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Abstract: A person following behaviour for a mobile robot with a new vision tracking algorithm is 
presented in this paper. According to the different characteristics of particle filter and Kalman filter, a 
novel approach of target tracking based on hybrid particle filters is applied to process the target object’s 
position and shape component respectively, whose state updating is on the basis of data fusion between 
these two filter algorithms. The proposed method can not only pave the way for a low-complexity particle 
filter algorithm in dealing with higher dimensional tracking problem, but also cover the shortage of 
Gaussian restriction in Kalman filter. With the result of hybrid particle filter and the projective model of 
camera, the distance between the target and the robot can be calculated in real-time so that the robot can 
decide its own action to follow the target autonomously. A series of experiments on the Pioneer 3 robot 
show the method’s validity and practicability. 

 

1. INTRODUCTION 

Fixating and following persons or objects with the eyes is a 
basic function that is essential for human perception. It 
implies that this skill is important to an autonomous mobile 
robot. Nowadays, many researches on person following robot 
are studied in different ways. Schulz and Montemerlo 
proposed a method of person following by using a distance 
sensor (Schulz et al., 2003; Montemerlo et al., 2002), but it is 
difficult to find out which is person and which is obstacle. 
Information obtained from vision sensors is more abundant as 
compared with distance sensors and it is easy to implement 
the target’s identification. With the image sequence grabbed 
by a vision sensor, many algorithms are proposed to achieve 
a specific target’s recognition and tracking. 

A person following robot using vision sensors must has two 
fundamental abilities. The first one is to detect and track a 
person in a sequence of images. Many vision tracking 
algorithms have been proposed in recent years, such as 
optical flow, Kalman filter, particle filter, etc. For many 
methods that exploit optical flow, computational time for 
flow segmentation is long, and this problem is far from being 
solved; Kalman filter (KF) and extended Kalman Filter (EKF) 
are two common approaches for dealing with target tracking 
in probabilistic framework, but they can not resolve the 
tracking problem with multi-modal mode since their motion 
and measurement models both rely on Gaussian 
approximation. To resolve this challenging tracking problem 
in non-Gaussian measurement environment, particle filter 
(PF) has been introduced into the practice of computer vision 
over the past several years, where it is known as the 
CONDENSATION algorithm (Isard and Blake, 1998) and 
has been applied to great effect for tracking moving objects 
in image sequences (Katja et al., 2003). However, when the 
dimension of the state vector is high, the computational 
burden becomes a problem for a mobile robot with limited 

processing capacity. The second necessary ability for a 
person following robot is that the robot can calculate the 
person’s position in the world coordinates based on the 
tracking result and make a decision in behaviour planning. 

The aim of our work is to solve the problems mentioned 
above. In most situations, the shape of the target object is 
always unchangeable but its size may vary remarkably in 
different frames of the image sequence. Therefore when 
particle filter is used, the state vector must include the 
target’s shape information. Obviously, it will increase the 
computational burden. In order to design an effective and 
practical colour target tracking system for our mobile robot, a 
hybrid particle filter (HPF) algorithm is proposed to track the 
target object’s position and shape components respectively, 
which not only overcomes the linear and Gaussian restriction 
in Kalman filter, but also reduces the computational burden 
caused by the extension of system state’s dimension in 
particle filter. Real-time data fusion between KF and PF is 
implemented to ensure the efficiency of the hybrid algorithm.  

The remainder of this paper is organized in the following 
manner. After introducing Kalman filter and Particle filter in 
section 2, a foreground measurement method and a tracking 
algorithm named Hybrid Particle Filter are presented in detail 
in section 3. Section 4 shows how to implement HPF with a 
robot platform, section 5 presents some experiment results 
and finally section 6 concludes the paper. 

2. RELATED WORK 

2.1 Kalman Filter 

KF is a recursive procedure that estimates the state of a 
dynamical system with the linear minimum error of mean 
square principle. If the state vector and the system noise are 
both independent Gauss process, KF is the square optimal 
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estimation. The recursive algorithm mainly depends on the 
equation of system state 

1k k k kX X W+ = Φ +                      (1) 
and the equation of observation 

k k k kZ H X V= +                          (2) 
where kX is the N-dimensional state vector of the system; 

kZ is the M-dimensional observation vector; the N ×N-
dimensional state transfer matrix kΦ shows the relationship 
between the state vectors at time k and time k+1; kH is a M
×N-dimensional transfer matrix, which defines the transfer 
relationship between the system state and the observation 
vector when there is no system noise. kW  and kV  are random 
disturbance vectors for the system state equation and the 
observation equation respectively, on the assumption that 
both disturbance vectors are independent sequences of zero-
mean Gauss white noise; the covariance matrixes are: 

T
k k kQ E W W⎡ ⎤= ⎣ ⎦，

T
k k kR E V V⎡ ⎤= ⎣ ⎦          (3) 

The recursive procedure of KF to obtain the posterior 
estimation of kX can be described as follows: 

1 1
ˆ

k k kX X− −= Φ                              (4) 
ˆ ˆ( )k k k k k kX X K Z H X= + −             (5) 

Here, kK  is the gain matrix of KF, which can be calculated 
by the following equations:  

1 1 1 1
ˆ T
k k k k kP P Q− − − −= Φ Φ +                      (6) 

1ˆ ˆ( )T T
k k k k k k kK P H H P H R −= +              (7) 

ˆ ˆ
k k k k kP P K H P= −                                (8) 

2.2 Particle Filter 

Particle filter (PF) is first proposed by Gordon in 1993 
(Gordon et al., 1993). It provides a practical way for solving 
non-Gaussian and nonlinear tracking tasks. It is an effective 
technique for implementing a recursive Bayesian 
approximation by Monte Carlo simulations. The kernel of 
this theory is exploiting a series of weighted particles 

( ) ( )
1{ , } sNi i

k k iS ω =
 to describe the posterior probability density 

function (PDF) at time k and updating the weights of the 
particles with the observation information. Every particle ( )i

kS  
shows an assumed state of the system, ( )i

kω  is the discrete 

sample probability for ( )i
kS , and ( )

1
1

sN
i

k
i

ω
=

=∑ . When the number 

of the particles is large enough, this discrete weighted 
estimation for the posterior state approximates to the Bayes 
optimum solution, therefore PF is a solution to the problem 
of state estimation. At time k, the prior PDF of the state is 
represented by a series of particles ( ) ( )

1{ , } sNi i
k k iS ω =

. Each 
particle’s weight is updated according to the observation at 
time k, and the particles close to the observed peak value are 

approximate to the real state of the system, so they are 
endued with bigger weight. After updating the weights, the 
particles represent the posterior distribution of the system 
state. To reduce the disturbance caused by the particles with 
small weights, resample is required. The particles with small 
weight will be ignored while the ones with big weight will be 
copied. Now, a loop of this iteration process is done. 

The advantage of particle filter is that it can express arbitrary 
distribution and work well in nonlinear and non-Gaussian 
systems. But in practical application, a large number of 
particles are needed when the background is complicated. 
Since every particle is an assumed state of the system, the 
high computing cost obstructs the implementation of real-
time tracking, especially when the dimension of the state 
vector is high. The hybrid particle filter algorithm presented 
in this paper can solve this problem and the detailed steps of 
this algorithm will be introduced in section 3.3.2. 

3. FOREGROUND MEASUREMENT AND HYBRID 
PARTICLE FILTER ALGORITHM 

Vision algorithm is the kernel of a person following robot. 
The target object could be identified by certain colour and 
shape, and these objective traits provide a physical basis for 
foreground measurement, which consists of pixel 
classification and target region segmentation in our research. 
After accomplishing foreground measurement, HPF is used 
to update the system state and track the target. 

3.1 Pixel Classification 

In order to identify the candidate objects from the 
background, pixels classification is the fundamental 
technique which includes threshold method, Gaussian-
mixture model method and clustering method, etc. 
Considering the real-time and other constraints in practical 
application, we assume that the person who is tracked wears 
single colour clothes so that we can choose the constant 
threshold and reduce the computing cost in our method. 

The output of a CCD camera is the RGB image. In order to 
enhance the algorithm’s adaptability to the light intensity, the 
HSI colour space is used instead of RGB and the component 
of Intensity is not taken into account in our research. Pixel 
classification includes two steps. The first step is colour 
learning. The colour samples of the target are extracted and 
the thresholds of H and S are obtained through learning. The 
second step is pixel matching. All the pixels are compared 
with the thresholds of H and S, then the pixels are classified 
into two types: the one belong to the object and the one not. 

3.2 Target Region Segmentation 

After pixel classification, it is necessary to analyse the 
connectedness of the pixels which belong to the target. The 
target pixels are separated into several independent regions. 
A tree-based run length encoded (RLE) method (Bruce et al., 
2000) is employed in this paper. The region segmentation 
procedure includes two steps. The first step is to compute a 
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RLE version for the classified image. By grouping adjacent 
target pixels as a single “run”, the efficiency of the algorithm 
is improved because subsequent users of data can operate on 
entire “runs” rather than individual pixels. In the second step, 
the merging method employs a tree-based “union find” with 
path compression. The merging is performed in place on the 
classified RLE image. Initially, each “run” labels itself as its 
parent, resulting in a completely disjoint forest, and then the 
merging procedure scans adjacent rows and merges “runs” 
which are connected to each other. This yields a disjoint 
forest, and each tree represents an independent connected 
region. In our experiment, the connected regions are 
expressed by the rectangles. The observation characteristic 
vector of the rectangle [ ]T

k k k k kZ x y w h=  is provided 
for the tracker, where ( , )k kx y  is the rectangle’s center and 
( , )k kw h  is the rectangle’s width and height. 

3.3 Hybrid Particle Filter Algorithm 

The final goal of a vision tracking algorithm is to estimate the 
target’s position in each frame accurately and robustly, 
nevertheless the factor in target’s shape also draws our 
attentions. The system state vector constructed in our work 
includes both the object’s position and the object’s shape, 
which is very helpful in the preprocessing of weight updating 
in HPF algorithm. Object’s shape component in the system 
state not only guarantees the accuracy in observation’s 
matching and robustness in target tracking, but also plays an 
important role in the procedure of target locating. 

3.3.1   Target Dynamic Model  

We consider the motion of target as the discrete-time 2-
dimensional nearly constant velocity (NCV) motion model 
(Coraluppi and Grimmett, 2001). In our task, the state of the 
motion model is expanded to be a 4-dimensional vector and 
the state propagation equation is: 

1k k k kX X W+ = Φ +                          (9) 

and  

[ ] [ ]T T
k k k k k k k k k k kX S B x y x y w h w h= = �� � �  (10) 

2 2 2 2

4 2 2 2 2

4 2 2 2 2

2 2 2 2

k

k
k

k k

I t I O O
O O I O O

O O O I t I
O O O I

∆⎡ ⎤
⎢ ⎥′Φ⎡ ⎤ ⎢ ⎥Φ = =⎢ ⎥′ ⎢ ⎥Φ ∆⎣ ⎦
⎢ ⎥
⎣ ⎦

           (11) 

The position component in kX  is [ ]k k k k kS x y x y= � � , 
where ( , )k kx y  is the center of target region at time k, while 
( , )k kx y� �  represents the motion; Correspondingly, the object’s 

shape component in kX  is [ ]k k k k kB w h w h= �� , where 

kw , kh  represent the width and height of object’s rectangular 
boundary in foreground measurement respectively, while 

kw� , kh�  is their corresponding scale change; nI and nO are n×n 

identity and zero matrices; 1k k kt t t+∆ = − is the time interval 
between frames. { , 1}kW k ≥  is a discrete-time white Gaussian 
noise with (0, )k kW N Q∼ , where, in this case, 

11 4

4 22
k

Q O
Q

O Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 3 21 1
3 2

11 21
2

( , ) ( , )

( , ) ( , )
k k k k

k k k k

k x y k x y

k x y k x y

t diag q q t diag q q
Q

t diag q q t diag q q

⎡ ⎤∆ ∆
= ⎢ ⎥

∆ ∆⎢ ⎥⎣ ⎦

, 

3 21 1
3 2

22 21
2

( , ) ( , )

( , ) ( , )
k k k k

k k k k

k w h k w h

k w h k w h

t diag q q t diag q q
Q

t diag q q t diag q q

⎡ ⎤∆ ∆
= ⎢ ⎥

∆ ∆⎢ ⎥⎣ ⎦

and
kxq ,

kyq ,
kwq ,

khq  are noise covariance gains of kx , ky , kw , kh , respectively. 
The target measurement equation at time k is described by 

k k k kZ H X V= +                         (12) 

The measurement vector kZ can be expressed as 

[ ] [ ]T T
k k k k k k kZ U Y x y w h= = , where [ ]k k kU x y=  

and [ ]k k hY w h=  are position and shape components 
respectively. The transfer matrix H  is 

2 2 2 22 4

2 4 2 2 2 2

k
k

k

I O O OH O
H

O H O O I O
×

×

′ ⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥′⎣ ⎦ ⎣ ⎦

                (13) 

where 2 4O ×
is 2×4 zero matrix; { , 1}kV k ≥  is a zero-mean 

independent Gaussian noise with (0, )k kV N R∼ , where 
2 2 2 2( ( ), ( ), ( ), ( ))k x y w hR diag k k k kσ σ σ σ= . 

3.3.2 Algorithm 

Considering the high dimension of the system state in our 
task and the computational cost of PF algorithm in complex 
non-Gaussian and nonlinear target tracking, how to reduce 
the computational burden and improve tracking algorithm’s 
practicability are the crucial problems in our research. In this 
paper, a novel algorithm, hybrid particle filter, is presented to 
solve the problems mentioned above. HPF algorithm 
combines Particle filter and Kalman filter to process system 
state’s position component and shape component respectively, 
and the data fusion between these two filter algorithms makes 
system state updating more reasonable and effective. 

System state is composed of position component and shape 
component. PF algorithm is used to estimate object’s position 
recursively; KF algorithm is used to estimate the width and 
height of object’s rectangular boundary in current time, the 
estimating result of which is also the basis of particle 
weight’s updating in PF. Correspondingly, the state in KF is 
updated by using the measurement information derived from 
the posterior estimation of target’s position. The using of KF 
in HPF reduces the computational burden greatly and the 
combination of PF and KF makes the real-time and robust 
target tracking practicable in non-Gaussian measurement 
environment. 

In PF algorithm, ( ) ( ) ( ) ( ) ( )[ ]i i i i i TS x y x y= � �  is a sample (a 
particle) which represents an assumed position state of the 
target object and is described by a rectangular boundary line. 
The predicted measurement vector ( ) ( ) ( )ˆ ˆ ˆ[ ]i i i TU x y=  of 
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particle ( )iS  can be got from the system state propagation 
equation and the target measurement equation. The predicted 
measurement vector ˆˆ ˆ[ ]TY w h=  of current target object’s 
rectangular boundary can also be got from Kalman filter. 
{ }( ) ( ) ( ) ( ) ( ) ( ) ( )

1
[ ] [ ]

Mj j j T j j j j T

j
Z U Y x y w h

=
= =  are M 

measurement vectors totally which is the result of foreground 
measurement. In order to update particle’s weight, it is 
necessary to find out each particle’s optimum matching in 
practical observation. Mahalanobis rule is used to preprocess 
the candidates from foreground measurement according to 
the predicted shape measurement vector, and the candidates 
that have the similar rectangular boundary are reserved. Then 
the minimum Euclidian distance is used to achieve particle’s 
least uncertainty measurement among the remainder 
candidates. For a single particle, the reserved candidate 
which has the minimum Euclidian distance to it is its least 
uncertainty measurement.  

In our HPF algorithm, the position component ( )mU  of 
particle’s least uncertainty measurement ( )mZ  is used to 
update particle’s importance weight. According to the model 
of two-dimensional Gaussian joint distribution, the weight 
updating formula of sample ( )iS  is 

( ) ( ) ( ) 1 ( ) ( )
1
2

1 1 ˆ ˆexp ( ) ( ) ( )
22

i i m T T i m
k k k

T
k k k

U U H RH U U
H RH

ω
π

−⎧ ⎫′ ′= − − −⎨ ⎬
⎩ ⎭′ ′

(14) 

From (14) we can conclude that the particles with smaller 
distance in the least uncertainty measurement will be 
assigned larger weights. During the resampling step in PF, 
samples having a high importance weights may be multiplied 
several times, leading to identical copies, while others with 
relatively low importance weights may be eliminated since 
they have little contribution to the posterior estimation of the 
target’s state. 
The output of position component can be expressed by MAP 
(Maximum A Posteriori) estimation ( ) MAPE S S= . Compared 

with weighted mean estimation 
1

( ) ( )[ ]
sN

i

i iE S Sω
=

= ∑  in other 

work, the state’s MAP estimation can suppress interference 
from spurious measurement and the convergent point of 
particles’ distribution is selected as the posterior estimation, 
which makes the tracking result with HPF algorithm more 
objective to true value. 

Suppose target object’s state posterior estimation at time k-1 
is 1 1 1[ ]T

k k kX S B− − −= , where the position component 1kS −
 is 

represented by a set of N weighted samples ( ) ( )
1 1 1{ , } sNi i

k k iS ω− − =
. 

Given that 1kP −
 is the posterior error covariance of shape 

component 1kB −
, the recursive update in HPF is realized in the 

following 6 steps: 

(1)  Resampling in PF: Resample with replacement N 
particles ( )

1 1{ ,1/ } sNi
k s iS N− =′  from the set ( ) ( )

1 1 1{ , } sNi i
k k iS ω− − =

 according 
to the probability ( ) ( ) ( )

1 1 1Pr( )i j j
k k kS S ω− − −′ = = . 

(2)     State Prediction in PF and KF: The predictive output 
of particle set ( )

1 1{ ,1/ } sNi
k s iS N− =′ , posterior    estimation of shape 

component 1kB −
, and posterior covariance estimation 1kP −

 are 

given by ( ) ( )
1 1 4 4 1

ˆ [ ]i i
k k k kS S I O W− − −′ ′= Φ + , 1 1

ˆ
k k kB B− −′= Φ  and 

1 1 1 4 4 4 4
ˆ [ ] [ ]T T
k k k k kP P O I Q O I− − −′ ′= Φ Φ +  respectively. The 

new particle set of shape component is ( )
1

ˆ{ ,1/ } sNi
k s iS N =

; the state 

prediction of shape component is ˆ
kB ; the corresponding 

prediction of state covariance is k̂P . 

(3)      Measurement Prediction in PF and KF: The predictive 
measurement vector set ( )

1
ˆ{ } sNi

k iZ =
 of current particle set 

( )
1

ˆ{ } sNi
k iS =

 and the measurement prediction k̂Y  of ˆ
kB  are 

computed by ( ) ( )ˆˆ i i
k k kZ H S′=  and ˆ ˆ

k k kY H B′= . 

(4)    Weight update and output in PF: Based on the methods 
presented above, we can find the corresponding least 
uncertainty measurement ( )im

kZ  for each particle ( )i
kS  from the 

current foreground measurement vector set ( )
1{ }i M

k iZ =
. Update 

the weights of particle set ( )
1

ˆ{ ,1/ } sNi
k s iS N =

 by using (16) and 

normalize the weights with ( ) ( ) ( )

1

/
sN

i i i
k k k

i

ω ω ω
=

= ∑ , then we can 

get ( ) ( )
1{ , } sNi i

k k iS ω =
. MAP estimation of object’s position 

component is ( )k kMAPE S S= . 

(5)    Gain computation and state update in KF: Kalman gain 
can be computed from the equation of ˆ ˆ(T T

k k k k k kK P H H P H′ ′ ′= +  
1

2 2 2 2[ ] [ ] )T
kO I R O I − . Find the least uncertainty 

measurement ( )m
kZ  of kMAPS  from foreground measurement 

vector set ( )
1{ }i M

k iZ =
 as the actual observation in KF, and then 

update the state in KF with ˆ ˆ( )m
k k k k kB B K Z Y= + − . State 

covariance can be updated by ˆ ˆ
k k k kP P K HP= − . 

(6)    Output of HPF: Posterior estimation of target object’s 
state is [ ]T

k kMAP kX S B=  at time k. 

   
Fig 1.  MAP estimation of target object (Left), distribution of 
particles and corresponding weights allocation (Right) 

A practical application case of HPF algorithm is shown in 
Figure 1. To test the validity of this algorithm in non-
Gaussian measurement environment, a moving red ball is 
tracked with a stationary camera. The MAP estimation of 
current state is illustrated with a white square in the left 
image, while the distribution of particles and corresponding 
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weights allocation based on (16) is illustrated in the right 
image. 

4. IMPLEMENTATION OF HYBRID PARTICLE FILTER 
ON A PERSON FOLLOWING ROBOT 

The algorithm presented above is based on the assumption 
that the camera is stationary. But on a person following robot, 
the location of the camera must be changed while the robot is 
moving. In this situation, it is not enough to predict the state 
vector of PF only with the system state propagation equation, 
so HPF can not be used directly. Image-forming principle of 
CCD camera is applied in a method which can reduce the 
influence caused by the movement of camera and predict the 
position of target in different image planes. 

 

Fig.2.  The pinhole model of CCD camera 

The camera is modelled as a pinhole (Figure 2). The 
subscript r and c mean the camera coordinates and the robot 
coordinates. If the coordinates of a 3D point is known, it is 
easy to calculate the corresponding point in the image plane. 
The procedure of image-forming is introduced in many 
literatures, so it will not be repeated in this paper. According 
to the image-forming procedure, we can deduce a point on 
the ground in robot coordinates by using its pixel coordinates 
( , )p px y  and camera’s intrinsic parameters cxf , 

cyf , xc , 
yc : 

* *cos( ) *sin( )*( )
( )*cos( ) *sin( )

cx p y
r

p y cy

f H H y c
x

y c f
α α

α α
+ −

=
− −

           (15) 

( )*( *sin( ) *cos( ))p x r
r

cx

x c H x
y

f
α α− −

=             (16) 

where H  is the height of camera installed on the mobile 
robot and α  is camera’s elevation angle. After we get the 
point’s position in robot coordinates, it is easy to transform it 
to the world coordinates ( , ,0)w wp x y . 

 

Fig.3.  The process of prediction for the moving object in 
different image planes 

The prediction for moving object in different image planes 
consists of three steps which are briefly shown in Fig 3: 

(1) At time k-1, the object’s position in the world coordinates 
is 1kp −

 and its projection in image plane α  is 1kp −′ . The world 
coordinates of 1kp −

 can be deduced from the pixel 
coordinates of 1kp −′  by using (15) and (16). 
(2) At time k, mobile robot moves to a new position and the 
new image plane is β . Suppose that the object is immovable 
and project 1kp −

 to image plane β , then we could get the 
projection result kp′ . 
(3) Considering the object’s movement in measurement 
environment, object moves from 1kp −

 at time k-1 to the new 
position 

kp  at time k. In order to provide enough 
measurement information for later target tracking, 

kp  is 
projected to β  again to predict the new pixel position in the 
image plane. 
After the above three steps, we complete the pixel position 
prediction in different image planes. Now HPF is available, 
and the moving person can be tracked by a moving camera on 
the robot. 

To follow a person, the robot must turn to the direction of the 
person first. If ( , )p px y  represents the position of the person 
in the image plane and 0 0( , )x y  is the center of image, the 
angle that the robot has to turn is 

0( )p pk x x× − , where 
pk  is a 

proportion factor. By this way, the person’s image can be 
always kept in the center of image planes. With the output of 
HPF, it is easy to obtain the person’s position in the robot 
coordinate system using (15) and (16), and then the distance 
information between the person and the robot is known. If the 
distance is greater than the maximum distance we set, the 
robot moves forward. On the contrary, if the distance is less 
than the safe distance, the robot falls back. 

5.  EXPERIMENTAL RESULTS 

The vision system in our experiment includes a Canon VC-
C50i CCD colour camera mounted on Pioneer 3 robot and a 
frame grabber with BT848 chip. Two tracking applications 
are implemented which demonstrate the efficiency of the 
HPF algorithm in a person following robot, including fixating 
a person in laboratory and following a person in the corridor. 

5.1  Fixating Experiment 

In this experiment, the initial position of the person is in the 
right part of the image. When the person’s image is moving 
from right to the left and deviates from the image center, the 
robot rotates and changes its direction to keep the person in 
the image center. The initial position is given by clicking on 
the image by a mouse, and a rectangle area is also selected by 
the mouse to decide the thresholds of the H and S component. 
150 particles are exploited in our filter algorithm and the 
result is shown in Figure 4. 

pY  

pX  

O
I  

, ,( )w w wP X Y Z
cZ  

rZ  

H

rO
rX

rY

cY  cX  

cO  
ccdO  ,'( )ppP X Y  

kp′′  
 

kp′
β  

α  
1kp −′  

 

1kp −  kp
② 
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① 

③ 
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Fig.4. Image sequence from digital video shows the results in 
fixating experiment. 

The image size is 192×144. In the first frame, the person is 
far from the center, and then the robot turns to fixate him. In 
the following frames, both the true value and the estimated 
value are close to the expected value, which is the center of 
the y-axis in the image plane. If the position of person ranges 
from 76 to 116 on the y-axis, the robot keeps stationary. Fig 5 
is the plotting of the estimated value and true value in 
fixating experiment. 
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Fig.5. Plotting of the estimated value and true value in 
fixating experiment. 

5.2  Following Experiment 

       
            Frame 1                                       Frame 8 

       
                  Frame 16                                      Frame 22 

Fig. 6. Tracking results in person following experiment. 

This experiment shows the person following performance of 
the robot. When a person goes forward in the corridor, the 
robot follows behind him. The robot controls its velocity to 
keep the distance between them in a suitable range. The 
initial position of target and the colour threshold are also 
obtained by clicking on the image by a mouse. Figure 6 
shows that the tracking algorithm used in this experiment is 
effective and it is practical for a person following robot. As 
shown in figure 6, the tracking target is the person’s legs and 
pixels detected as target are marked by black. The white 
rectangles are candidate observations. The red rectangle is the 
output of HPF. The yellow points are particles. 

6. CONCLUSIONS 

A practical method for target tracking in noisy scene has been 
proposed and applied to a person following robot. Hybrid 
particle filter fuses the data of PF and KF, and tracks a target 
in non-Gaussian measurement environment with a low 
computational burden successfully. The pinhole model of the 
camera is used to predict the target’s position in different 
image planes, which makes an important contribution to the 
implementation of HPF on a mobile robot. The experimental 
results illustrate that the proposed method can effectively 
track the target, even when the camera is not stationary. 
Further work is planned to perform the proposed method to 
realize multi-target tracking in the dynamic environments. 
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