

Fast Operating Bit-Byte PLC

Mirosław Chmiel, Edward Hrynkiewicz

Institute of Electronics, Silesian University of Technology,

Akademicka 16, 44-100 Gliwice, Poland, tel. +48 32 237 14 95, fax+48 32 237 22 25

<Miroslaw.Chmiel, Edward.Hrynkiewicz>@polsl.pl

Abstract: The paper presents a few different approaches to optimizing operation speed of Programmable

Logic Controllers. First approach optimizes architecture of the bit-byte CPU, second optimizes program

execution, next one data exchange between bit and byte processors and the last one optimizes input/output

servicing. All of them lead to a two processor’s bit-byte architecture, which support of concurrent

execution of bit and byte computation tasks. In such architecture the processors can operate without

waiting one for the other.

1. INTRODUCTION

The Programmable Logic Controllers (PLCs) have been

introduced at the end of the sixties. Nowadays the PLCs are

commonly used in different areas and applications. One of

basic parameters that determine performance of

Programmable Logic Controllers is a time needed to execute

one thousand of instructions. This is why designing and

development of a unit that would enable to execute of a

control program in extremely short time is becoming a very

important task. Owing to its constructional features, such a

unit should not only cover all the possible functional

requirements but also make possible to take maximum

benefits from the provided features. Trying to propose a cost-

effective solution that is fast enough and assures withstanding

imposed time limits, being relatively not expensive a bit-byte

structure of a controller CPU should be taken into

consideration (Aramaki, et al., 1997, Chmiel and

Hrynkiewicz, 1999; 2001; Michel, 1990). Thanks to their

special operation features such structures enable achievement

of satisfactory results in case of both binary signal

processing, owing to inclusion of a dedicated bit processor, as

well as handling with analogue signals, which is carried out

by a standard, cheap micro controller. Such a structure

includes two separate components: a binary (bit) unit and a

byte unit. Therefore, a control program has to be subdivided

into two parts. What‘s more, such an approach is justified by

the fact that special features of instructions for the two

processors shall be different. The bit processor executes

every instruction during a single clock cycle, whereas for the

byte processor every single instruction is equivalent to a

procedure that must be developed in a certain assembler

language, a high-level C-type or Pascal language (Donandt,

1989, Getko 1983).

In the papers the authors consider improving of PLC

operation speed by:

- Developing a hardware structure of bit-byte CPU;

- Improving inter processors information exchange;

- Improving a way of control program execution;

- Introducing modified structure of input/output modules;

- Introducing modified structure of timers and counters

modules.

2. STRUCTURE OF FAST BIT-BYTE CENTRAL

PROCESSING UNIT

It is well known that in the simplest case each programmable

control system might be realised as microprocessor device.

But we have to remember about applications in which we are

going to use a logic controller. Those applications force

special requirements and constraints. To control a real object

it is necessary to process a great number binary inputs and

calculates binary outputs while standard microprocessors (or

microcontrollers) operate mainly on bytes. Instruction list of

these devices is optimised for operation on bytes or words

(some of them can carry out complicated arithmetical

calculation) variables that are not required in this case. Logic

instructions like AND or OR on individual bits take the same

amount of time as the instructions on a bytes as it is

necessary to extract suitable bits from the word(s). When we

take under consideration the binary inputs and outputs it is

necessary to realise that they reach number of thousands. In

such cases parallel computation of all inputs and outputs is

impossible. Therefore the inputs and outputs must be scanned

and updated sequentially. If we would like to achieve good

control parameters the instructions on bits should be done

very quickly. Creation of specialized bit-processor, which can

carry out bit instruction very fast, is fully reasonable (Chmiel,

et al., 2004). If there is a need of computation of byte data for

example from analogue to digital converters or external

timers, it is required to use of additional 8,16 or even 32 bits

processor or micro controller. General structure of that device

was presented in Fig.1 (Chmiel and Hrynkiewicz. 2006a, b).

Basic parameter that was taken under consideration was

program execution speed. Program execution speed is mainly

limited by access latency of both processors to the internal

(e.g. counters, timers) and external (e.g. inputs and outputs)

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 14810 10.3182/20080706-5-KR-1001.1416

process variables. The program memory and the instruction

fetching circuitry also influence system performance. In order

to support cooperation of both processors without conflicts

and maintain their concurrent operation following

assumptions were made (Chmiel and Hrynkiewicz, 2005):

1. Separate address buses for bit and byte processors;

2. Separate data buses: 1 bit wide for bit processor and 8 bit

wide for micro controller;

3. Separate control buses with:

• read and write signals for byte processor;

• read and write signals for bit processor;

• refresh signal for latching up states of all inputs and

outputs at once and error signal for immediate switching

off of all external modules of controller.

Additionally in basic solution the following problems were

taken for research and design works. These problems are

structure of a memory (memories), instruction fetching by

both processors, information exchange rules between

processors and access to common resources (timers, counters

and flags).

Instructions Transfer

F
Bb

Bit

Processor

F
bB

Byte

Processor

TR_F
bB

EMPTY_F
bB

F
bB

RD_F
bB

READY_F
bB

F
bB

T_F
Bb

READY_F
Bb

F
B

WR_F
Bb

EMPTY_F
Bb

F
b

NEXT

GO

Transfer

instruction

TR_F
bB

Read

instruction

RD_F
bB

Write

instruction

WR_F
Bb

Test

instruction

T_F
Bb

F
B

F
b

Instruction

Buffer

Bit

Processor

Program

Memory

Bit

Processor

Data

Memory

Byte

Procesor

Program

Memory

Byte

Procesor

Data

Memory

Byte

Procesor

Standard

Program

Memory

Byte

In/Out

Modules

Bit

In/Out

Modules

Interface Circuit

Fig. 1. Block diagram of the two-bus CPU

3. INTER PROCESSORS INFORMATION EXCHANGE

Bit Processor

Byte

Instruction

Y

N

NEXT = 1

Y

N

Byte Processor

Bit Instruction

Execution

1 NEXT

Byte Instruction

Execution

Instruction Fetching

from

Adress Code Buffer

GO = 0

T

N

Instruction Fetching

from

Main Program Memory

Transfer Instruction to

Byte Processor

Initialisation Initialisation

0 NEXT

0 GO

1 GO

Fig. 2. Program execution in bit-byte CPU

Bit processor delivers instructions to the byte processor

through the Instruction Buffer informing about it by means of

binary signal (NEXT). On the other hand byte processor after

accepting of an instruction sends to the bit processor other

binary signal (GO) – Fig.2 (Chmiel and Hrynkiewicz,

2006a).

Such exchanging of the conditional flags doesn’t require

postponing of program execution. Proper data transfer is

maintained by handshake registers that controls data flow

among processors and also synchronize program execution.

Always when condition result is passed from one processor

to another pair of instruction must be executed. When data is

passed from the bit processor to the byte processor those are

TR_FbB and RD_FbB. Transfer in opposite direction requires

execution of instructions WR_FBb and T_FBb. In Fig.3 is

presented inter-processors condition passing algorithms

(Chmiel and Hrynkiewicz, 2006b).

EMPTY_F
bB

Y

N

Bit Processor

Bit instruction

modifies F
b

F
b
 to F

bB

Reset EMPTY_F
bB

Set READY_F
bB

READY_F
bB

Y

N

Byte Processor

Byte instruction

uses F
bB

F
bB
 to F

B

Set EMPTY_F
bB

Reset READY_F
bB

Fig. 3. Example of bit to byte condition passing algorithm

4. PROGRAM EXECUTION

Let us take into account the control program shown in Fig.4.

The program consists of different kinds of instructions:

- Bit instructions stored in main program memory executed

usually in one clock cycle;

- Byte instruction that requires byte processor program

memory access (type I);

- Complex instructions that require processor co-operation

while result of operation depends on both processor

calculations performed in proper order (type II).

It can be suggested that three following byte instructions can

be initiated once by bit processor. This approach allows for

shortening of an instruction execution time. The same

optimisation can be applied to next two byte instructions.

Proposed modification results in shortening of main program.

Execution time of byte instruction group is also reduced, as

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14811

they are now stored in byte processor memory. Overall

execution time of program loop is also reduced.

Main

Program Memory

Byte Processor

Program Memory

Standard Procedures

Program Memory

Bit Instr.

Bit Instr.

Bit Instr.

Bit Instr.
Modifying

procedureByte instr. type I

Standard

procedure

Byte instr. type I

Byte instr. type I

Bit Instr.

Byte instr. type II

Byte instr. type II

Bit Instr.

Bit Instr.

Bit Instr.

Standard

procedure

Modifying

procedure

Modifying

procedure

Modifying

procedure

Fig. 4. Instruction allocation case 1

Additionally it can be noticed that first two byte instructions

are independent from following bit instructions. As those

instructions are independent from each other they can be

executed concurrently with these bit instructions. Following

situation was considered in Fig.5. As it is presented execution

time was radically reduced by concurrent operation of bit and

byte processors. There are also operations those result

influences on operation of opposite processor. This is very

important problem of data exchange between processors.

Main

Program Memory

Byte Processor

Program Memory

Standard Procedures

Program Memory

Bit Instr.

Bit Instr.

Bit Instr.

Bit Instr.

Byte instr. type I

Standard

procedure

Byte instr. type I

Byte instr. type II

Bit Instr.

Byte instr. type II

Bit Instr.

Bit Instr.

Bit Instr.

Standard

procedure

Modifying

procedure

Byte instr. type I

Fig. 5. Instruction allocation case 2

As it was shown the studies on an information exchange

between the processors of the bit-byte CPU of a PLC leads to

the CPU hardware/software solution which significantly

increases a program execution speed. The most interesting

result is the possibility of fully parallel work of both

processors without waiting one for the other. Such mode of

CPU operation become possible thanks to realising that for

considered processor the other processor can be treated in the

same way as a controlled object.

Let us consider the block diagram of the CPU from Fig.1 in

which the instruction buffer was removed while each

processor owns instruction memory. Processors are

synchronised by state of condition flip-flops FBb and FbB.

Instructions to the processors are delivered from its local

memory so that they don’t have to wait until instruction is

delivered from common program memory. Processors enter

wait state only when they attempt to read empty condition

register or overwrite not read condition in register. Program

execution is synchronised by conditional execution of

program fragment that depends on result delivered from

opposite processor.

In order to avoid of long wait states program should be

written and compiled in that way that load of both processors

is equally distributed. Further optimisation can be achieved

by increasing number of flip-flops that pass logic condition

between processors or implementation of common memory

area used for information exchange.

Bit

Processor

Byte

Processor

Task

#1

F
bB1

F
Bb1

Task

#1

Task

#2

F
bB2

F
Bb2

Task

#2

Task

#n

F
bBn

F
Bbn

Task

#n

...

Fig. 6. The idea of multitasks control program execution

A program consists of two parts – one for bit and the other

for byte processor, the both parts of control program may be

divided in number of mutually independent tasks with respect

to data exchange between the processor units. For each task a

pair of condition flip-flops should be assigned so as the

processors have not to wait for emptying of condition flip-

flop during control program execution. This way we obtain

an effect equivalent to two smaller programs processed in a

quasi-concurrent manner. From the point of view of the

interprocessors information exchange such an operation of

the PLC would be fully parallel. If required, however,

operation of any of the processor could be suspended to wait

for the other unit, but only within a specific task – the second

task could be further processed. The idea is schematically

explained on Fig.6. The diagram shows a case, in which we

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14812

have n tasks, mutually independent. Every of the units

processes n tasks, which require mutual data exchange.

Besides, every of the units can process any number of

additional tasks, which don’t require information exchange.

Preserving serial program execution by each processor cause

that conditions are generated in the same order. That allows

for designing specific hardware with extremely fast access to

condition bits. The solution is based on a set of D flip-flops

or dual ports memory locations. Their content is written by

one of the processors while second reads its contents. The

discussed approach eliminates conflicts and reduces access

time.

It can be noticed that presented solution allows for

unconstrained operation of both processor while processors

doesn’t have to wait for condition passing. In case of

disproportion of program execution time in processors some

flags are updated and examined more frequently than the

other (Chmiel, et al., 2005; Chmiel and Hrynkiewicz, 2005).

It seems, that the problems, if they could ever reveal, would

concern situations of large discrepancies between processor

scan times – one of the units reads and writes back flip-flop

states several times faster, than the other. It means that during

control program loop executed by the one processor the

second one may change a state of his condition flip-flop for a

few times. It causes that the parts of control program

executed by the first processor utilise the different states of

the condition flip-flop. Rule of serial program execution is

violated. Both processors operate asynchronously to each

other. They observe markers area like an I/O space - in order

to perform possible for execution actions in response for

changing markers.

Bit

Processor

F
bB1

F
Bb1

Task

#1

F
bB2

FBb2

F
bBn

F
Bbn

...

Task

#2

Task

#n

...

F
Bb1

F
Bb2

F
Bbn

Byte

Processor

Task

#1

...

Task

#2

Task

#n

F
bB1

F
bB2

F
bBn

Update Update

Fig. 7. CPU block diagram for multitasks control program

with auxiliary buffer

I/O devices, from the point of view of a CPU, work slowly. It

is however possible, that during one program scan a state of

input changes several times. In such a case the input changes

will not be registered. Now similar problems arise inside our

CPU, with data exchange between the processor units. To

avoid the situation, that one of the unit’s processes different

tasks with different states of one of the condition flip-flops,

an additional buffering should be applied. The additional

buffering consists in organising condition bit data exchange

in such a way, that every of the processors performs writes to

its own condition register at random moments, while the

other would decide, when the data should be copied to its

own memory. The copying would be organised in a similar

manner, as input scanning and output updating. Such a

mechanism would cause, that the data stored in the additional

register would constitute for both processors the same set of

signals (with respect to the data access mechanism), as

ordinary I/Os. I/O states can also change during a program

scan, but the processor is capable of acquiring this

information only before the next program scan or,

alternatively, the information is lost, if the changes last to

short. Every of the processor units would refresh from its side

the data stored in the condition flip-flops, while the other

unit, after completing a program scan, by generating an

“update” signal, would initiate copying of the condition flip-

flop states to its own image memory. The copying would be

performed together with input scanning and PII updating. The

idea of the condition flip-flop register with auxiliary buffer is

presented in Fig.7.

5. TIMERS AND COUNTERS SERVICING

In separate way can be considered timers and counters which

from their nature are located on the point of function of both

parts of presented PLC CPU. They are implemented as the

software modules for microprocessor but in most cases are

utilized by bit processor. An operation of timers and counters

may be organized on the base of described above mechanism

of condition exchange. To making the operation of system

faster the special instruction for timers and counters should

be created. These instructions should involve in timer and

counter servicing both processors. Bit processor sets or resets

status bit of given timer/counter while byte processor

completes their functions. Bit processor executes its control

program without waiting for finishing of an operation of byte

processor. The status of timers and counters is stored in data

memory of byte processor. The copy of status is sent to

special buffer register which outputs are located in the bit

processor discrete input area. Thank to this arrangement

checking of each timer or counter state occupies one clock

period. The structure which make possible an access to the

timers and counters for both processors independent is shown

in Fig.8 (Chmiel, 2006).

Bit

Processor

Adress

Decoder

Timers

and

Counters

Buffer

WRRD/WR

Adress

Decoder

Byte

Processor

Adress

Bus

Data

Bus

Adress

Bus

IN

Data

Bus

OUT

WR

Fig. 8. Hybrid Timer and Counter function realisation

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14813

6. PROCESS INPUTS/OUTPUTS SERVICING

The way of microprocessors access to peripheral modules has

an important influence on the operating speed of a controller.

Field

Signals

Control Unit and

Adress Decoder

Im
ag
e
R
eg
is
te
r

A
d
ju
st
in
g

C
ir
cu
it

B
it
 P
ro
c
e
s
s
o
r
C
o
n
tr
o
l,
 A
d
re
s
s
,
D
a
ta
 B
u
s

Fig. 9. Binary Inputs Module Schematic

One approach is to use a dedicated microprocessor that is

responsible for updating state of the inputs and outputs of the

micro controller. In the presented paper, however, some other

solution has been applied that does not require the above-

mentioned dedicated microprocessor. In addition, it should

speed up operation of the central unit of the micro controller.

Input and output units are equipped with special mechanisms

that facilitate creation of process image input and output (PII,

PIQ) directly in the units. There are two ways the central unit

could determine the rhythm of updating the process image

input and output: after each program scan execution and

when requested by the current command. So, depending on

the type of the command, one is able to read the input state

that has been stored at the beginning of the current program

loop or to read the current state of the input.

Field

Signals

O
u
tp
u
t R

eg
ister

Im
ag
e

R
eg
ister

A
d
ju
stin

g
 C
ircu

it

Control Unit and

Adress Decoder

B
it
 P
ro
c
e
s
s
o
r
C
o
n
tr
o
l,
 A
d
re
s
s
,
D
a
ta
 B
u
s

Fig. 10. Binary Outputs Module Schematic

The state of the output can be stored in the process image

register and the state of the latter is then copied to the output

register at the end of the current iteration of the program

loop. One can also directly set a new value at the given

output what immediately updates the sate of the process

image output register. The units are equipped with edge

detection mechanisms what additionally reduces time

required for program execution. Block diagrams of binary I/O

units are presented in Fig.9 and Fig.10. For the sake of

legibility, the edge detection circuit is not shown in the

schematic of the output unit (Chmiel, 2006).

6. CONCLUSIONS

As it was shown the studies on an information exchange

between the processors of bit-byte CPU of a PLC and on a

way of control program execution lead to the CPU hardware

solution which significantly increases a program execution

speed. The most interesting result is the possibility of fully

parallel work of both processors without waiting one for the

other. Such mode of CPU operation become possible thanks

to realising that for considered processor the other processor

can be treated in the same way as a controlled object. Finally

block diagram of PLC Central Processing Unit and peripheral

modules are presented in Fig.11.

Bit

Processor

Condition

Buffer

Byte

Processor

TR_F
bB

F
bB

RD_F
bB

F
bB

T_F
Bb

F
B

WR_F
Bb

F
b

F
B

F
b

Bit

Procesor

Program

Memory

Bit

Procesor

Data

Memory

Byte

Procesor

Program

Memory

Byte

Procesor

Data

Memory

Byte

Procesor

Standard

Program

Memory

Byte

In/Out

Modules

Bit

In/Out

Modules

Timers

and

Counters

Buffer

Adress Bus

Data Bus

Adress Bus

Data Bus

Fig. 11. Block diagram of bit-byte PLC CPU

At this moment we have investigated in practical applications

the ideas presented in Fig.1, Fig.5, Fig.8, Fig.9 and Fig.10.

The comparison of control program execution time for

ignition burners in steel plane furnace for different industry

controllers and the controller built on base of these ideas is

listed in Table1. Serial mode means that one processor waits

for the other after each condition exchange while the parallel

mode means that the processors work in concurrent way as

far as it is possible exploiting all above mentioned ideas. The

comparison was performed for the circuit that contained only

the CPU, to avoid influence of the time necessary for

communication with I/O modules. The scan times don’t

contain the “empty” loop scan time, either. This enabled

avoiding influence of execution time of system functions.

The program used as the example was a part of a practical

application – the control system for a metal sheet pickling

line at a Columbus Stainless ironworks (South Africa)

(Chmiel, et al., 1997).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14814

Table 1. Control program execution time

comparison for the few PLCs

PLC Nr of bit

instr.

Nr of byte

instr.

Execution

time [ms]

S5-100U 1030 140 9.0

S5-115U 1030 140 1.9

S7-224 780 50 2.8

S7-313 1000 115 2.7

S7-315 1000 115 1.5

Modicon

A984

- - 8.0

Serial

mode

1050 280 1.7

Parallel

mode

850 140 1.1

REFERENCES

Aramaki, N., Y. Shimokawa, S. Kuno, T. Saitoh, H.

Hashimoto (1997), „A new Architecture for High-

performance Programmable Logic Controller”,

Proceedings of the IECON’97 23rd International

Conference on Industrial Electronics, Control and

Instrumentation, IEEE part vol.1, pp.187-190, New

York, USA.

Chmiel, M. (2006). “A Response Time of the PLCs

Reducing”, Krajowa Konferencja Elektroniki, KKE’06,

Darłówko Wschodnie Poland, vol.1, pp.161-166 (in

polish)

Chmiel, M., E. Hrynkiewicz (1999). „Parallel Bit-Byte CPU

Structures of Programmable Logic Controllers”,

International Workshop ECMS, Liberec, Czech

Republic.

Chmiel, M., E. Hrynkiewicz (2001). „Remarks on Parallel

Bit-Byte CPU Structures of Programmable Logic

Controllers” International Workshop on Discrete Event

System Design, DESDes, Przytok near Zielona Góra,

Poland.

Chmiel, M., E. Hrynkiewicz (2005). Design of Embedded

Control Systems, Section V, (Adamski M. A., A.

Karatkevich, M. Węgrzyn), pp.231-242, Springer

Science + Business Media, Inc.

Chmiel, M., E. Hrynkiewicz (2006a). „Improving of

Concurrent Operation of the Bit-Byte PLC CPU”,

International Conference on Programmable Devices and

Systems, PDeS’06, pp.15-20, Brno, Czech Republic,

February 14-17.

Chmiel, M., E. Hrynkiewicz (2006b). „How to Reduce a

Response Time of the PLCs”, The 7th International

Conference on Technical Informatics, ConTI’06,

Timisoara, Romania, 8-9 June, vol. 2, pp.95-100.

Chmiel, M., E. Hrynkiewicz, A. Milik (2004). „Remarks on

Programming of a Bit Processor Used in Bit-Byte CPU

of a PLC”, The International Workshop on Discrete-

Event System Design, DESDes’04, September 15-17,

Dychów near Zielona Góra, Poland, pp.129-133.

Chmiel, M., E. Hrynkiewicz, A. Milik (2005). „Concurrent

operation of the processors in Bit-Byte CPU of a PLC”,

Preprints of the IFAC World Congress, Prague, Czech

Republic, July 3-8.

Chmiel M., A. Malcher, A. Nowara, „A Control System for a

Metal Sheet Pickling Line” (in polish), Maszyny

Technologie Materiały, Sigma 1997.

Donandt, J. (1989). “Improving response time of

Programmable Logic Controllers by use of a Boolean

coprocessor”, IEEE Comput. Soc. Press., Washington,

DC, USA, 4:167-169.

Getko, Z. (1983). „Programmable systems of binary control”,

Elektronizacja, WKiŁ, Warsaw, Poland, (in polish).

Michel, G. (1990), Programmable Logic Controllers,

Architecture and Applications, John Wiley & Sons, West

Sussex, England.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14815

