = Vj , Φj,3 = ρj
1Vj , . . . , Φj,2m+1 = ρj

mVj . (6)

Denote

τj = [τj,1, . . . , τj,n]T = Vjθ, j = 0, . . . ,m. (7)

Then,

Φj,1θ = τj ,Φj,3θ = ρj
1τj , . . . ,Φj,2m+1θ = ρj

mτj . (8)

Let Ψθ = [Φ0θ, Φ1θ, . . . ,Φmθ]. Then, from (4), we have

Y (l) = Ψθ[η
T , 1]T θ + D(l) = ζ + D(l). (9)

Remark 3. In (v, v, ρ1v, ρ1v, . . . , ρmv, ρmv), there are al-
ways two identical subsequences ρiv (i = 1, . . . ,m) appear-
ing consecutively. The main reason for this input structure
is to generate block matrices that satisfy the above scaling
relationship (6).

Remark 4. We use the following notation for element-
wise vector functions. For a scalar function g(·) and a
vector x = [x1, . . . , xl]

T ∈ R
l, the boldface symbol g(x)

represents g(x) = [g(x1), . . . , g(xl)]
T ∈ R

l. In addition, if
g(x) is invertible, g−1(x) represents the component-wise
inverse g−1(x) = [g−1(x1), . . . , g

−1(xl)]
T ∈ R

l. Similarly,
for α = [α1, . . . , αl]

T ∈ R
l and c = [c1, . . . , cl]

T ∈ R
l, we

use the vector notation I{α≤c} = [I{α1≤c1}, . . ., I{αl≤cl}]
T .

11ℓ and 0ℓ ∈ R
ℓ will denote column vectors with all

components being 1 and 0, respectively.
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For (9), let

ϕi(N) = [ϕi,1(N), . . . , ϕi,2n(m+1)(N)]T =
1

N

N∑

k=1

Si(k)

=
1

N

N∑

k=1

I{D(k) ≤ Ci112n(m+1) − Ψθ[η
T , 1]T }, (10)

which is the empirical distribution of D(l) at

Ci112n(m+1) − ζ = Ci112n(m+1) − Ψθ[η
T , 1]T .

Then, by the strong law of large numbers,

ϕi(N) → pi = F(Ci112n(m+1) − Ψθ[η
T , 1]T ), w.p.1. (11)

Denote Si(N) = [Si,1, . . . , Si,2n(m+1)]
T . By Assumption

1, for each i = 1, . . . , l, Si(N) is i.i.d. Since for j =
1, . . . , 2n(m + 1), ESi,j(k) = pi,j = F(Ci − ζj) and

E(Si,j(k) − pi,j)
2 = pi,j(1 − pi,j) := ∆2

i,j .

Then,

Eϕi,j(N) =
1

N

N∑

k=1

ESi,j(k) = pi,j ,

E(ϕi,j(N) − pi,j)
2 =

∆2
i,j

N
. (12)

Notice that F is a monotonic function by Assumption 1,
and Ωθ and Ωη are bounded by Assumption 2. Then, we
can get z such that

0 < z < pi,j = F (Ci − ζj) < 1 − z < 1,

i = 1, . . . , l, j = 1, . . . , 2n(m + 1).

Since F (·) is not invertible at 0 and 1, we modify ϕi,j to
avoid these points. Let

ξi,j(N) =

{
ϕi,j(N), if z < ϕi,j(N) < z;
z, if ϕi,j(N) < z;
1 − z, if ϕi,j(N) > 1 − z.

(13)

Since ϕi,j(N) → pi,j , w.p.1 and z < pi,j < 1 − z, we have
ξi,j(N) → pi,j , w.p.1. Denote

ξi(N) = [ξi,1(N), . . . , ξi,2n(m+1)(N)]T . (14)

By Assumption 1, F has a continuous inverse. Hence, for
each i = 1, . . . , l,

ζi(N)= [ζi,1(N), . . . , ζi,2n(m+1)(N)]T

:= Ci112n(m+1) − F−1(ξi(N))
→ Ci112n(m+1) − F−1(pi) = Ψθ[η

T , 1]T

= ζ = [ζ1, . . . , ζ2n(m+1)]
T w.p.1. (15)

5. CONVEX COMBINATION ESTIMATE OF ζ

Since ζi(N) is constructed from each individual threshold
Ci, this enables us to treat the coefficients of the convex
combination as design variables such that the resulting
estimate become one with minimal variance. This resulting
estimate will be called “convex combination estimate”,
which is shown to be unbias and asymptotically efficient.

For j = 1, . . . , 2n(m + 1), define ζ·,j(N) = [ζ1,j(N), . . .,
ζl,j(N)]T and cj(N) = [cj,1(N), . . . , cj,l(N)]T with

cj,1(N) + · · · + cj,l(N) = 1. Construct an estimate of ζj

by defining

ζ̂j(N) = cT
j ζ·,j(N) =

l∑

k=1

cj,k(N)ζk,j(N).

Suppose there exists cj = [cj,1, . . . , cj,l]
T such that

cj(N) → cj . Then cj,1 + · · · + cj,l = 1, and by (15),

ζ̂j(N) → ζj

l∑

k=1

cj,k = ζj , w.p.1.

Denote the estimation errors ej(N) = ζ̂j(N)−ζj , εj(N) =
ζ·,j(N) − ζj11l, and their covariances

σ2
j (N) = Eej(N)ej(N)T , Qj(N) = Eεj(N)εj(N)T ,

respectively. Then the covariance of estimation error

σ2
j (N) = cT

j (N)Eεj(N)εj(N)T cj(N)

= cT
j (N)Qj(N)cj(N). (16)

That is, the variance is a quadratic form with respect
to the variable cj . To obtain the convex combination
estimate, we choose cj to

min σ2
j (N), subject to cT

j (N)11l = 1. (17)

Theorem 2. Under Assumptions 1-2, suppose u ∈ Um

and Rj(N) = NQj(N) = NEεj(N)εj(N)T (j = 1, . . . ,
2n(m+1)) is positive definite. Then, the convex combina-
tion estimate can be obtained by choosing

c∗j (N) =
R−1

j (N)11l

11T
l R−1

j (N)11l

, ζ̂j(N) =
l∑

i=1

c∗j,iζi,j(N), (18)

and the minimal variance satisfies

Nσ2∗
j (N) =

1

11T
l R−1

j (N)11l

. (19)

Proof. We solve the constrained optimization problem (17)
by using the Lagrange method. Introduce the Hamiltonian

H(cj(N), αj(N)) = σ2
j (N) + αj(N)(1 − cT

j (N)11l)

=cT
j (N)Rj(N)cj(N)/N + αj(N)(1 − cT

j (N)11l),
where αi(N) is a Lagrange multiplier. Differentiating
H(·, ·) with respect to its arguments and setting ∂H(cj , αj)
/∂cj = 0 and ∂H(cj , αj)/∂αi = 0 leads to

2Rj(N)cj(N)/N − αj(N)11l = 0, cT
j (N)11l = 1.

Solving the above set of equations yields the stationary
point of H(cj(N), αj(N))

α∗
j (N) =

2

N11T
l R−1

j (N)11l

, c∗j (N) =
R−1

j (N)11l

11T
l R−1

j (N)11l

. (20)

It can be verified that the stationary point is indeed a
minimum.
Substituting (20) into (16), we obtain (19) as desired. 2

5.1 Unbias and efficient analysis

From (18), ζ̂j can be regarded as an estimate of ζj . In
this subsection, the unbias and efficient properties of this
estimate will be analyzed.

By Assumption 1, G(x) = F−1(x) is continuous on (0, 1),
so G(x) is bounded on the compact set [z, 1 − z]. Since
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ζi,j(N) = Ci−G(ξi,j(N)) → ζi,j w.p.1, we have ζi,j(N) →
ζi,j in probability, and furthermore, by Lebesge Dominated
Convergence Theorem (Chow, 1978, p. 99), Eζi,j(N) → ζj .
Hence,

Eζ̂j(N) = E
l∑

k=1

cj,k(N)ζk,j(N) → ζj ,

which means the estimate of ζj is unbias.

Subsequently, the efficiency of the estimate will be studied.
To this end, the properties of ξi,j(N) in (13) will be firstly
introduced.

Theorem 3. Suppose u ∈ Um. Under Assumptions 1-2,
there exist Ki,j ∈ (0,∞) and Li,j ∈ (0,∞), i = 1, . . . , l,
j = 1, . . . , 2n(m + 1), such that

P{ξi,j(N) 6= ϕi,j(N)} ≤ Ki,je
−Li,jN . (21)

Proof. See Appendix A.

Theorem 4. Under the conditions of Theorem 3, we have

NE(ξi,j(N) − pi,j)
2 → ∆2

i,j , N → ∞. (22)

NE|(ξi,j(N) − pi,j)|m → 0, N → ∞, m = 3, 4, . . . (23)

Proof. See Appendix B.

From (19), the covariance of the estimation ζ̂j(N) is
decided by Rj(N).

Theorem 5. Suppose u ∈ Um. If in addition to Assump-
tions 1-2, the density function f(x) is continuously differ-
entiable, then

Rj(N) := NQj(N) → ΛjWjΛj := Rj , N → ∞, (24)

where εj(N) = ζ·,j(N) − ζj11l, Λj = diag−1{f(Cj −
ζ1), . . . , f(Cj − ζl)} and

Wj =




p1,j(1 − p1,j) · · · p1,j(1 − pl,j)
...

. . .
...

p1,j(1 − pl,j) · · · pl,j(1 − pl,j)


 . (25)

Proof. Denote εj,i(N) the i-th component of εj(N),
G′(x) = dG(x)/dx and G′′(x) = dG′(x)/dx. Then G′(x) =
1/f(G(x)) and G′′(x) = −f ′(G(x))G′(x)/f2(G(x)). Since
f ′(x) is continuous and by Assumption 1, both G′(x) and
G′′(x) are continuous, and hence bounded in [z, 1−z]. Let
β = supx∈[z,1−z]{|G′(x)|} and γ = supx∈[z,1−z]{|G′′(x)|}.
Then, there exists a number λi,j(N) between pi,j and
ξi,j(N) such that

εj,i = ζi,j(N) − ζj = G(ξi,j(N)) − G(pi,j) =

G′(pi,j)(ξi,j(N) − pi,j) +
1

2
G′′(λi,j(N))(ξi,j(N) − pi,j)

2.

This implies that for i, k = 1, . . . , l,
Eεj,i(N)εj,k(N) = E(ζi,j(N) − ζj)(ζk,j(N) − ζj)

=G′(pi,j)G
′(pk,j)E(ξi,j(N) − pi,j)(ξk,j(N) − pk,j)

+EG′(pi,j)(ξi,j(N) − pi,j)(ξk,j(N) − pk,j)
2G′′(λk,j)

+EG′′(λi,j)(ξi,j(N) − pi,j)
2(ξk,j(N) − pk,j)G

′(pk,j)
+EG′′(λi,j)(ξi,j(N) − pi,j)

2(ξk,j(N) − pk,j)
2G′(λk,j).

(26)
By Holder’s inequality and Theorem 4, we have

|EG′(pi,j)(ξi,j(N) − pi,j)(ξk,j(N) − pk,j)
2G′′(λk,j)|

≤ βγ
√

E(ξi,j(N) − pi,j)2E(ξk,j(N) − pk,j)4| → 0. (27)

Similarly, the last two items in (27) approach to 0.

It can be derived that
E(ξi,j(N) − pi,j)(ξk,j(N) − pk,j)

−E(ϕi,j(N) − pi,j)(ϕk,j(N) − pk,j) → 0. (28)

Since d(k), k = 1, 2, . . ., are i.i.d.,

E(ϕi,j(N) − pi,j)(ϕk,j(N) − pk,j)

=
1

N
E

N∑

l1=1

I{d(l1) ≤ pi,j}I{d(l1) ≤ pk,j} − pi,jpk,j

= pmin{i,k},j − pi,jpk,j (29)

and

G′(pi,j) = 1/f(G(pi,j)) = 1/f(Ci − ζj). (30)

Therefore, (24) follows from (26)-(30). 2

Proposition 3. Rj (j = 1, ..., 2n(m + 1)) defined by (24) is
positive definite, and

11T
l R−1

j 11l =
l+1∑

k=1

h2
k,j

p̃k,j
, (31)

where p̃i,j = F (Ci − ζj) − F (Ci−1 − ζj), hi,j = f(Ci−1 −
ζj) − f(Ci − ζj) for C0 = −∞, Cl+1 = ∞.

Lemma 1. (Wang & Yin, 2007) The Cramér-Rao lower
bound for estimating ζj based on observations of {s(k)} is

σ2
CR,j(N) = (N

l+1∑

j=1

h2
i,j

p̃i,j
)−1.

The estimation algorithm of ζj is asymptotically efficient
based on the following theorem.

Theorem 6. Under the conditions of Theorem 2, for j =
1, . . . , 2n(m + 1),

lim
N→∞

N(σ2∗
j (N) − σ2

CR,j(N)) = 0, N → ∞.

Proof. This theorem can be proved directly by Theorem 2,
Proposition 3 and Lemma 1.

5.2 Recursive convex combination estimates

Since σ2
j (N) = Eεj(N)εT

j (N) contains an unknown pa-
rameter ζj , it cannot be directly computed. As a result,
the convex combination estimate ζj(N) in (18) cannot be
computed. In this subsection, we will derive computable
estimates. The basic idea is to employ a recursive struc-
ture in which the unknown ζj is replaced by the current

estimate ζ̃j(N). Convergence of the algorithms will be
established.

For i = 1, ..., l and j = 1, ..., 2n(m + 1), let ξi(0) =

02n(m+1), ĉj(0) = 0l, R̂j(0) = 0l×l and ζ̂j(0) = 02n(m+1).
Suppose that at step N −1 (N ≥ 1), ξi(N −1), cj(N −1),

and R̂j(N − 1) have been obtained. Then the estimation
algorithms can be constructed as follows.

i) Calculate the sample distribution values

ξi(N) =
1

N
Si(N) +

N − 1

N
ξi(N − 1).

ii) Calculate the data points ζi(N) = F−1(ξi(N)). Let
ζ·,j(N) = [ζ1,j(N), ..., ζl,j(N)]T .
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iii) Calculate each covariance estimate Rj(N).

Let pi,j(N) = F (Ci − ζ̃j(N − 1)) and

Λ̂j(N) = diag−1{f(p1,j(N)), ..., f(pl,j(N))},

Wj(N)=




p1,j(N)(1−p1,j(N)) · · · p1,j(N)(1−pl,j(N))
...

. . .
...

p1,j(N)(1−pl,j(N)) · · · pl,j(N)(1−pl,j(N))


 .

Calculate Rj(N) by R̂j(N) = Λ̂j(N)Wj(N)Λ̂j(N).

iv) If R̂j(N) is non-singular, then let

ĉj(N) =
R̂−1

j (N)11

11T R̂−1
j (N)11

,

and ζ̂j(N) = ĉT
j (N)([C1, ..., Cl]

T − ζ·,j(N)). Other-

wise, ζ̂j(N) = ζ̂j(N − 1).

v) Let ζ̂(N) = [ζ̂1(N), ..., ζ̂2n(m+1)(N)]T . Go to step 1.

This algorithm depends only on sample paths. At each
step, it minimizes estimation variance based on the most
recent information on the unknown parameter. In addi-
tion, the following asymptotic properties hold.

Theorem 7. Under the condition of Theorem 5, for j =
1, ..., 2n(m + 1) the above recursive algorithms have the
following properties:

ζ̂j(N) → ζj , w.p.1,

R̂j(N) → Rj , w.p.1,

NE(ζ̂j(N) − ζj)
2 → (11T R−1

j 11)−1, w.p.1 N → ∞.

6. ESTIMATION OF SYSTEM PARAMETERS

Identification algorithms of the system parameters will be
constructed based on the estimate of ζ. The parameters
of linear part are first estimated, based on which the
nonlinearity is identified.

6.1 Identifiability of the unknown parameters

Theorem 8. Suppose u ∈ Um. Then,

Ψθ[η
T , 1]T = ζ

has a unique solution (θ∗, η∗).

Proof. i) To obtain θ∗. By the first component of (15), we
have ζ = [ζ1, . . . , ζ2n(m+1)]

T , and

b0τ0,1 + b1τ1,1 + · · · + bmτm,1 = ζ1.

From (8), the 2in + 1 (i = 1, . . . ,m) component of (15)
turns to be b0τ0,1 + ρib1τ1,1 + · · ·+ ρm

i bmτm,1 = ζ2in+1, or
equivalently,

ℜ[b0τ0,1, . . . , bmτm,1]
T = [ζ1, ζ2n+1, . . . , ζ2mn+1]

T , (32)

where ℜ =




1 1 · · · 1
1 ρ1 · · · ρm

1
... · · · · · ·

...
1 ρm · · · ρm

m


 .

Since ρj 6= 0, ρj 6= 1, j = 1, . . . ,m, and ρi 6= ρj , the
determinant of the Vandermonde matrix

detℜ =
∏

0≤i<j≤m−1(ρj − ρi) 6= 0 with ρ0 = 1.
Hence, bjτj,1, j = 0, . . . ,m, can be solved by

ℜ[b0τ0,1, . . . , bmτm,1]
T = ℜ−1[ζ1, ζ2n+1, . . . , ζ2mn+1]

T .

Similarly, we have

Γ = ℜ−1Ξ, (33)

where

Γ=




b0τ0,1 · · · b0τ0,n

...
...

bmτm,1 · · · bmτm,n


, Ξ=




ζ1 · · · ζn

...
...

ζ2mn+1 · · · ζ(2m+1)n


 .

Denote ri as the i-th column of (ℜ−1)T . Then, by bm = 1
we have

τm = [τm,1, . . . , τm,n]T = ΞT rm.
Notice that u ∈ U(m) implies that Vm is full rank. Then,
by (7) one can get θ∗ = V −1

m τm.

ii) To obtain η∗. By Assumption 2,
∑n−1

i=0 ai 6= 0, or V0θ 6=
0n. For u ∈ Um and j = 1, . . . ,m, Vj = T([vj

n, . . . , vj
1]) is

full rank by Definition 2, and so Vjθ 6= 0n. Thus, for each
j = 0, . . . ,m, τj = Vjθ has a nonzero component τj,i∗

j
. For

any given positive integer k and j = 1, . . . , k, let βj(k)
be a k-dimensional vector with all components being zero
except the j-th being 1, that is,

βj(k) = [

j−1︷ ︸︸ ︷
0, . . . , 0, 1,

k−j︷ ︸︸ ︷
0, . . . , 0]T .

Then, from (33) we have

bjτj,i∗
j

= βT
j (m + 1)ℜ−1Ξβi∗

j
(n), j = 0, . . . ,m,

which gives bj , j = 0, . . . ,m, since τj,i∗
j

can be calculated

from Vj and θ∗ via (7). Thus, η∗ is obtained. 2

6.2 Identification algorithms and convergence properties

The ζ(N) = [ζ0(N), . . . , ζ2n(m+1)−1(N)]T in (14) has
2n(m + 1) components for a strongly scaled m full rank
signal u ∈ Um.

Let Vm = T([um
n , . . . , um

1 ]), [r1, . . . , rm] := (ℜT )−1,

Ξ(N) =




ζ1(N) · · · ζn(N)
...

...
ζ2mn+1(N) · · · ζ(2m+1)n(N)


 .

Then, we have the following identification algorithm:

i) Estimate θ. The estimate of θ is taken as

θ(N) = V −1
m ΞT (N)rm.

ii) Estimate η. Let bj(0) = 0 and bj(N) =



[ζi∗
j
(N), ζ2n+i∗

j
(N), . . . , ζ2mn+i∗

j
(N)]ri∗

j
(N)/τj,i∗

j
(N),

if τj,i∗
j
(N) 6= 0,

bj(N − 1), if τj,i∗
j
(N) = 0,

where, for j = 0, 1, . . . ,m − 1,

i∗j (N) = min{argmax1≤i≤n|τj,i(N)|}, (34)

ri∗
j
(N) is the i∗j (N)-th column of (ℜT )−1, and τj,i∗

j
(N)

is the i∗j (N)-th component of τj(N) = Vjθ(N). Then,
the estimate of η is taken as
η(N) = [b0(N), . . . , bm−1(N)]T .

Theorem 9. Suppose u ∈ Um. Then, under Assumptions
1-2,

θ(N) → θ, η(N) → η w.p.1 as N → ∞.
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7. ILLUSTRATIVE EXAMPLES

This section gives two examples to illustrate the conver-
gence of the estimate algorithms developed in this paper.

Example 1. Consider a gain system y(k) = a + d(k). Here
the actual value of the unknown a is 5. The disturbance
is a sequence of i.i.d. Gaussian variables with zero mean
and standard deviation σ = 5. The sensor has 3 switching
thresholds C1 = 2, C2 = 6, and C3 = 10. Then, the
recursive algorithm in Section 5 is used to generate convex
combination estimates.

For comparison, estimates derived by using each switching
threshold individually are also calculated. Figure 2 com-
pares convex combination estimates to those using individ-
ual switching thresholds. It is shown that the estimate with
3 thresholds converges faster than the ones with individual
thresholds. The weights of the estimates of each threshold
are shown in Figure 3, which illustrates that the weights
are not sure to be positive.
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Fig. 3. Weights of estimates with each threshold

Example 2. For some prior information, the algorithms
in Subsection 6.2 can be simplified. For example, the
estimate algorithms of η can be simplified, when the prior
information on θ is known to be positive and the periodic
input u is positive.

Consider {
y(k) = a0x(k) + a1x(k − 1) + d(k),
x(k) = b0 + b1u(k) + u2(k),

where the noise {d(k)} is a sequence of i.i.d. Gaussian
variables with Ed1 = 2, σ2

d = 4. The output is measured by
a binary-valued sensor with threshold C = 13. The linear
subsystem has order n = 2, and the nonlinear function
has order m = 2. The prior information on ai, i = 0, 1,
is that ai ∈ [0.5, 5]. Suppose the true values of unknown
parameters are θ = [a0, a1]

T = [1.17, 0.95]T and η = [b0,
b1]

T = [3, 1.3]T .

The input is 12-periodic with one period (v, v, ρ1v, ρ1v, ρ2v,
ρ2v), where v = [1.2, 0.85], ρ1 = 0.65 and ρ2 = 1.25. Define
the block variables X(l), Y (l), Φj(l), D(l) and S(l), in the
case of an 12-periodic input. Using (14), we can construct
the algorithms in Subsection 6.2 to identify θ.

Notice that ai ∈ [0.5, 5], i = 1, 2, and u is posi-
tive. Then, τj,1, the first component of Vjθ, is τj,1 =
v2
2a0 + v2

1a1 ≥ 0.5(v2
2 + v2

1) 6= 0, where the last in-
equality is derived from the fact that v is strongly 2
full rank. So, it is not necessary to calculate i∗j (N) in
(34), which aims to find the nonzero component of τj .
And η can be estimated as following: η(0) = 0 and

η(N) =





Λ(N)ℜc[ζ1(N), ζ2n+1(N), . . . , ζ2mn+1(N)]T ,

if
m−1∏

j=0

τj,1(N) 6= 0,

η(N − 1), if
∏m−1

j=0 τj,1(N) = 0,

where Λ(N) = diag−1(τ0,1(N), . . . , τm−1,1(N)), ℜc is a
m×(m+1) matrix containing from 1st to m−1-th rows of
ℜ−1, and τj,1(N) is the 1st component of τj(N) = Vjθ(N).

The estimate errors of θ and η are shown in Figure 4,
where the errors are measured by the Euclidean norm.
Both parameter estimates of the linear and nonlinear
subsystems converge to their true values.
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Fig. 4. Identification errors of θ and η

8. CONCLUDING REMARKS

In this paper, identification of Hammerstein systems with
set-valued output observations is studied. Under assump-
tions of known disturbance distribution functions and
strongly scaled full rank inputs, identification algorithms,
convergence properties, and identification efficiency are
derived.

There are many potential extensions of the results in
this paper. For example, when the sensor threshold value
and/or the noise distribution function are unknown, com-
bined identification of systems, distribution functions and
sensor thresholds is of practical importance.
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Appendix A. PROOF OF THEOREM 3

Proof. Denote Xi,j = (Si,j(1) − pi,j)/∆i,j . Note that
EXi,j = 0 and EX2

i,j = 1. By the i.i.d. assumption, taking

a Taylor expansion of Mi,j(h,N) = [E exp(hXi,j/
√

N)]N ,

the moment generating function of
√

N(ϕi,j(N) − pi,j)/
∆i,j , we obtain

Mi,j(h,N)=
[
E[1 +

hXi,j√
N

+
h2X2

i,j

2N
+ O(N−3/2)]

]N

= [1 +
h2

2N
+ O(N−(3/2))]N .

Consequently, for any t ∈ R,

inf
h

e−htMi,j(h,N) =≤ Ke−
t2

2 , (A.1)

where K > 0 is a positive constant.

By means of the Chernoff bound (Serfling, 1980, p. 326),
for any t ∈ (−∞, pi,j ],

P{ϕi,j(N) ≤ t} = P{∑N
k=1(Si,j(k) − pi,j) ≤ N

(t−pi,j)
∆i,j

}

≤ {inf
h

[e
−

h(t−pi,j)

∆i,j Mi,j(h,N)]}N (A.2)

and for any pi,j ≤ t < ∞,

P{ϕi,j(N) ≥ t} ≤ {inf
h

[e
−

h(t−pi,j)

∆i,j Mi,j(h,N)]}N . (A.3)

Considering
P{ξi,j(N) 6= ϕi,j(N)} = P (ϕN ≤ z) + P (ϕN ≥ 1 − z)

and (A.1)-(A.3), we have (21) is true. 2

Appendix B. PROOF OF THEOREM 4

Proof. i) By Theorem 3, there exist Ki,j ∈ (0,∞) and
Li,j ∈ (0,∞) such that

EN(ξi,j(N) − ϕi,j(N))2 ≤ NzP{ξi,j(N) 6= ϕi,j(N)} → 0.

This together with

EN(ϕi,j(N) − pi,j)(ξi,j(N) − ϕi,j(N))

≤
√

EN(ϕi,j(N) − pi,j)2EN(ξi,j(N) − ϕi,j(N))2

implies that
EN(ξi,j(N) − pi,j)

2 − EN(ϕi,j(N) − pi,j)
2

=2EN(ϕi,j(N) − pi,j)(ξi,j(N) − ϕi,j(N))

+EN(ξi,j(N) − ϕi,j(N))2 → 0. (B.1)

Thus, by (12), we get (22).

ii) Similarly, for m = 3, 4, . . ., one can get

NE|(ξi,j(N) − pi,j)|m − NE|(ϕi,j(N) − pi,j)|m → 0.

By Holder’s inequality
NE|ϕi,j(N) − pi,j |m

≤ ∆i,j

√
NE(ϕi,j(N) − pi,j)2(m−1). (B.2)

Notice that for each i, j, Si,j(k) is i.i.d. Then, we have

NE(ϕi,j(N) − pi,j)
2(m−1)

=NE[
1

N

N∑

k=1

(Si,j(k) − pi,j)]
2(m−1) ≤ N−2(m−2),

which together with (B.2) results in

NE|ϕi,j(N) − pi,j |m≤ ∆i,jN
−(m−2) → 0.

Hence, (23) is obtained. 2
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