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Abstract: Piezoelectric stack-actuated parallel-kinematic nanopositioning platforms have their
first resonant mode at relatively low frequencies and also suffer from nonlinearities such
as hysteresis and creep, resulting in a typically low-grade positioning performance. Closed-
loop control algorithms have shown the potential to eliminate these problems and achieve
robust, repeatable nanopositioning. In this work, the performance of three commonly used
damping controllers is compared based on their closed-loop noise characteristics. The best one
is combined with an integrator to produce accurate raster scans of large areas while imparting
substantial damping to the system and minimizing inherent nonlinearities. A scanning resolution
of approximately 8nm, over a 100µm × 100µm area is achieved.
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1. INTRODUCTION

Advances in nanopositioning directly affect a range of
important fields including nanomachining, scanning probe
microscopy, microlithography and nanometrology, Fuji-
masa (1996); Desai et al. (1998); Bhushan (2004). Nano-
platforms have desirable properties such as larger range
of motion, greater mechanical robustness, lower cross-
coupling between the axes and ease of integration.

The two main factors that limit the performance of
nanopositioning platforms are: (i) Resonance and (ii) Non-
linearities. Researchers, Kang and Mills (2005), have pro-
posed techniques to damp the resonant modes of highly
resonant systems such as piezoelectric tube nanoposition-
ers. Passive techniques such as shunt damping have been
reported by earlier researchers, Fleming and Moheimani
(2006). Although, such techniques can deliver acceptable
performance, they may need frequent tuning, Niederberger
et al. (2004). Resonant control has been applied to damp
resonant systems, Pota et al. (2002). These controllers
have attractive robustness properties. However, they also
have a high-pass profile that may worsen the measure-
ment noise, a main consideration in precise nanoposition-
ing applications. Polynomial-based pole placement control,
Goodwin et al. (2001), and Positive Position Feedback
(PPF) control, Fanson and Caughey (1990), are some
other popular techniques and have been applied to damp
the resonant modes of nanopositioning systems such as the
piezoelectric tube nanopositioners, Bhikkaji et al. (2007)
as well as cantilever beams, Moheimani et al. (2006). These
controllers provide robust damping performance under
variations in resonance frequencies. They also have a high-
frequency roll-off and thus do not excite the unmodeled
high-frequency dynamics.

In nanopositioning platforms actuated by piezoelectric
stacks, nonlinearities such as hysteresis and creep result

in degraded scan performance. Closed-loop compensation
of hysteresis and creep is desirable and simple tracking
controllers such as an integrator, have shown potential in
eliminating the errors due to these nonlinearities, Jung
et al. (2001).

Closed-loop nanopositioning schemes are less common
than the open-loop architectures due to the low resolution
resulting from the fed back sensor noise, see Sebastian
and Salapaka (2005). Croft et al. (2001) have proposed
open-loop compensation for the vibration as well as non-
linearities in piezoelectric actuators. Researchers have also
proposed feedforward techniques to address hysteresis as
well as simple filter based compensation techniques to deal
with creep in piezoelectrically actuated scanning devices,
El-Rifai and Youcef-Toumi (2002). Most techniques are
used to obtain scans either for very small ranges (<10
µm) or at low speeds (<1 Hz). We propose a simple yet
well-performing closed-loop nanopositioning scheme that
results in high-resolution scans of large areas (100µm ×
100µm) at high speeds (4 Hz).

1.1 Objectives

The main objective of this work is to obtain high-
resolution closed-loop raster scans using a piezoelectric
stack-actuated nanopositioning platform. Section 2 de-
scribes the experimental setup and Section 3 gives the de-
tails of the system identification and the design algorithms
for the three controllers. Based on the noise analysis given
in Section 4, the Polynomial-based pole placement con-
troller is deemed most suitable for this specific application.
Experimental results are given in Section 5 and Section 6
concludes the paper.

2. EXPERIMENTAL SETUP
The PI-734 nanopositioning platform, used in this work, is
a two-axis piezoelectric stack-actuated platform based on
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Fig. 1. Working principle of the monolithic XY
piezoelectric-stack actuated nanopositioning plat-
form.

a parallel-kinematic design. This design provides mount-
ing independent orthogonality and reduced cross-coupling
between the two axes. The platform has a flexure guidance
system which eliminates friction and stiction. To increase
the range of motion whilst maintaining the sub-nanometer
accuracy of the platform, it is equipped with a built-in
integrated lever motion amplifier. Each axis of the nanopo-
sitioning platform is fitted with a two-plate capacitive
sensor that provides a direct position measurement. A
simplified diagram of the nanopositioning platform is given
in Figure 1. The platform piezoelectric stack actuators
take voltage input in the range of 0 V - 100 V for each
axis. The resultant motion produced by the platform is
within 0 µm - 100 µm. This motion is detected by the
two-plate capacitive sensors and fed to a signal condi-
tioning module with an output range of 0 V - 6.7 V. A
dSPACE-1005 rapid prototyping system equipped with 16-
bit ADC(DS2001)/DAC(DS2102) cards and a sampling
frequency of 20 kHz, is used to implement the proposed
control strategy.

3. SYSTEM IDENTIFICATION AND CONTROL
The nanopositioning platform is treated as a two-input
two-output linear system with inputs ux and uy being the
voltage signals applied to the piezoelectric stacks in the X
and Y directions, respectively, and the outputs dx and dy

being the corresponding displacements in µm, measured
by the capacitive sensor. Here, we set

Y (s) , G(s)U(s), (1)

where U(s) is the Laplace transform of [ux, uy]
⊤

, Y (s)

denotes the Laplace transform of [dx, dy]
⊤

, and

G(s) =

[

Gxx(s) Gxy(s)
Gyx(s) Gyy(s)

]

(2)

is 2 × 2 matrix of transfer functions.

It is evident from the plots (Figure 5) that the magnitude
of the cross coupling terms Gxy(iω) and Gyx(iω), at
any ω > 0, are less than the direct terms Gxx(iω) and
Gyy(iω), respectively, by about 40 dB 1 . Therefore the

1 The two resonant modes seen in each of the cross-coupling FRFs
are due to the mechanical resonant peaks of each individual axis.
Therefore, they occur at exactly the same frequencies, i.e. at 410 Hz
and 415 Hz, in both the Gxy and Gyx.
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Fig. 2. Closed-loop block diagram with the sensor noise
modeled as an output disturbance.

cross coupling terms can be neglected and the system is
assumed to be decoupled.

Gxx(iω) and Gyy(iω), have only one resonant mode in the
bandwidth of interest and second order models given by

Gxx(s) =
kx

s2 + 2σxωxs + ω2
x

+ Dx, (3)

and

Gyy(s) =
ky

s2 + 2σyωys + ω2
y

+ Dy, (4)

accurately capture the dynamics of the measured FRFs.
The parameters of these models are tabulated in Table 1.
As the models are of second order their estimation is
not difficult, and the details on parameter estimation are
omitted.

kx 8.1532 × 106

2σxωx 6.05 × 101

ω2
x

6.65 × 106

Dx −0.13
ky 8.0023 × 106

2σyωy 5.64 × 101

ω2
y

6.8 × 106

Dy −0.13

Table 1. Parameter values of the FRFs
Gxx(s), Gyy(s), Gcxx

(s) and Gcyx
(s)

3.1 Control Design

As the axes are considered to be decoupled, controllers are
designed independently for each axis and the implemented
strategy is shown in Figure 2. Here, controller C1(s)
is aimed at damping the resonant mode of Gxx(s) (or
Gyy(s)), while C2(s) is incorporated for tracking the
reference signal. In the following, three different control
techniques, (i) Polynomial-based pole placement control
(will be referred to as Polynomial-based control, from
now on) (ii) PPF control and (iii) Resonant control,
will be used for obtaining C1(s). The controllers will be
chosen such that all the three damp the resonant peak by
approximately the same level. In Section 4, one of the three
will be chosen based on their response to sensor noise n(t),
see Figure 2 2 .

Polynomial-based controller: In the current context, a
Polynomial-based controller is defined by the second order
transfer-function

2 Note that both PPF and Polynomial-based controllers are imple-
mented in positive feedback while the resonant controller is imple-
mented in negative feedback.
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KPoly(s) ,
Γ1s + Γ2

s2 + 2ξws + w2
, (5)

where ξ, w,Γ1 and Γ2 are the design parameters. Since the
feedback is positive, the transfer-function connecting the
output dx and the input ux is given by

G(cl)
xx (s) =

Gxx(s)

1 − Gxx(s)KPoly(s)
. (6)

For the closed loop system to be well damped it is desirable
that its poles are well inside the left half plane. The poles
of Gxx(s), computed from (3), are p± = −30.23± i2578.5.
Here, the desired closed-loop poles are set to

P1± = P2± =−1030.23 ± i2578.5,

which amounts to placing the closed-loop poles of the
system further into the left half plane by 1000 units.

It can be checked that the controller

KPoly(s) ,
−499.9s + 3.249.106

s2 + 4121s + 1.247 × 107
, (7)

would render a closed-loop system having poles at P1+, P2+,
P1− and P2−. This controller damps the resonant mode of
the x-axis by 23 dB.

PPF Controller: A PPF controller is defined by the
second order transfer function

KPPF (s) =
γp

s2 + 2ηpωps + ω2
p

. (8)

It is similar to Polynomial-based controller, (5), but with-
out the velocity term Γ1. As the feedback is positive, the
transfer-function connecting the output dx and the input
ux is as in (6) but with KPoly(s) replaced by KPPF . Here,
we aspire for a PPF controller, KPPF , which gives the
same level of damping as the controller, KPoly, (7). Since,
in (7) | Γ1 | << | Γ2 |, the effect of Γ1 is negligible near the
low frequency regions. Thus, a PPF controller with Γ1 set
zero in (7) would behave the same way as (7) near the low
frequency regions. Thus, Γ1 is set to zero. The resulting
PPF controller given by

KPPF (s) ,
3.249.106

s2 + 4121s + 1.247.107
, (9)

is stable in closed-loop and delivers the same level of
damping as (7).

Resonant Controller: In the current context, resonant
controllers can be parametrized as

KRes (s) =
αs2

s2 + 2δωs + ω2
. (10)

As KRes(s) is targeted to damp the resonant mode of the
nanopositioning platform, ω is set to the first resonance
frequency of the platform. The values of α and δ are chosen
graphically such that the absolute value of the difference
h, between the real parts of the corresponding open- and
closed-loop poles is minimized. The resultant Resonant
controller that imparts the same amount of damping as
the Polynomial-based controller is
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Fig. 3. Noise in the capacitive sensor measurement due to
the conditioning electronics.

KRes(s) ,
0.3s2

s2 + 3094s + 6.649 × 106
. (11)

A statistical analysis of measurement noise and the effects
of the three controllers presented here are evaluated.
Using this, the controller best suited for nanopositioning
applications is identified.

4. MEASUREMENT NOISE
Measurement noise is a major consideration in precision
motion at nanometer scales. The recorded sensor output
clearly shows the sensor noise as well as the quantization
noise, see Figure 3. In our set-up, quantization error is not
a major consideration as it is lower (≈1 nm rms) than the
actual sensor noise (≈9 nm rms).

The transfer functions relating the actual system output
y to the sensor noise n are calculated for the three
controllers discussed earlier, see Figure 4. The Polynomial-
based controller has a better high-frequency roll-off than
the resonant controller and it does not amplify the noise
at any frequency as is done by the PPF controller, thus
making it ideal for this nanopositioning application.

4.1 Noise Characterization

It can be verified that for the system illustrated in Figure 2,
the Laplace transform of the plant output y(t) is equal to

Y (s) =
G(s)C2(s)

1 + G(s) (C2(s) − C1(s))
R(s)

−
G(s) (C2(s) − C1(s))

1 + G(s) (C2(s) − C1(s))
N(s)

, Gr(s)R(s) − Gn(s)N(s), (12)

where G(s) denotes the plant dynamics, C1(s) and C2(s)
denote the Polynomial-based controller and the integral
controller respectively, while R(s) and N(s) are Laplace
transforms of the reference signal r(t) and noise n(t)
respectively. When operating in open loop, where Y (s) =
G(s)R(s), the sensor noise does not disturb the actuation
of the plant. However, in closed loop, the sensor noise is
fed back into the system, leading to an additional term
Yn(s) , Gn(s)N(s); the noise response.

The sensor noise n(t) is assumed to be both stationary and
ergodic. Thus, its mean, variance and covariances can be
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Fig. 4. Transfer functions relating the actual system out-
put y to the sensor noise n. (a) Polynomial-based con-
troller. (b) PPF controller. (c) Resonant controller.

approximated by the corresponding sample mean, sample
variance and sample covariances. The sample mean, m̂n,
was approximately 0 and the sample variance, σ̂2

n, was
approximately 6.2287 × 10−5µm2. Since the mean of n(t)
is approximately zero, due to linearity, the mean myn

of
the noise response yn(t) (the inverse Laplace transform
of Yn(s)) must also be close to zero, Brown and Hwang
(2002).

To determine the variance of yn(t), the following relation-
ship is used:

Syn
(iω) = | Gn(iω) |2 Sn(iω), (13)

where Sn(iω) and Syn
(iω) are the spectral densities of n(t)

and yn(t) respectively and Gn(iω) is as in (12). The details
on how to calculate Sn(iω) and eventually the variance σ̂2

yn

from Syn
(iω) are given Brown and Hwang (2002). They are

not presented here due to the constraints on the number
of pages.

5. EXPERIMENTAL RESULTS USING THE
POLYNOMIAL-BASED CONTROLLER

The Polynomial-based controllers for the x and y axes are
given by:

KPoly(s) ,
−499.9s + 3.249.106

s2 + 4121s + 1.247.107
, (14)

and

KPoly(s) ,
−490.6s + 3.124 × 106

s2 + 4124s + 1.237 × 107
, (15)

respectively.
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Fig. 5. Open-loop plant( - - - ) and closed-loop plant
with Polynomial-based controller ( — ) frequency
responses of the two-input two-output nanoposition-
ing platform from displacement output d to platform
voltage input u.
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Fig. 6. Frequency responses for X (a) and Y (b) axes for
the open-loop case (- - -) and closed-loop case with
Polynomial-based controller+Integral control ( — ).

The effectiveness of the Polynomial-based controller in
damping the resonance of Gxx(s) is evaluated both numer-
ically and experimentally. The experimental results agree
favourably with the numerical predictions. Figure 5 shows
the measured frequency responses of the undamped and
damped nanopositioning platform 3 .

To eliminate the problems associated with nonlinearities
such as hysteresis and creep, a suitable tracking controller
is necessary Croft et al. (1999). An integral controller with
a gain of 400 was implemented along with the Polynomial-
based damping controller, as shown in Figure 2, to result
in a well-damped, accurately tracking nanopositioning
platform. This resulted in a stable closed-loop system with
adequate gain and phase margins. The closed-loop plots
are shown in Figure 6.

As mentioned in Subsection 4.1, due to the feedback of
the sensor noise, the system output y(t), (12), is not de-
terministic but random. Having fixed C1(s) and C2(s) for
both the axes, the variance of the respective outputs can

3 The cross-coupling FRFs Gyx and Gxy also show substantial
damping at the resonances.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11802



0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Input sine wave command (Volts)

O
u
tp

u
t

d
is

p
la

ce
m

en
t

(µ
m

)

(a)

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Input sine wave command (Volts)

O
u
tp

u
t

d
is

p
la

ce
m

en
t

(µ
m

)

(b)

Fig. 7. Open-loop (a) and closed-loop (b) hysteresis plots
for the nanopositioning platform. Input u is a 80 V,
4 Hz sine wave and d is the platform displacement in
µm.

be empirically determined using the scheme presented in
Subsection 4.1. Avoiding the details involved in calculating
Ŝn(iωk), Gn(iωk), and Ŝyn

(iωk), the empirical values of the
variances along the x and y axes are directly presented.
The variances are

σ2
x,yn

≈ 1.6355 × 10−5µm2, (16)

and

σ2
y,yn

≈ 1.6230 × 10−5µm2 (17)

along the x and y axis respectively.

5.1 Open- and closed-loop hysteresis and creep evaluation

The platform was excited by a 4 Hz 80 V sine wave
and the resultant displacement was measured to give the
total deviation from the desired trajectory; the hysteresis
loop of the system. Figure 7 (a) shows the open-loop
hysteresis plot. Figure 7 (b) shows that the closed-loop
control scheme eliminates the nonlinear hysteresis effects
almost totally.

The effect of creep on scanning performance is that at
two different scan speeds, it produces scans of different
magnifications. To test the performance of the open-
loop and closed-loop systems for creep, the system is
commanded to move instantaneously by 20 µm from its
zero initial position at t = 10 s. Figure 8 shows the output
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Fig. 8. Open-loop ( - - - ), Polynomial-based controller-
damped closed-loop ( . . . ) and Polynomial-based
controller+integrator closed-loop ( — ) platform step
response (in µm) for a 20 V step command at t=10s.
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Fig. 9. (a) Reference 4 Hz 80 µm triangle scan. (b)
Harmonic distortion due to excitation of resonant
mode in open-loop. (c) Complete open-loop scan
showing the nonlinear trace due to hysteresis. (d)
Closed-loop triangle scan free from errors due to
resonance and nonlinearities.

displacement response of the open-loop and closed-loop
nanopositioning platform from 0 s to 100 s. As seen clearly
from Figure 8, our control scheme has eliminated creep for
all practical purposes.

5.2 Raster scan results

A synchronized 4 Hz triangle wave and a staircase wave-
form were generated to produce the desired raster scan. As
shown in Figure 9 (b), this input excites the axis resonance
and the output displacement is nonlinear due to hysteresis
as seen in Figure 9 (c). The Polynomial-based controller
damps the resonant mode and the integrator effectively
tracks the 4 Hz input triangle to result in a perfect triangle
trace given in Figure 9 (d).

The second axis is given a staircase input and the same
performance improvements are observed in closed-loop.
The plots presented in Figures 9 and 10 are essentially
measurements of the output y(t), (12), along the x and y
axes respectively. The measured scan lines of the traced
raster pattern are presented in Figure 11. The lines are
62.5 nm apart. The empirical variances given in (16) and
(17), imply that the standard deviations σx,yn

and σy,yn

are about 4 nm along both the x and y axes. Thus, the
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Fig. 10. (a) Reference ramp. (b) Ramp traced in open-loop.
(c) Ramp traced in closed-loop.
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Fig. 11. Measured scan lines (faint) and scan lines obtained
using the Kalman estimate (dark) at 62.5 nm from
each other.

adjacent scan lines in the raster pattern have to be at
least 8 nm (twice the standard deviation) apart, to avoid
overlap. With this resolution of 8nm, 12500 scan lines can
be produced in a 100 µm scan. In Figure 11, the scan lines
are 62.5 nm apart, which is about 15 times the standard
deviation. A Kalman estimate of the output y(t) is also
plotted to show how accurate the obtained scan is, with
respect to the desired scan.

6. CONCLUSIONS
The Polynomial-based controller was identified as the most
suitable option for this nanopositioning application. The
implemented Polynomial-based controller damps the dom-
inant first resonant mode of the nanopositioning plat-
form by 23 dB. It was further shown that by combining
this damping technique with an integral controller, non-
linear effects due to hysteresis and creep are minimized
and superior tracking performance is achieved. This was
demonstrated by tracing a 4 Hz 80µm × 80µm raster
scan with a resolution of 62.5nm. Noise analysis suggests
a resolution of 8nm is achievable. A more complete noise
model, for the covariance data presented Section 4, using
the innovations approach would give a better insight into
the noise response and eventually would help in achieving
a better resolution.
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